1
|
Shen JD, Cai X, Liu ZQ, Zheng YG. High Throughput Screening of Signal Peptide Library with Novel Fluorescent Probe. Chembiochem 2022; 23:e202100523. [PMID: 35470527 DOI: 10.1002/cbic.202100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Nitrile hydratase (NHase) is an excellent bio-catalyst for the synthesis of amide compounds, was composed of two heterologous subunits. However, the secretory expression of NHase has been difficult to achieve because of its complex expression mechanism. In this work, a novel fluorescent probe Rho-IDA-CoII was synthesized by the one-pot method. Rho-IDA-CoII could specifically label His-tagged proteins in vitro specifically, such as staining in-gel, western blot and ELISA. Furthermore, Rho-IDA-CoII combined with dot blot could quantitatively detect His-tagged proteins between 1 - 10 pmol and perform high-throughput screening for the NHase signal peptide library. The recombinant Bacillus subtilis WB800/phoB-HBA with the extracellular expression of NHase was screened from ca. 6500 clones. After optimization of fermentation conditions, the NHase activity in the culture supernatant reached to 17.34 ± 0.16 U/mL. It was the first time to express secretory NHase in Bacillus subtilis successfully.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Zhejiang University of Technology, College of biotechnology and bioengineering, CHINA
| | - Xue Cai
- Zhejiang University of Technology, college of biotechnology and bioengineering, CHINA
| | - Zhi-Qiang Liu
- Zhejiang University of Technology, College of Biotechnology and Bioengineering, Chaowang Rd. 18#, 3100114, Hangzhou, CHINA
| | - Yu-Guo Zheng
- Zhejiang University of Technology, college of biotechnology and bioengineering, CHINA
| |
Collapse
|
2
|
High-Level Expression of Nitrile Hydratase in Escherichia coli for 2-Amino-2,3-Dimethylbutyramide Synthesis. Processes (Basel) 2022. [DOI: 10.3390/pr10030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the synthesis of imidazolinone herbicides, 2-Amino-2,3-dimethylbutyramide (ADBA) is an important intermedium. In this study, the recombinant production of nitrile hydratase (NHase) in Escherichia coli for ADBA synthesis was explored. A local library containing recombinant NHases from various sources was screened using a colorimetric method. NHase from Pseudonocardia thermophila JCM3095 was selected, fused with a His-tag and one-step purified. The enzymatic properties of recombinant NHase were studied and indicated robust thermal stability and inhibition of cyanide ions due to substrate degradation. After systematic optimization of fermentation conditions, the OD600 (optical density at 600 nm), enzyme activity and specific activity of recombinant strain E. coli BL21(DE3)/pET-28a+NHase reached 19.4, 3.72 U/mL and 1.04 U/mg protein at 42 h, representing 5.86-, 26.6- and 4-fold increases, respectively. These results offered an efficient recombinant whole-cell biocatalyst for ADBA synthesis.
Collapse
|
3
|
Abstract
The active pharmaceutical ingredient levetiracetam has anticonvulsant properties and is used to treat epilepsies. Herein, we describe the enantioselective preparation of the levetiracetam precursor 2-(pyrrolidine-1-yl)butanamide by enzymatic dynamic kinetic resolution with a nitrile hydratase enzyme. A rare representative of the family of iron-dependent nitrile hydratases from Gordonia hydrophobica (GhNHase) was evaluated for its potential to form 2-(pyrrolidine-1-yl)butanamide in enantioenriched form from the three small, simple molecules, namely, propanal, pyrrolidine and cyanide. The yield and the enantiomeric excess (ee) of the product are determined most significantly by the substrate concentrations, the reaction pH and the biocatalyst amount. GhNHase is also active for the hydration of other nitriles, in particular for the formation of N-heterocyclic amides such as nicotinamide, and may therefore be a tool for the preparation of various APIs.
