1
|
Wang J, Tian Y, Wei J, Yu H, Lyu C, Song Y. Impacts of dibutyl phthalate on biological municipal wastewater treatment in a pilot-scale A 2/O-MBR system. CHEMOSPHERE 2022; 308:136559. [PMID: 36207797 DOI: 10.1016/j.chemosphere.2022.136559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Dibutyl phthalate (DBP) is a typical contaminant in pharmaceutical wastewater with strong bio-depressive properties which potentially affects the operation of municipal wastewater treatment systems. Based on a year-round monitoring of the quality of influent and effluent of a full-scale pharmaceutical wastewater treatment plant in Northeast China, the DBP was found to be the representative pollutant and its concentration in the effluent ranged 4.28 ± 0.93 mg/L. In this study, the negative effects of DBP on a pilot-scale A2/O-MBR system was investigated. When the influent DBP concentration reached 8.0 mg/L, the removals of chemical oxygen demand (COD) and total nitrogen (TN) were significantly inhabited (P < 0.01), with the effluent concentration of 54.7 ± 2.6 mg/L and 22.8 ± 3.7 mg/L, respectively. The analysis of pollutant removal characteristics of each process unit showed that DBP had the most significant effects on the removals of COD and TN in the anoxic tank. The α- and β-diversity in the system decreased significantly when the influent DBP concentration reached 8.0 mg/L. The impacts of DBP on known nitrifying bacteria, such as Nitrospira, and phosphorus accumulating organisms (PAOs), such as Cadidatus Accumulibacter, were not remarkable. Whereas, DBP negatively affected the proliferation of key denitrifying bacteria, represented by Simplicispira, Dechloromonas and Acinetobacter. This study systematically revealed the impacts of DBP on the pollutants removal performance and the bacterial community structure of the biological municipal wastewater treatment process, which would provide insights for understanding the potential impacts of residues in treated pharmaceutical wastewater on biological municipal wastewater treatment.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Chaoyang District, 100012 Beijing, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yucheng Tian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Chaoyang District, 100012 Beijing, China.
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Chaoyang District, 100012 Beijing, China
| | - Chunjian Lyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Chaoyang District, 100012 Beijing, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Chaoyang District, 100012 Beijing, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Lopez-Echartea E, Suman J, Smrhova T, Ridl J, Pajer P, Strejcek M, Uhlik O. Genomic analysis of dibenzofuran-degrading Pseudomonas veronii strain Pvy reveals its biodegradative versatility. G3-GENES GENOMES GENETICS 2021; 11:6029021. [PMID: 33693598 PMCID: PMC8022969 DOI: 10.1093/g3journal/jkaa030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022]
Abstract
Certain industrial chemicals accumulate in the environment due to their recalcitrant properties. Bioremediation uses the capability of some environmental bacteria to break down these chemicals and attenuate the pollution. One such bacterial strain, designated Pvy, was isolated from sediment samples from a lagoon in Romania located near an oil refinery due to its capacity to degrade dibenzofuran (DF). The genome sequence of the Pvy strain was obtained using an Oxford Nanopore MiniION platform. According to the consensus 16S rRNA gene sequence that was compiled from six 16S rRNA gene copies contained in the genome and orthologous average nucleotide identity (OrthoANI) calculation, the Pvy strain was identified as Pseudomonas veronii, which confirmed the identification obtained with the aid of MALDI-TOF mass spectrometry and MALDI BioTyper. The genome was analyzed with respect to enzymes responsible for the overall biodegradative versatility of the strain. The Pvy strain was able to derive carbon from naphthalene (NP) and several aromatic compounds of natural origin, including salicylic, protocatechuic, p-hydroxybenzoic, trans-cinnamic, vanillic, and indoleacetic acids or vanillin, and was shown to degrade but not utilize DF. In total seven loci were found in the Pvy genome, which enables the strain to participate in the degradation of these aromatic compounds. Our experimental data also indicate that the transcription of the NP-dioxygenase α-subunit gene (ndoB), carried by the plasmid of the Pvy strain, is inducible by DF. These features make the Pvy strain a potential candidate for various bioremediation applications.
