1
|
Wang C, Chen X, Zhou N, Chen Y, Zhang A, Chen K, Ouyang P. Property and Function of a Novel Chitinase Containing Dual Catalytic Domains Capable of Converting Chitin Into N-Acetyl-D-Glucosamine. Front Microbiol 2022; 13:790301. [PMID: 35283860 PMCID: PMC8908422 DOI: 10.3389/fmicb.2022.790301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
A novel multifunctional chitinase (CmChi3)-encoding gene was cloned from Chitinolyticbacter meiyuanensis and actively expressed in Escherichia coli. Sequence analysis showed that CmChi3 contains two glycoside hydrolase family 18 (GH18) catalytic domains and exhibited low identity with well-characterized chitinases. The optimum pH and temperature of purified recombinant CmChi3 were 6.0 and 50°C, respectively. CmChi3 exhibited strict substrate specificity of 4.1 U/mg toward colloidal chitin (CC) and hydrolyzed it to yield N-acetyl-D-glucosamine (GlcNAc) as the sole end product. An analysis of the hydrolysis products toward N-acetyl chitooligosaccharides (N-acetyl COSs) and CC substrates revealed that CmChi3 exhibits endochitinase, N-acetyl-β-d-glucosaminidase (NAGase), and transglycosylase (TGase) activities. Further studies revealed that the N-terminal catalytic domain of CmChi3 exhibited endo-acting and NAGase activities, while the C-terminal catalytic domain showed exo-acting and TGase activities. The hydrolytic properties and favorable environmental adaptations indicate that CmChi3 holds potential for commercial GlcNAc production from chitin.
Collapse
Affiliation(s)
- Chengyong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xueman Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Kim YH, Park SK, Hur JY, Kim YC. Purification and Characterization of a Major Extracellular Chitinase from a Biocontrol Bacterium, Paenibacillus elgii HOA73. THE PLANT PATHOLOGY JOURNAL 2017; 33:318-328. [PMID: 28592950 PMCID: PMC5461050 DOI: 10.5423/ppj.ft.01.2017.0022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 05/08/2023]
Abstract
Chitinase-producing Paenibacillus elgii strain HOA73 has been used to control plant diseases. However, the antimicrobial activity of its extracellular chitinase has not been fully elucidated. The major extracellular chitinase gene (PeChi68) from strain HOA73 was cloned and expressed in Escherichia coli in this study. This gene had an open reading frame of 2,028 bp, encoding a protein of 675 amino acid residues containing a secretion signal peptide, a chitin-binding domain, two fibronectin type III domains, and a catalytic hydrolase domain. The chitinase (PeChi68) purified from recombinant E. coli exhibited a molecular mass of approximately 68 kDa on SDS-PAGE. Biochemical analysis indicated that optimum temperature for the actitvity of purified chitinase was 50ºC. However, it was inactivated with time when it was incubated at 40ºC and 50ºC. Its optimum activity was found at pH 7, although its activity was stable when incubated between pH 3 and pH 11. Heavy metals inhibited this chitinase. This purified chitinase completely inhibited spore germination of two Cladosporium isolates and partially inhibited germination of Botrytis cinerea spores. However, it had no effect on the spores of a Colletotricum isolate. These results indicate that the extracellular chitinase produced by P. elgii HOA73 might have function in limiting spore germination of certain fungal pathogens.