Collapse
|
4
|
Wu Z, Zhang Z, Cai S, Zheng R, Zheng Y. High-level expression of nitrile hydratase from Pantoea sp. At-9b in Escherichia coli. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Grill B, Glänzer M, Schwab H, Steiner K, Pienaar D, Brady D, Donsbach K, Winkler M. Functional Expression and Characterization of a Panel of Cobalt and Iron-Dependent Nitrile Hydratases. Molecules 2020; 25:molecules25112521. [PMID: 32481666 PMCID: PMC7321127 DOI: 10.3390/molecules25112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 target sequences, 4 iron and 16 cobalt containing proteins were functionally expressed from Escherichia coli BL21 (DE3) Gold. Cell free extracts were used for activity profiling and basic characterization of the NHases using the typical NHase substrate methacrylonitrile. Co-type NHases are more tolerant to high pH than Fe-type NHases. A screening for activity on three structurally diverse nitriles was carried out. Two novel Co-dependent NHases from Afipia broomeae and Roseobacter sp. and a new Fe-type NHase from Gordonia hydrophobica were very well expressed and hydrated methacrylonitrile, pyrazine-carbonitrile, and 3-amino-3-(p-toluoyl)propanenitrile. The Co-dependent NHases from Caballeronia jiangsuensis and Microvirga lotononidis, as well as two Fe-dependent NHases from Pseudomonades, were—in addition—able to produce the amide from cinnamonitrile. Summarizing, seven so far uncharacterized NHases are described to be promising biocatalysts.
Collapse
Affiliation(s)
- Birgit Grill
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
| | - Maximilian Glänzer
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
| | - Helmut Schwab
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
| | - Kerstin Steiner
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
| | - Daniel Pienaar
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits 2050, Johannesburg, South Africa; (D.P.); (D.B.)
| | - Dean Brady
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits 2050, Johannesburg, South Africa; (D.P.); (D.B.)
| | | | - Margit Winkler
- Austrian Center of Industrial Biotechnology GmbH, 8010 Graz, Austria; (B.G.); (M.G.); (H.S.); (K.S.)
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-9333
| |
Collapse
|
6
|
Cheng Z, Xia Y, Zhou Z. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Front Bioeng Biotechnol 2020; 8:352. [PMID: 32391348 PMCID: PMC7193024 DOI: 10.3389/fbioe.2020.00352] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is one type of metalloenzyme participating in the biotransformation of nitriles into amides. Given its catalytic specificity in amide production and eco-friendliness, NHase has overwhelmed its chemical counterpart during the past few decades. However, unclear catalytic mechanism, low thermostablity, and narrow substrate specificity limit the further application of NHase. During the past few years, numerous studies on the theoretical and industrial aspects of NHase have advanced the development of this green catalyst. This review critically focuses on NHase research from recent years, including the natural distribution, gene types, posttranslational modifications, expression, proposed catalytic mechanism, biochemical properties, and potential applications of NHase. The developments of NHase described here are not only useful for further application of NHase, but also beneficial for the development of the fields of biocatalysis and biotransformation.
Collapse
Affiliation(s)
| | | | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Pei X, Wu Y, Wang J, Chen Z, Liu W, Su W, Liu F. Biomimetic mineralization of nitrile hydratase into a mesoporous cobalt-based metal-organic framework for efficient biocatalysis. NANOSCALE 2020; 12:967-972. [PMID: 31840718 DOI: 10.1039/c9nr06470b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nitrile hydratases (NHases) have attracted considerable attention owing to their application in the synthesis of valuable amides under mild conditions. However, the poor stability of NHases is still one of the main drawbacks for their industrial application. Recently, mesoporous metal-organic frameworks (MOFs) have been explored as an attractive support material for immobilizing enzymes. Here, we encapsulated a recombinant cobalt-type NHase from Aurantimonas manganoxydans into the cobalt-based MOF ZIF-67 by a biomimetic mineralization strategy. The nano-catalyst NHase1229@ZIF-67 shows high catalytic activity for the hydration of 3-cyanopyridine to nicotinamide, and its specific activity reached 29.5 U mg-1. The NHase1229@ZIF-67 nanoparticles show a significant improvement in the thermal stability of NHase1229. The optimum reaction temperature of NHase1229@ZIF-67 is at 50-55 °C, and it still retained 40% of the maximum activity at 70 °C. However, the free NHase1229 completely lost its catalytic activity at 70 °C. The half-lives of NHase1229@ZIF-67 at 30 and 40 °C were 102.0 h and 26.5 h, respectively. NHase1229@ZIF-67 nanoparticles exhibit an excellent cycling performance, and their catalytic efficiency did not significantly decrease in the initial 6 cycles using 0.9 M 3-cyanopyridine as the substrate. In a fed-batch reaction, NHase1229@ZIF-67 can efficiently hydrate 3-cyanopyridine to nicotinamide, and the space-time yield was calculated to be 110 g·L-1·h-1. Therefore, the cobalt-type NHase was immobilized in MOF ZIF-67, which is shown as a potential nanocatalyst for the large-scale industrial preparation of nicotinamide.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol Biol Rep 2019; 46:4661-4673. [DOI: 10.1007/s11033-019-04811-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