Collapse
Affiliation(s)
- Eglantina Lopez-Echartea
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Tereza Smrhova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 40 Prague, Czech Republic.,Division of Animal Evolutionary Biology, Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, U Vojenske nemocnice 1200, 169 02 Prague 6, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
3
|
Saibu S, Adebusoye SA, Oyetibo GO. Aerobic bacterial transformation and biodegradation of dioxins: a review. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0294-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractWaste generation tends to surge in quantum as the population and living conditions grow. A group of structurally related chemicals of dibenzofurans and dibenzo-p-dioxins including their chlorinated congeners collectively known as dioxins are among the most lethal environmental pollutants formed during different anthropogenic activities. Removal of dioxins from the environment is challenging due to their persistence, recalcitrance to biodegradation, and prevalent nature. Dioxin elimination through the biological approach is considered both economically and environmentally as a better substitute to physicochemical conventional approaches. Bacterial aerobic degradation of these compounds is through two major catabolic routes: lateral and angular dioxygenation pathways. Information on the diversity of bacteria with aerobic dioxin degradation capability has accumulated over the years and efforts have been made to harness this fundamental knowledge to cleanup dioxin-polluted soils. This paper covers the previous decades and recent developments on bacterial diversity and aerobic bacterial transformation, degradation, and bioremediation of dioxins in contaminated systems.
Collapse
|
4
|
Multiple Roles for Two Efflux Pumps in the Polycyclic Aromatic Hydrocarbon-Degrading Pseudomonas putida Strain B6-2 (DSM 28064). Appl Environ Microbiol 2017; 83:AEM.01882-17. [PMID: 29030440 DOI: 10.1128/aem.01882-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial bioremediation is a promising approach for the removal of polycyclic aromatic hydrocarbon (PAH) contaminants. Many degraders of PAHs possess efflux pump genes in their genomes; however, their specific roles in the degradation of PAHs have not been clearly elucidated. In this study, two efflux pumps, TtgABC and SrpABC, were systematically investigated to determine their functions in a PAH-degrading Pseudomonas putida strain B6-2 (DSM 28064). The disruption of genes ttgABC or srpABC resulted in a defect in organic solvent tolerance. TtgABC was found to contribute to antibiotic resistance; SrpABC only contributed to antibiotic resistance under an artificial overproduced condition. Moreover, a mutant strain without srpABC did not maintain its activity in long-term biphenyl (BP) degradation, which correlated with the loss of cell viability. The expression of SrpABC was significantly upregulated in the course of BP degradation. BP, 2-hydroxybiphenyl, 3-hydroxybiphenyl, and 2,3-dihydroxybiphenyl (2,3-DHBP) were revealed to be the inducers of srpABC 2,3-DHBP was verified to be a substrate of pump SrpABC; SrpABC can enhance the tolerance to 2,3-DHBP by pumping it out. The mutant strain B6-2ΔsrpS prolonged BP degradation with the increase of srpABC expression. These results suggest that the pump SrpABC of strain B6-2 plays a positive role in BP biodegradation by pumping out metabolized toxic substances such as 2,3-DHBP. This study provides insights into the versatile physiological functions of the widely distributed efflux pumps in the biodegradation of PAHs.IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs) are notorious for their recalcitrance to degradation in the environment. A high frequency of the occurrence of the efflux pump genes was observed in the genomes of effective PAH degraders; however, their specific roles in the degradation of PAHs are still obscure. The significance of our study is in the identification of the function and mechanism of the efflux pump SrpABC of Pseudomonas putida strain B6-2 (DSM 28064) in the biphenyl degradation process. SrpABC is crucial for releasing the toxicity caused by intermediates that are unavoidably produced in PAH degradation, which enables an understanding of how cells maintain the intracellular balance of materials. The findings from this study provide a new perspective on PAH recalcitrance and shed light on enhancing PAH degradation by genetic engineering.
Collapse
|
5
|
Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Naphthalene-Degrading Comamonas sp. JB. Curr Microbiol 2017; 74:1411-1416. [PMID: 28821932 DOI: 10.1007/s00284-017-1334-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Comamonas sp. JB was used to investigate the cometabolic degradation of dibenzofuran (DBF) and dibenzothiophene (DBT) with naphthalene as the primary substrate. Dehydrogenase and ATPase activity of the growing system with the presence of DBF and DBT were decreased when compared to only naphthalene in the growing system, indicating that the presence of DBF and DBT inhibited the metabolic activity of strain JB. The pathways and enzymes involved in the cometabolic degradation were tested. Examination of metabolites elucidated that strain JB cometabolically degraded DBF to 1,2-dihydroxydibenzofuran, subsequently to 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, and finally to catechol. Meanwhile, strain JB cometabolically degraded DBT to 1,2-dihydroxydibenzothiophene and subsequently to the ring cleavage product. A series of naphthalene-degrading enzymes including naphthalene dioxygenase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, salicylate hydroxylase, and catechol 2,3-oxygenase have been detected, confirming that naphthalene was the real inducer of expression the degradation enzymes and metabolic pathways were controlled by naphthalene-degrading enzymes.
