1
|
Zdaniewicz M, Satora P, Kania P, Florkiewicz A. The Impact of Selected Lachancea Yeast Strains on the Production Process, Chemical Composition and Aroma Profiles of Beers. Molecules 2024; 29:5674. [PMID: 39683832 DOI: 10.3390/molecules29235674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Changing trends in the brewing market show that breweries want to attract consumers with new products. New flavours and aromas in beer can be achieved by using various additives. However, non-Saccharomyces yeast strains make it possible to produce beer with an original sensory profile but according to a traditional recipe (without additives). The aim of this study was to evaluate the influence of 10 different yeast strains, belonging to the species Lachancea thermotolerans and L. fermentati, on the creation of different physico-chemical profiles in beers. For this purpose, the same malt wort with a 12°P extract, hopped with Octawia hops (8.4% alpha acids), was inoculated with the aforementioned yeast strains. The fermentation kinetics, the yeast's ability to ferment sugars, the production of organic acids and glycerol and the formation of volatile compounds in the beer were monitored. The beers obtained were classified as low-alcohol and regular. In addition, some beers were measured to have a low pH, qualifying them as "sour" beers, which are currently gaining in popularity. Most interesting, however, was the effect of the selected Lachancea yeast strains on the composition of the beer volatiles. In the second stage of this study, the beers obtained were again subjected to a chromatographic analysis, this time using an olfactometric detector (GC-O). This analysis was dictated by the need to verify the actual influence of the compounds determined (GC-MS) on the creation of the final aroma profile. This study showed that selected strains of Lachancea thermotolerans and L. fermentati have very high brewing potential to produce different original beers from the same hopped wort.
Collapse
Affiliation(s)
- Marek Zdaniewicz
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland
- Centre for Innovation and Research on Prohealthy and Safe Food, University of Agriculture in Krakow, Balicka Street 104, 30-149 Krakow, Poland
| | - Paweł Satora
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland
| | - Paulina Kania
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland
| | - Adam Florkiewicz
- Centre for Innovation and Research on Prohealthy and Safe Food, University of Agriculture in Krakow, Balicka Street 104, 30-149 Krakow, Poland
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland
| |
Collapse
|
2
|
Kruse J, Wörner J, Schneider J, Dörksen H, Pein-Hackelbusch M. Methods for Estimating the Detection and Quantification Limits of Key Substances in Beer Maturation with Electronic Noses. SENSORS (BASEL, SWITZERLAND) 2024; 24:3520. [PMID: 38894312 PMCID: PMC11175341 DOI: 10.3390/s24113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
To evaluate the suitability of an analytical instrument, essential figures of merit such as the limit of detection (LOD) and the limit of quantification (LOQ) can be employed. However, as the definitions k nown in the literature are mostly applicable to one signal per sample, estimating the LOD for substances with instruments yielding multidimensional results like electronic noses (eNoses) is still challenging. In this paper, we will compare and present different approaches to estimate the LOD for eNoses by employing commonly used multivariate data analysis and regression techniques, including principal component analysis (PCA), principal component regression (PCR), as well as partial least squares regression (PLSR). These methods could subsequently be used to assess the suitability of eNoses to help control and steer processes where volatiles are key process parameters. As a use case, we determined the LODs for key compounds involved in beer maturation, namely acetaldehyde, diacetyl, dimethyl sulfide, ethyl acetate, isobutanol, and 2-phenylethanol, and discussed the suitability of our eNose for that dertermination process. The results of the methods performed demonstrated differences of up to a factor of eight. For diacetyl, the LOD and the LOQ were sufficiently low to suggest potential for monitoring via eNose.