|
9
|
Yang Z, Pei X, Xu G, Wu J, Yang L. N-terminal engineering of overlapping genes in the nitrile hydratase gene cluster improved its activity. Enzyme Microb Technol 2018; 117:9-14. [PMID: 30037557 DOI: 10.1016/j.enzmictec.2018.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/06/2023]
Abstract
Nitrile hydratase which catalyzes the hydration of nitriles to the corresponding amides is operon-encoded. However, when heterologously expressed, genes in the same operon are usually not equally expressed, and the ratio needs to be fine-tuned. A gene cluster of three genes (corresponding to α-subunit, β-subunit and activator) encoding the nitrile hydratase was cloned from Aurantimonas manganoxydans ATCC BAA-1229 and expressed in Escherichia coli. However, difficulty was encountered in heterologous expression of the activator and the expression level of β-subunit was lower than that of α-subunit, which together resulted in low catalytic efficiency. To improve the expression of activator, a set of SKIK tags were fused to the N-terminus of the activator. To elevate the expression level of β-subunit, a silent mutation strategy was applied in the overlapping sequence with α-subunit around its translation initial region. Finally, the expression of β-subunit and activator were improved and the maximum activity of NHase1229 was doubled, reaching 160 U/mL towards 3-cyanopyridine. These results indicate that N-terminal engineering is an efficient strategy for optimizing the expression of multiple genes in operons.
Collapse
Affiliation(s)
- Zhengfei Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
10
|
Pei X, Wang J, Wu Y, Zhen X, Tang M, Wang Q, Wang A. Evidence for the participation of an extra α-helix at β-subunit surface in the thermal stability of Co-type nitrile hydratase. Appl Microbiol Biotechnol 2018; 102:7891-7900. [DOI: 10.1007/s00253-018-9191-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/23/2022]
|
11
|
Yang Z, Pei X, Xu G, Wu J, Yang L. Efficient Production of 2,6-Difluorobenzamide by Recombinant Escherichia coli Expressing the Aurantimonas manganoxydans Nitrile Hydratase. Appl Biochem Biotechnol 2018; 187:439-448. [PMID: 29971551 DOI: 10.1007/s12010-018-2823-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
2,6-Difluorobenzamide is an important intermediate with many applications in pesticide industries. Through screening a library of recombinant nitrile hydratases, the nitrile hydratase from Aurantimonas manganoxydans ATCC BAA-1229 was selected for production of 2,6-difluorobenzamide from 2,6-difluorobenzonitrile. Key parameters of the biocatalytic process, including temperature, pH, substrate loading, and substrate feeding mode, were optimized. Finally, 314 g/L of 2,6-difluorobenzamide was produced in a simple batch process within 11 h without formation of any by-product in an economical non-buffer system and similar result was obtained when scaled up to 30 L. This study constitutes the first report of 2,6-difluorobenzamide significant production using a recombinant Escherichia coli-based biocatalyst.
Collapse
Affiliation(s)
- Zhengfei Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, People's Republic of China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
12
|
Li C, Sun Y, Yue Z, Huang M, Wang J, Chen X, An X, Zang H, Li D, Hou N. Combination of a recombinant bacterium with organonitrile-degrading and biofilm-forming capability and a positively charged carrier for organonitriles removal. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:372-380. [PMID: 29684889 DOI: 10.1016/j.jhazmat.2018.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/24/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The immobilization of organonitrile-degrading bacteria via the addition of biofilm-forming bacteria represents a promising technology for the treatment of organonitrile-containing wastewater, but biofilm-forming bacteria simply mixed with degrading bacteria may reduce the biodegradation efficiency. Nitrile hydratase and amidase genes, which play critical roles in organonitriles degradation, were cloned and transformed into the biofilm-forming bacterium Bacillus subtilis N4 to construct a recombinant bacterium B. subtilis N4/pHTnha-ami. Modified polyethylene carriers with positive charge was applied to promote bacterial adherence and biofilm formation. The immobilized B. subtilis N4/pHTnha-ami was resistant to organonitriles loading shocks and could remove organic cyanide ion with a initial concentration of 392.6 mg/L for 24 h in a moving bed biofilm reactor. The imputed quorum-sensing signal and the high-throughput sequencing analysis of the biofilm indicated that B. subtilis N4/pHTnha-ami was successfully immobilized and became dominant. The successful application of the immobilized recombinant bacterium offers a novel strategy for the biodegradation of recalcitrant compounds.