Collapse
|
6
|
Aukema KG, Escalante DE, Maltby MM, Bera AK, Aksan A, Wackett LP. In Silico Identification of Bioremediation Potential: Carbamazepine and Other Recalcitrant Personal Care Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:880-888. [PMID: 27977154 DOI: 10.1021/acs.est.6b04345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Emerging contaminants are principally personal care products not readily removed by conventional wastewater treatment and, with an increasing reliance on water recycling, become disseminated in drinking water supplies. Carbamazepine, a widely used neuroactive pharmaceutical, increasingly escapes wastewater treatment and is found in potable water. In this study, a mechanism is proposed by which carbamazepine resists biodegradation, and a previously unknown microbial biodegradation was predicted computationally. The prediction identified biphenyl dioxygenase from Paraburkholderia xenovorans LB400 as the best candidate enzyme for metabolizing carbamazepine. The rate of degradation described here is 40 times greater than the best reported rates. The metabolites cis-10,11-dihydroxy-10,11-dihydrocarbamazepine and cis-2,3-dihydroxy-2,3-dihydrocarbamazepine were demonstrated with the native organism and a recombinant host. The metabolites are considered nonharmful and mitigate the generation of carcinogenic acridine products known to form when advanced oxidation methods are used in water treatment. Other recalcitrant personal care products were subjected to prediction by the Pathway Prediction System and tested experimentally with P. xenovorans LB400. It was shown to biodegrade structurally diverse compounds. Predictions indicated hydrolase or oxygenase enzymes catalyzed the initial reactions. This study highlights the potential for using the growing body of enzyme-structural and genomic information with computational methods to rapidly identify enzymes and microorganisms that biodegrade emerging contaminants.
Collapse
Affiliation(s)
- Kelly G Aukema
- Department of Biochemistry, Molecular Biology and Biophysics, ‡BioTechnology Institute, and §Department of Mechanical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Diego E Escalante
- Department of Biochemistry, Molecular Biology and Biophysics, ‡BioTechnology Institute, and §Department of Mechanical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Meghan M Maltby
- Department of Biochemistry, Molecular Biology and Biophysics, ‡BioTechnology Institute, and §Department of Mechanical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Asim K Bera
- Department of Biochemistry, Molecular Biology and Biophysics, ‡BioTechnology Institute, and §Department of Mechanical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Alptekin Aksan
- Department of Biochemistry, Molecular Biology and Biophysics, ‡BioTechnology Institute, and §Department of Mechanical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, ‡BioTechnology Institute, and §Department of Mechanical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Le T, Murugesan K, Nam IH, Jeon JR, Chang YS. Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium
sp. PH-08. J Appl Microbiol 2013; 116:542-53. [DOI: 10.1111/jam.12403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/30/2022]
Affiliation(s)
- T.T. Le
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - K. Murugesan
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - I.-H. Nam
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - J.-R. Jeon
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - Y.-S. Chang
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| |
Collapse
|
8
|
|
9
|
Insight into the metabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by biphenyl dioxygenases. Arch Biochem Biophys 2011; 516:35-44. [DOI: 10.1016/j.abb.2011.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
|
10
|
Mohammadi M, Viger JF, Kumar P, Barriault D, Bolin JT, Sylvestre M. Retuning Rieske-type oxygenases to expand substrate range. J Biol Chem 2011; 286:27612-21. [PMID: 21653696 DOI: 10.1074/jbc.m111.255174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rieske-type oxygenases are promising biocatalysts for the destruction of persistent pollutants or for the synthesis of fine chemicals. In this work, we explored pathways through which Rieske-type oxygenases evolve to expand their substrate range. BphAE(p4), a variant biphenyl dioxygenase generated from Burkholderia xenovorans LB400 BphAE(LB400) by the double substitution T335A/F336M, and BphAE(RR41), obtained by changing Asn(338), Ile(341), and Leu(409) of BphAE(p4) to Gln(338), Val(341), and Phe(409), metabolize dibenzofuran two and three times faster than BphAE(LB400), respectively. Steady-state kinetic measurements of single- and multiple-substitution mutants of BphAE(LB400) showed that the single T335A and the double N338Q/L409F substitutions contribute significantly to enhanced catalytic activity toward dibenzofuran. Analysis of crystal structures showed that the T335A substitution relieves constraints on a segment lining the catalytic cavity, allowing a significant displacement in response to dibenzofuran binding. The combined N338Q/L409F substitutions alter substrate-induced conformational changes of protein groups involved in subunit assembly and in the chemical steps of the reaction. This suggests a responsive induced fit mechanism that retunes the alignment of protein atoms involved in the chemical steps of the reaction. These enzymes can thus expand their substrate range through mutations that alter the constraints or plasticity of the catalytic cavity to accommodate new substrates or that alter the induced fit mechanism required to achieve proper alignment of reaction-critical atoms or groups.