Collapse
Affiliation(s)
- Yong Hwan Kim
- College of Life and Resource Science, Dankook University, Cheonan 31116, Korea
| | - Seur Kee Park
- Department of Plant Medicine, Suncheon National University, Suncheon 57922, Korea
| | - Jin Young Hur
- Department of Plant Medicine, Suncheon National University, Suncheon 57922, Korea
| | - Young Cheol Kim
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
3
|
Su Y, Xu L, Fu Z, Yang Y, Guo J, Wang S, Que Y. ScChi, encoding an acidic class III chitinase of sugarcane, confers positive responses to biotic and abiotic stresses in sugarcane. Int J Mol Sci 2014; 15:2738-60. [PMID: 24552874 PMCID: PMC3958879 DOI: 10.3390/ijms15022738] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 12/14/2022] Open
Abstract
Chitinases (EC 3.2.2.14), expressed during the plant-pathogen interaction, are associated with plant defense against pathogens. In the present study, a positive correlation between chitinase activity and sugarcane smut resistance was found. ScChi (GenBank accession no. KF664180), a Class III chitinase gene, encoded a 31.37 kDa polypeptide, was cloned and identified. Subcellular localization revealed ScChi targeting to the nucleus, cytoplasm and the plasma membrane. Real-time quantitative PCR (RT-qPCR) results showed that ScChi was highly expressed in leaf and stem epidermal tissues. The ScChi transcript was both higher and maintained longer in the resistance cultivar during challenge with Sporisorium scitamineum. The ScChi also showed an obvious induction of transcription after treatment with SA (salicylic acid), H2O2, MeJA (methyl jasmonate), ABA (abscisic acid), NaCl, CuCl2, PEG (polyethylene glycol) and low temperature (4 °C). The expression levels of ScChi and six immunity associated marker genes were upregulated by the transient overexpression of ScChi. Besides, histochemical assay of Nicotiana benthamiana leaves overexpressing pCAMBIA 1301-ScChi exhibited deep DAB (3,3'-diaminobenzidinesolution) staining color and high conductivity, indicating the high level of H2O2 accumulation. These results suggest a close relationship between the expression of ScChi and plant immunity. In conclusion, the positive responses of ScChi to the biotic and abiotic stimuli reveal that this gene is a stress-related gene of sugarcane.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiwei Fu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuting Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shanshan Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Kim HJ, Choi HS, Yang SY, Kim IS, Yamaguchi T, Sohng JK, Park SK, Kim JC, Lee CH, Gardener BM, Kim YC. Both extracellular chitinase and a new cyclic lipopeptide, chromobactomycin, contribute to the biocontrol activity of Chromobacterium sp. C61. MOLECULAR PLANT PATHOLOGY 2014; 15:122-132. [PMID: 24033929 PMCID: PMC6638690 DOI: 10.1111/mpp.12070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chromobacterium sp. strain C61 displays antifungal activities in vitro and has been used successfully for the biocontrol of plant diseases under field conditions. In this study, the roles of extracellular chitinase and an antifungal compound produced by strain C61 were investigated to elucidate their contributions to biological control activity. The bacterium possessed a locus chi54 encoding an extracellular chitinase, and mutation of chi54 eliminated chitinase production. Production of the extracellular enzyme and expression of the chi54 transcript were increased in the wild-type strain when chitin was added to the culture medium. In vitro assays showed that purified chitinase inhibited spore germination of multiple pathogens. However, the in planta biocontrol activity of filtrates of cultures grown in the presence of chitin was lower than that of filtrates grown without chitin, indicating that correlation between chitinase and biocontrol activity was lacking. The analysis of C61 culture filtrates revealed an antifungal cyclic lipopeptide, chromobactomycin, whose structure contained a unique nonameric peptide ring. The purified chromobactomycin inhibited the growth of several phytopathogenic fungi in vitro, and plant application significantly reduced disease severity for several pathogens. Furthermore, the production of chromobactomycin was reduced in cultures amended with chitin. These data suggest that the production of both the extracellular chitinase Chi54 and the newly identified antibiotic chromobactomycin can contribute, in an interconnected way, to the suppression of plant disease by Chromobacterium sp. strain C61.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Manjeet K, Purushotham P, Neeraja C, Podile AR. Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases. Microbiol Res 2013; 168:461-8. [PMID: 23480960 DOI: 10.1016/j.micres.2013.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/22/2012] [Accepted: 01/17/2013] [Indexed: 11/25/2022]
Abstract
Glycosyl hydrolase (GH) family 18 chitinases (Chi) and family 33 chitin binding proteins (CBPs) from Bacillus thuringiensis serovar kurstaki (BtChi and BtCBP), B. licheniformis DSM13 (BliChi and BliCBP) and Serratia proteamaculans 568 (SpChiB and SpCBP21) were used to study the efficiency and synergistic action of BtChi, BliChi and SpChiB individually with BtCBP, BliCBP or SpCBP21. Chitinase assay revealed that only BtChi and SpChiB showed synergism in hydrolysis of chitin, while there was no increase in products generated by BliChi, in the presence of the three above mentioned CBPs. This suggests that some (specific) CBPs are able to exert a synergistic effect on (specific) chitinases. A mutant of BliChi, designated as BliGH, was constructed by deleting the C-terminal fibronectin III (FnIII) and carbohydrate binding module 5 (CBM5) to assess the contribution of FnIII and CBM5 domains in the synergistic interactions of GH18 chitinases with CBPs. Chitinase assay with BliGH revealed that the accessory domains play a major role in making BliChi an efficient enzyme. We studied binding of BtCBP and BliCBP to α- and β-chitin. The BtCBP, BliCBP or SpCBP21 did not act synergistically with chitinases in hydrolysis of the chitin, interspersed with other polymers, present in fungal cell walls.