Collapse
Affiliation(s)
- Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yueling Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Zhenlei Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Mingyan Huang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Jinming Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xi Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xuejiao An
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
13
|
Xia Y, Cui W, Cheng Z, Peplowski L, Liu Z, Kobayashi M, Zhou Z. Improving the Thermostability and Catalytic Efficiency of the Subunit-Fused Nitrile Hydratase by Semi-Rational Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201701374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics; Nicolaus Copernicus University; Grudziadzka 5 87-100 Torun Poland
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and the Graduate School of Life, and Environment Sciences; University of Tsukuba; Ibaraki 305-8572 Japan
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| |
Collapse
|
14
|
Pei X, Yang Z, Wang A, Yang L, Wu J. Identification and functional analysis of the activator gene involved in the biosynthesis of Co-type nitrile hydratase from Aurantimonas manganoxydans. J Biotechnol 2017; 251:38-46. [DOI: 10.1016/j.jbiotec.2017.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/05/2017] [Accepted: 03/14/2017] [Indexed: 11/15/2022]
|
15
|
Zhang H, Li M, Li J, Wang G, Li F, Xiong M. Chaperone-assisted maturation of the recombinant Fe-type nitrile hydratase is insufficient for fully active expression in Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Sun W, Zhu L, Chen X, Chen P, Yang L, Ding W, Zhou Z, Liu Y. Successful expression of the Bordetella petrii nitrile hydratase activator P14K and the unnecessary role of Ser115. BMC Biotechnol 2016; 16:21. [PMID: 26897378 PMCID: PMC4761151 DOI: 10.1186/s12896-016-0252-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/15/2016] [Indexed: 11/28/2022] Open
Abstract
Background The activator P14K is necessary for the activation of nitrile hydratase (NHase). However, it is hard to be expressed heterogeneously. Although an N-terminal strep tagged P14K could be successfully expressed from Pseudomonas putida, various strategies for the over-expression of P14K are needed to facilitate further application of NHase. Results P14K was successfully expressed through fusing a his tag (his-P14K), and was over-expressed through fusing a gst tag (gst-P14K) at its N-terminus in the NHase of Bordetella petrii DSM 12804. The stability of gst-P14K was demonstrated to be higher than that of the his-P14K. In addition, the Ser115 in the characteristic motif CXLC-Ser115-C of the active center of NHase was found to be unnecessary for NHase maturation. Conclusions Our results are not only useful for the NHase activator expression and the understanding of the role of Ser115 during NHase activation, but also helpful for other proteins with difficulty in heterologous expression.
Collapse
Affiliation(s)
- Weifeng Sun
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| | - Longbao Zhu
- School of Biochemical Engineering, Anhui Polytechnic University, Anhui, 241000, China.
| | - Xianggui Chen
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| | - Ping Chen
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| | - Lingling Yang
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| | - Wenwu Ding
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Yi Liu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
17
|
Guo FM, Wu JP, Yang LR, Xu G. Overexpression of a nitrile hydratase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Cheng Z, Cui W, Liu Z, Zhou L, Wang M, Kobayashi M, Zhou Z. A switch in a substrate tunnel for directing regioselectivity of nitrile hydratases towards α,ω-dinitriles. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01997d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The β37 residue of nitrile hydratase (NHase) from Pseudomonas putida and NHase from Comamonas testosteroni played a critical role in directing enzyme regioselectivity.