Collapse
Affiliation(s)
- Julia Kruse
- Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| | - Julius Wörner
- Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| | - Jan Schneider
- Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| | - Helene Dörksen
- Institute Industrial IT (inIT), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| | - Miriam Pein-Hackelbusch
- Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany
| |
Collapse
|
3
|
Sampaolesi S, Pérez-Través L, Pérez D, Roldán López D, Briand LE, Pérez-Torrado R, Querol A. Identification and assessment of non-conventional yeasts in mixed fermentations for brewing bioflavored beer. Int J Food Microbiol 2023; 399:110254. [PMID: 37244227 DOI: 10.1016/j.ijfoodmicro.2023.110254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
The increasing demand for more flavored and complex beers encourages the investigation of novel and non-conventional yeasts with the ability to provide a combination of bioflavoring and low ethanol yields. The present study identified 22 yeasts isolated from different brewing sources, including the fermentation by-products known as yeast sludges, and characterized a selection of strains to find the more suitable for the aforementioned aims. HPLC and GC-FID analysis of its brewing products were performed. The most promising results were obtained with the non-conventional yeasts Pichia kudriavzevii MBELGA61 and Meyerozyma guilliermondii MUS122. The former, isolated from a Belgian wheat beer sludge, was capable of growing in wort (17.0°Bx., 20 °C) with very low ethanol yields (1.19 % v/v). Besides, upon mixed fermentations with Saccharomyces cerevisiae, was suitable to produce volatile compounds such as ethyl acetate, 2-phenyl ethanol and isoamyl alcohol, with characteristic fruity notes. M. guilliermondii MUS122, isolated from a golden ale beer sludge, partially attenuated the wort with low production of ethanol and biomass. In addition, provided some fruity and floral nuances to the aroma profile of mixed fermentations with brewer's yeast. The results suggest that these strains favor the development of more fruity-flowery aroma profiles in beers. Furthermore, they are suitable for use in mixed fermentations with Saccharomyces brewer's strains, although the ethanol level did not decrease significantly.
Collapse
Affiliation(s)
- Sofía Sampaolesi
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain; Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco", CINDECA-CONICET, CICpBA, UNLP, Calle 47 No 257, B1900AJK La Plata, Buenos Aires, Argentina
| | - Laura Pérez-Través
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Dolores Pérez
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain; Lallemand Bio SL, Carrer de Galileu 303-305, 08028 Barcelona, Spain
| | - David Roldán López
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Laura E Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco", CINDECA-CONICET, CICpBA, UNLP, Calle 47 No 257, B1900AJK La Plata, Buenos Aires, Argentina.
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
4
|
Paszkot J, Gasiński A, Kawa-Rygielska J. Evaluation of volatile compound profiles and sensory properties of dark and pale beers fermented by different strains of brewing yeast. Sci Rep 2023; 13:6725. [PMID: 37185768 PMCID: PMC10130024 DOI: 10.1038/s41598-023-33246-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
To evaluate the differences in the volatile compound profile of dark and pale beers fermented by different strains of brewer's yeast, gas chromatography with flame ionization detection and gas chromatography mass spectrometry analysis of eight beers was carried out. The prevalent group of compounds in all the beers analysed were alcohols (56.41-72.17%), followed by esters (14.58-20.82%), aldehydes (8.35-20.52%), terpenes and terpenoids (1.22-6.57%) and ketones (0.42-1.00%). The dominant higher alcohols were 2-methylpropan-1-ol, 3-methylbutanol, phenethyl alcohol, among aldehydes furfural, decanal, nonanal, and among esters ethyl acetate, phenylethyl acetate and isoamyl acetate. Beers fermented by the top-fermenting yeast Saccharomyces cerevisiae var. diastaticus had the highest volatile content. The addition of dark malt in wort production process had no effect on the total content of volatiles, but for some beers it caused changes in the total content of esters, terpenes and terpenoids. Variations in the total volatile content between beers fermented by different yeast strains are mainly due to esters and alcohols identified. Sensory analysis of beers allowed us to identify the characteristics affected by the addition of dark speciality malts in the production of wort and yeast strains used in the fermentation process.
Collapse
Affiliation(s)
- Justyna Paszkot
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland.
| | - Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| |
Collapse
|
5
|
Pseudo-Lager—Brewing with Lutra® Kveik Yeast. FERMENTATION 2022. [DOI: 10.3390/fermentation8080410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brewers commonly produce ales since the ale yeast is more resilient, ferments quicker and requires higher temperatures, which are easier to ensure as opposed to lager and pilsner, which require lower temperatures and longer lagering time. However, Kveik yeasts are also resilient, ferment at fairly high temperatures (up to 35 °C), and can provide light, lager-like beers, but more quickly, in shorter lagering time, and with reduced off flavors. Diacetyl rest is not needed. The intention of this paper was to assess the possibility of producing pseudo-lager by using Lutra® Kveik. A batch (120 L) was divided into six fermenting vessels and inoculated with Lutra® yeast. To test its possibility to result in lager-like beer at higher temperature, we conducted fermentation at two temperatures (21 and 35 °C). Fermentation subjected to 21 °C lasted for 9 days, while at 35 °C, fermentation was finished in 2 days. After fermentation, both beers were stored in cold temperatures (4 °C) and then kegged, carbonized, and analyzed (pH, ethanol, polyphenols, color, bitterness, clarity). Alongside the sensory evaluation, a GC-MS analysis was also conducted in order to determine if there are any difference between the samples.