Collapse
Affiliation(s)
- Mahmood Mohammadi
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Kimura N, Kamagata Y. Impact of dibenzofuran/dibenzo-p-dioxin amendment on bacterial community from forest soil and ring-hydroxylating dioxygenase gene populations. Appl Microbiol Biotechnol 2009; 84:365-73. [PMID: 19513710 DOI: 10.1007/s00253-009-2046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The impact of dibenzofuran (DF) and dibenzo-p-dioxin (DD) on the changes in bacterial community structure and the transition of catabolic genes were studied using forest soil. The bacterial community structure of soil suspensions amended with 1 microg/g of either DF or DD was analyzed by 16S rRNA and functional gene sequencing. To analyze the functional genes in the communities, we targeted a gene sequence that functions as the binding site of Rieske iron sulfur center common to ring-hydroxylating dioxygenases (RHDs) for monocyclic, bicyclic, and tricyclic aromatic compounds. The gene fragments were polymerase chain reaction-amplified from DNAs extracted from soil suspensions spiked with either DF or DD, cloned, and sequenced (70 clones). Bacterial community analysis based on 16S rRNA genes revealed that specific 16S rRNA gene sequences, in particular, phylotypes within alpha-Proteobacteria, increased in the soil suspension amended with DF or DD. RHD gene-based functional community analysis showed that, in addition to two groups of RHD genes that were also detected in unamended soil suspensions, another two groups of RHD genes, each of which is specific to DF- and DD-amended soil, respectively, emerged to a great extent. The DD-specific genotype is phylogenetically distant from any known RHDs. These results strongly suggest that soil microbial community potentially harbors a wide array of organisms having diverse RHDs including those previously unknown, and that they could quickly respond to an impact of contamination of hazardous chemicals by changing the microbial community and gene diversity.
Collapse
Affiliation(s)
- Nobutada Kimura
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.
| | | |
Collapse
|
12
|
Waldau D, Methling K, Mikolasch A, Schauer F. Characterization of new oxidation products of 9H-carbazole and structure related compounds by biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 2009; 81:1023-31. [DOI: 10.1007/s00253-008-1723-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 11/27/2022]
|
13
|
Mohammadi M, Sylvestre M. Resolving the Profile of Metabolites Generated during Oxidation of Dibenzofuran and Chlorodibenzofurans by the Biphenyl Catabolic Pathway Enzymes. ACTA ACUST UNITED AC 2005; 12:835-46. [PMID: 16039530 DOI: 10.1016/j.chembiol.2005.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/15/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Although the metabolism of dibenzofuran by the biphenyl catabolic enzymes had been inferred in previous reports, the metabolic pattern has never been determined unambiguously. In this work, we describe the evolved biphenyl dioxygenase (BPDO) RR41 that exhibits a higher turnover rate of metabolism toward dibenzofuran and chlorodibenzofurans than the parental Burkholderia xenovorans LB400 BPDO. We used RR41 BPDO to identify unambiguously the metabolites produced from the oxygenation of dibenzofuran by LB400 BPDO, and we evaluated their further metabolism by the biphenyl catabolic pathway enzymes of strain LB400. RR41 BPDO was obtained by saturation mutagenesis of targeted amino acid residues. I335F336N338I341L409 of LB400 BphA were replaced by A335M336Q338V341F409 in RR41 BphA. Data confirm the critical role played by these amino acid residues for substrate specificity and regiospecificity.
Collapse
Affiliation(s)
- Mahmood Mohammadi
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 245 Boulvard Hymus, Pointe-Claire, Québec, H9R 1G6, Canada
| | | |
Collapse
|