Collapse
Affiliation(s)
- Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Min Wang
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin 300457
- PR China
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and the Graduate School of Life and Environmental Sciences
- The University of Tsukuba
- Tsukuba
- Japan
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
19
|
Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1. J Biol Inorg Chem 2015; 20:885-94. [DOI: 10.1007/s00775-015-1273-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
|
20
|
Pei X, Wang Q, Meng L, Li J, Yang Z, Yin X, Yang L, Chen S, Wu J. Chaperones-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. J Biotechnol 2015; 203:9-16. [PMID: 25796588 DOI: 10.1016/j.jbiotec.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 11/28/2022]
Abstract
Nitrile hydratase (NHase) is an important industrial enzyme that biosynthesizes high-value amides. However, most of NHases expressed in Escherichia coli easily aggregate to inactive inclusion bodies unless the induction temperature is reduced to approximately 20°C. The NHase from Aurantimonas manganoxydans has been functionally expressed in E. coli, and exhibits considerable potential for the production of nicotinamide in industrial application. In this study, the effects of chaperones including GroEL/ES, Dnak/J-GrpE and trigger factor on the expression of the recombinant Co-type NHase were investigated. The results indicate that three chaperones can significantly promote the active expression of the recombinant NHase at 30°C. The total NHase activities reached to 263 and 155U/ml in shake flasks when the NHase was co-expressed with GroEL/ES and DnaK/J-GrpE, which were 52- and 31-fold higher than the observed activities without chaperones, respectively. This increase is possibly due to the soluble expression of the recombinant NHase assisted by molecular chaperones. Furthermore, GroEL/ES and DnaK/J-GrpE were determined to promote the maturation of the Co-type NHase in E. coli under the absence of the parental activator gene. These knowledge regarding the chaperones effect on the NHase expression are useful for understanding the biosynthesis of Co-type NHase.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Qiuyan Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Lijun Meng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Jing Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Zhengfen Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Xiaopu Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310012, PR China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China
| | - Shaoyun Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310028, PR China.
| |
Collapse
|
21
|
Chen S, Gao H, Chen J, Wu J. Surface modification of polyacrylonitrile fibre by nitrile hydratase from Corynebacterium nitrilophilus. Appl Biochem Biotechnol 2014; 174:2058-66. [PMID: 25163886 DOI: 10.1007/s12010-014-1186-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/15/2014] [Indexed: 11/24/2022]
Abstract
Previously, nitrile hydratase (NHase) from Corynebacterium nitrilophilus was obtained and showed potential in polyacrylonitrile (PAN) fibre modification. In the present study, the modification conditions of C. nitrilophilus NHase on PAN were investigated. In the optimal conditions, the wettability and dyeability (anionic and reactive dyes) of PAN treated by C. nitrilophilus NHase reached a similar level of those treated by alkali. In addition, the chemical composition and microscopically observable were changed in the PAN surface after NHase treatment. Meanwhile, it revealed that cutinase combined with NHase facilitates the PAN hydrolysis slightly because of the ester existed in PAN as co-monomer was hydrolyzed. All these results demonstrated that C. nitrilophilus NHase can modify PAN efficiently without textile structure damage, and this study provides a foundation for the further application of C. nitrilophilus NHase in PAN modification industry.
Collapse
Affiliation(s)
- Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu, 214122, China
| | | | | | | |
Collapse
|
22
|
Improvement of stability of nitrile hydratase via protein fragment swapping. Biochem Biophys Res Commun 2014; 450:401-8. [DOI: 10.1016/j.bbrc.2014.05.127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 11/21/2022]
|
23
|
Martinez S, Wu R, Sanishvili R, Liu D, Holz R. The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile. J Am Chem Soc 2014; 136:1186-9. [PMID: 24383915 PMCID: PMC3968781 DOI: 10.1021/ja410462j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Indexed: 01/10/2023]
Abstract
Nitrile hydratase (NHase) catalyzes the hydration of nitriles to their corresponding commercially valuable amides at ambient temperatures and physiological pH. Several reaction mechanisms have been proposed for NHase enzymes; however, the source of the nucleophile remains a mystery. Boronic acids have been shown to be potent inhibitors of numerous hydrolytic enzymes due to the open shell of boron, which allows it to expand from a trigonal planar (sp(2)) form to a tetrahedral form (sp(3)). Therefore, we examined the inhibition of the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) by boronic acids via kinetics and X-ray crystallography. Both 1-butaneboronic acid (BuBA) and phenylboronic acid (PBA) function as potent competitive inhibitors of PtNHase. X-ray crystal structures for BuBA and PBA complexed to PtNHase were solved and refined at 1.5, 1.6, and 1.2 Å resolution. The resulting PtNHase-boronic acid complexes represent a "snapshot" of reaction intermediates and implicate the cysteine-sulfenic acid ligand as the catalytic nucleophile, a heretofore unknown role for the αCys(113)-OH sulfenic acid ligand. Based on these data, a new mechanism of action for the hydration of nitriles by NHase is presented.