Collapse
|
6
|
Yang D, Wang Y. Framework for a Comparative Study of Flavor Metabolites and Sensory Profiles of Six Craft Beers and Ten Large-Scale Industrial Beers in the Chinese Market. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1980677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dongsheng Yang
- Department of Bioengineering, College of Life Sciences, Hainan University, Haikou, China
| | - Yasheng Wang
- Department of Bioengineering, College of Life Sciences, Hainan University, Haikou, China
| |
Collapse
|
7
|
Mardones W, Villarroel CA, Krogerus K, Tapia SM, Urbina K, Oporto CI, O’Donnell S, Minebois R, Nespolo R, Fischer G, Querol A, Gibson B, Cubillos FA. Molecular profiling of beer wort fermentation diversity across natural Saccharomyces eubayanus isolates. Microb Biotechnol 2020; 13:1012-1025. [PMID: 32096913 PMCID: PMC7264880 DOI: 10.1111/1751-7915.13545] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
The utilization of S. eubayanus has recently become a topic of interest due to the novel organoleptic properties imparted to beer. However, the utilization of S. eubayanus in brewing requires the comprehension of the mechanisms that underlie fermentative differences generated from its natural genetic variability. Here, we evaluated fermentation performance and volatile compound production in ten genetically distinct S. eubayanus strains in a brewing fermentative context. The evaluated strains showed a broad phenotypic spectrum, some of them exhibiting a high fermentation capacity and high levels of volatile esters and/or higher alcohols. Subsequently, we obtained molecular profiles by generating 'end-to-end' genome assemblies, as well as metabolome and transcriptome profiling of two Patagonian isolates exhibiting significant differences in beer aroma profiles. These strains showed clear differences in concentrations of intracellular metabolites, including amino acids, such as valine, leucine and isoleucine, likely impacting the production of 2-methylpropanol and 3-methylbutanol. These differences in the production of volatile compounds are attributed to gene expression variation, where the most profound differentiation is attributed to genes involved in assimilatory sulfate reduction, which in turn validates phenotypic differences in H2 S production. This study lays a solid foundation for future research to improve fermentation performance and select strains for new lager styles based on aroma and metabolic profiles.
Collapse
Affiliation(s)
- Wladimir Mardones
- Facultad de Química y BiologíaDepartamento de BiologíaUniversidad de Santiago de ChileSantiago9170022Chile
- Millennium Institute for Integrative Biology (iBio)Santiago7500574Chile
| | - Carlos A. Villarroel
- Facultad de Química y BiologíaDepartamento de BiologíaUniversidad de Santiago de ChileSantiago9170022Chile
- Millennium Institute for Integrative Biology (iBio)Santiago7500574Chile
| | | | - Sebastian M. Tapia
- Millennium Institute for Integrative Biology (iBio)Santiago7500574Chile
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de los Alimentos (IATA)‐CSICE‐46980ValenciaSpain
| | - Kamila Urbina
- Facultad de Química y BiologíaDepartamento de BiologíaUniversidad de Santiago de ChileSantiago9170022Chile
- Millennium Institute for Integrative Biology (iBio)Santiago7500574Chile
| | - Christian I. Oporto
- Facultad de Química y BiologíaDepartamento de BiologíaUniversidad de Santiago de ChileSantiago9170022Chile
- Millennium Institute for Integrative Biology (iBio)Santiago7500574Chile
| | - Samuel O’Donnell
- Laboratory of Computational and Quantitative BiologyCNRSInstitut de Biologie Paris‐Seine Sorbonne UniversitéF‐75005ParisFrance
| | - Romain Minebois
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de los Alimentos (IATA)‐CSICE‐46980ValenciaSpain
| | - Roberto Nespolo
- Millennium Institute for Integrative Biology (iBio)Santiago7500574Chile
- Institute of Environmental and Evolutionary Science Universidad Austral de Chile5110566ValdiviaChile
- Center of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | - Gilles Fischer
- Laboratory of Computational and Quantitative BiologyCNRSInstitut de Biologie Paris‐Seine Sorbonne UniversitéF‐75005ParisFrance
| | - Amparo Querol
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de los Alimentos (IATA)‐CSICE‐46980ValenciaSpain
| | - Brian Gibson
- VTT Technical Research Centre of Finland LtdVTTFI‐02044EspooFinland
| | - Francisco A. Cubillos
- Facultad de Química y BiologíaDepartamento de BiologíaUniversidad de Santiago de ChileSantiago9170022Chile
- Millennium Institute for Integrative Biology (iBio)Santiago7500574Chile
| |
Collapse
|
8
|
Wang M, Sun Z, Wang Y, Wei Z, Chen B, Zhang H, Guo X, Xiao D. The effect of pitching rate on the production of higher alcohols by top-fermenting yeast in wheat beer fermentation. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01463-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
9
|
Monitoring the convection coefficient in fermentative processes using numerical methods. Bioprocess Biosyst Eng 2018; 41:697-706. [DOI: 10.1007/s00449-018-1903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
10
|