Collapse
Affiliation(s)
- Salette Martinez
- Department
of Chemistry, Marquette
University, Milwaukee, Wisconsin 53201, United States
- Department of Chemistry and
Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Rui Wu
- Department of Chemistry and
Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Ruslan Sanishvili
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dali Liu
- Department of Chemistry and
Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Richard Holz
- Department
of Chemistry, Marquette
University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
24
|
Discovery of a new Fe-type nitrile hydratase efficiently hydrating aliphatic and aromatic nitriles by genome mining. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Pei X, Zhang H, Meng L, Xu G, Yang L, Wu J. Efficient cloning and expression of a thermostable nitrile hydratase in Escherichia coli using an auto-induction fed-batch strategy. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Nojiri M, Uekita K, Ohnuki M, Taoka N, Yasohara Y. Microbial asymmetric hydrolysis of 3-substituted glutaric acid diamides. J Appl Microbiol 2013; 115:1127-33. [DOI: 10.1111/jam.12309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/26/2022]
Affiliation(s)
- M. Nojiri
- Frontier Biochemical & Medicinal Research Laboratories; Kaneka Corporation; Takasago Hyogo Japan
| | - K. Uekita
- Frontier Biochemical & Medicinal Research Laboratories; Kaneka Corporation; Takasago Hyogo Japan
| | - M. Ohnuki
- Frontier Biochemical & Medicinal Research Laboratories; Kaneka Corporation; Takasago Hyogo Japan
| | - N. Taoka
- Frontier Biochemical & Medicinal Research Laboratories; Kaneka Corporation; Takasago Hyogo Japan
| | - Y. Yasohara
- Frontier Biochemical & Medicinal Research Laboratories; Kaneka Corporation; Takasago Hyogo Japan
| |
Collapse
|
27
|
Gumataotao N, Kuhn ML, Hajnas N, Holz RC. Identification of an active site-bound nitrile hydratase intermediate through single turnover stopped-flow spectroscopy. J Biol Chem 2013; 288:15532-6. [PMID: 23589282 DOI: 10.1074/jbc.m112.398909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stopped-flow kinetic data were obtained for the iron-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase) using methacrylonitrile as the substrate. Multiple turnover experiments suggest a three-step kinetic model that allows for the reversible binding of substrate, the presence of an intermediate, and the formation of product. Microscopic rate constants determined from these data are in good agreement with steady state data confirming that the stopped-flow method used was appropriate for the reaction. Single turnover stopped-flow experiments were used to identify catalytic intermediates. These data were globally fit confirming a three-step kinetic model. Independent absorption spectra acquired between 0.005 and 0.5 s of the reaction reveal a significant increase in absorbance at 375, 460, and 550 nm along with the hypsochromic shift of an Fe(3+)←S ligand-to-metal charge transfer band from 700 to 650 nm. The observed UV-visible absorption bands for the Fe(3+)-nitrile intermediate species are similar to low spin Fe(3+)-enzyme and model complexes bound by NO or N3((-)). These data provide spectroscopic evidence for the direct coordination of the nitrile substrate to the nitrile hydratase active site low spin Fe(3+) center.
Collapse
Affiliation(s)
- Natalie Gumataotao
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, USA
| | | | | | | |
Collapse
|
28
|
Liu Y, Cui W, Xia Y, Cui Y, Kobayashi M, Zhou Z. Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase. PLoS One 2012; 7:e50829. [PMID: 23226397 PMCID: PMC3511329 DOI: 10.1371/journal.pone.0050829] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/25/2012] [Indexed: 11/30/2022] Open
Abstract
Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase) family of enzymes. All of these NHases possess a gene organization of <β-subunit> <α-subunit> <activator protein>, which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of <α-subunit> <β-subunit> <activator protein>, was also dependent on self-subunit swapping. We successfully isolated a recombinant NHase activator protein (P14K) of Pseudomonas putida NRRL-18668 by adding a Strep-tag N-terminal to the P14K gene. P14K was found to form a complex [α(StrepP14K)2] with the α-subunit of the NHase. The incorporation of cobalt into the NHase of P. putida was confirmed to be dependent on the α-subunit substitution between the cobalt-containing α(StrepP14K)2 and the cobalt-free NHase. Cobalt was inserted into cobalt-free α(StrepP14K)2 but not into cobalt-free NHase, suggesting that P14K functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, NHase from P. putida was also expressed by a mutant gene that was designed with a <β-subunit> <α-subunit> <P14K> order. Our findings expand the general features of self-subunit swapping maturation.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Youtian Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail: (MK); (ZMZ)
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- * E-mail: (MK); (ZMZ)
| |
Collapse
|
29
|
Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol Adv 2010; 28:725-41. [DOI: 10.1016/j.biotechadv.2010.05.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022]
|
30
|
Velankar H, Clarke KG, Preez RD, Cowan DA, Burton SG. Developments in nitrile and amide biotransformation processes. Trends Biotechnol 2010; 28:561-9. [DOI: 10.1016/j.tibtech.2010.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/29/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|
31
|
Abstract
To elucidate a detailed catalytic mechanism for nitrile hydratases (NHases), the pH and temperature dependence of the kinetic constants k(cat) and K(m) for the cobalt-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) were examined. PtNHase was found to exhibit a bell-shaped curve for plots of relative activity versus pH at pH 3.2-11 and was found to display maximal activity between pH 7.2 and 7.8. Fits of these data provided pK(E)(S1) and pK(E)(S2) values of 5.9 +/- 0.1 and 9.2 +/- 0.1 (k(cat)' = 130 +/- 1 s(-1)), respectively, and pK(E)(1) and pK(E)(2) values of 5.8 +/- 0.1 and 9.1 +/- 0.1 (k(cat)'/K(m)' = (6.5 +/- 0.1) x 10(3) s(-1) mm(-1)), respectively. Proton inventory studies indicated that two protons are transferred in the rate-limiting step of the reaction at pH 7.6. Because PtNHase is stable at 60 degrees C, an Arrhenius plot was constructed by plotting ln(k(cat)) versus 1/T, providing E(a) = 23.0 +/- 1.2 kJ/mol. The thermal stability of PtNHase also allowed DeltaH(0) ionization values to be determined, thus helping to identify the ionizing groups exhibiting the pK(E)(S1) and pK(E)(S2) values. Based on DeltaH(0)(ion) data, pK(E)(S1) is assigned to betaTyr(68), whereas pK(E)(S2) is assigned to betaArg(52), betaArg(157), or alphaSer(112) (NHases are alpha(2)beta(2)-heterotetramers). A combination of these data with those previously reported for NHases and synthetic model complexes, along with sequence comparisons of both iron- and cobalt-type NHases, allowed a novel catalytic mechanism for NHases to be proposed.
Collapse
Affiliation(s)
- Sanghamitra Mitra
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| | | |
Collapse
|
32
|
Sari MA, Jaouen M, Saroja NR, Artaud I. Influence of cobalt substitution on the activity of iron-type nitrile hydratase: are cobalt type nitrile hydratases regulated by carbon monoxide? J Inorg Biochem 2006; 101:614-22. [PMID: 17267045 DOI: 10.1016/j.jinorgbio.2006.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/07/2006] [Accepted: 12/08/2006] [Indexed: 11/15/2022]
Abstract
Comamonas testosteroni Ni1 nitrile hydratase is a Fe-type nitrile hydratase whose native and recombinant forms are identical. Here, the iron of Ni1 nitrile hydratase was replaced by cobalt using a chaperone based Escherichia coli expression system. Cobalt (CoNi1) and iron (FeNi1) enzymes share identical Vmax (30 nmol min(-1) mg(-1)) and Km (200 microM) toward their substrate and identical Ki values for the known competitive inhibitors of FeNi1. However, nitrophenols used as inhibitors do display a different inhibition pattern on both enzymes. Furthermore, CoNi1 and FeNi1 are also different in their sensitivity to nitric oxide and carbon monoxide, CO being selective of the cobalt enzyme. These differences are rationalized in relation to the nature of the catalytic metal center in the enzyme.
Collapse
Affiliation(s)
- Marie-Agnès Sari
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université René Descartes, UMR 8601 CNRS, 45 Rue des Saint-Pères, 75270 Paris Cedex 06, France.
| | | | | | | |
Collapse
|