Miller KJ, Box WG, Jenkins DM, Boulton CA, Linforth R, Smart KA. Does Generation Number Matter? The Impact of Repitching on Wort Utilization. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2013-1003-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Katherine J. Miller
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Wendy G. Box
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - David M. Jenkins
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Christopher A. Boulton
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Robert Linforth
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Katherine A. Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
- SABMiller plc, SABMiller House, Woking, Surrey GU21 6HS, UK
| |
Collapse
|
11
|
Olaniran AO, Hiralal L, Mokoena MP, Pillay B. Flavour-active volatile compounds in beer: production, regulation and control. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.389] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science; University of KwaZulu-Natal; Private Bag X54001 Durban 4000 Republic of South Africa
| | - Lettisha Hiralal
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science; University of KwaZulu-Natal; Private Bag X54001 Durban 4000 Republic of South Africa
| | - Mduduzi P. Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science; University of KwaZulu-Natal; Private Bag X54001 Durban 4000 Republic of South Africa
| | - Balakrishna Pillay
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science; University of KwaZulu-Natal; Private Bag X54001 Durban 4000 Republic of South Africa
| |
Collapse
|
12
|
Hirasawa T, Ookubo A, Yoshikawa K, Nagahisa K, Furusawa C, Sawai H, Shimizu H. Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in l-lactate production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2009; 84:1149-59. [DOI: 10.1007/s00253-009-2209-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/14/2009] [Accepted: 08/15/2009] [Indexed: 10/20/2022]
|
13
|
Kobayashi M, Shimizu H, Shioya S. Beer volatile compounds and their application to low-malt beer fermentation. J Biosci Bioeng 2009; 106:317-23. [PMID: 19000606 DOI: 10.1263/jbb.106.317] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 06/24/2008] [Indexed: 11/17/2022]
Abstract
Low-malt beers, in which the amount of wort is adjusted to less than two-thirds of that in regular beer, are popular in the Japanese market because the flavor of low-malt beer is similar to that of regular beer but the price lesser than that of regular beer. There are few published articles about low-malt beer. However, in the production process, there are many similarities between low-malt and regular beer, e.g., the yeast used in low-malt beer fermentation is the same as that used for regular beer. Furthermore, many investigations into regular beer are applicable to low-malt beer production. In this review, we focus on production of volatile compounds, and various studies that are applicable to regular and low-malt beer. In particular, information about metabolism of volatile compounds in yeast cells during fermentation, volatile compound measurement and estimation methods, and control of volatile compound production are discussed in this review, which concentrates on studies published in the last 5-6 years.
Collapse
Affiliation(s)
- Michiko Kobayashi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
14
|
Montague GA, Martin EB, O'Malley CJ. Forecasting for fermentation operational decision making. Biotechnol Prog 2008; 24:1033-41. [DOI: 10.1002/btpr.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Kobayashi M, Shimizu H, Shioya S. Physiological analysis of yeast cells by flow cytometry during serial-repitching of low-malt beer fermentation. J Biosci Bioeng 2007; 103:451-6. [PMID: 17609161 DOI: 10.1263/jbb.103.451] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Indexed: 11/17/2022]
Abstract
At the end of beer brewing fermentation, yeast cells are collected and repitched for economical reasons. Although it is generally accepted that the physiological state of inoculated yeast cells affects their subsequent fermentation performance, the effect of serial-repitching on the physiological state of such yeast cells has not been well clarified. In this study, the fermentation performance of yeast cells during serial-repitching was investigated. After multiple repitchings, the specific growth rate and maximum optical density (OD(660)) decreased, and increases in isoamyl alcohol, which causes an undesirable flavor, and residual free amino acid nitrogen (FAN) concentrations were observed. The physiological state of individual cells before inoculation was characterized by flow cytometry using the fluorescent dyes dehydrorhodamine 123 (DHR) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (OXN). The fluorescence intensities of DHR, an indicator of reactive oxygen species (ROSs), and OXN, which indicates membrane potential, gradually increased as the number of serial-repitching cycles increased. Fluorescence intensity correlated strongly with cell growth. The subsequent fermentation performance can be predicted from this correlation.
Collapse
Affiliation(s)
- Michiko Kobayashi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | |
Collapse
|