Collapse
Affiliation(s)
- Kaur Manjeet
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Andhra Pradesh, India
| | | | | | | |
Collapse
|
6
|
Draft genome sequence of the biocontrol bacterium Chromobacterium sp. strain C-61. J Bacteriol 2012; 193:6803-4. [PMID: 22072653 DOI: 10.1128/jb.06191-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromobacterium sp. strain C-61 is a plant-associated bacterium with proven capacities to suppress plant diseases. Here, we report the draft genome sequence and automatic annotation of strain C-61. A comparison of this sequence to the sequenced genome of Chromobacterium violaceum ATCC 12472 indicates the novelty of C-61 and a subset of gene functions that may be related to its biocontrol activities.
Collapse
|
7
|
Identification of chitinases Is-chiA and Is-chiB from Isoptericola jiangsuensis CLG and their characterization. Appl Microbiol Biotechnol 2010; 89:705-13. [PMID: 20922373 DOI: 10.1007/s00253-010-2917-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
A 274-bp conserved fragment of chiA (chiA-CF) was amplified from the genomic DNA of Isoptericola jiangsuensis CLG (DSM 21863, CCTCC AB208287) using the specific PCR primers. Based on chiA-CF sequences, a 5233-bp DNA fragment was obtained by self-formed adaptor PCR. DNA sequencing analysis revealed there were two contiguous open reading frames coding for the precursors of Is-chiA [871 amino acids (aa)] and Is-chiB (561 aa) in the 5233-bp DNA fragment. The Is-chiA and Is-chiB exhibited 58% and 62% identity with ArChiA and ArChiB chitinase from Arthrobacter sp. TAD20, respectively. The Is-chiA and Is-chiB genes were cloned into expression vector pET28a (+) and expressed in Escherichia coli BL21 (DE3) with isopropyl-β-D-thiogalactopyranoside induction. Is-chiA and Is-chiB were 92 kDa and 60 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed chitobiosidase and endochitinase activity, respectively. Is-chiA and Is-chiB were purified by Ni-nitrilotriacetic acid affinity chromatography and the characteristics of both Is-chiA and Is-chiB were studied.
Collapse
|
8
|
Liu CL, Shen CR, Hsu FF, Chen JK, Wu PT, Guo SH, Lee WC, Yu FW, Mackey ZB, Turk J, Gross ML. Isolation and identification of two novel SDS-resistant secreted chitinases from Aeromonas schubertii. Biotechnol Prog 2009; 25:124-31. [PMID: 19197977 PMCID: PMC2647588 DOI: 10.1002/btpr.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two SDS-resistant endochitinases, designated as ASCHI53 and ASCHI61, were isolated from Aeromonas schubertii in a soil sample from southern Taiwan. MALDI-TOF mass measurement indicates the molecular weights of 53,527 for ASCHI53 and 61,202 for ASCHI61. N-terminal and internal amino acid sequences were obtained, and BLAST analysis of the sequences and MS/MS peptide sequencing showed that they were novel proteins. Degradation of chitin by these two endochitinases gave rise to hexameric chitin oligosaccharide, a compound known to have several potent biomedical functions. ASCHI53 and ASCHI61 retained, respectively, 65% and 75%, of their chitinase activity in the presence of 5% SDS and 100% of their activity in the presence of 10% beta-mercaptoethanol. These results demonstrate that they are SDS-resistant endochitinases and probably have a rigid structure.
Collapse
Affiliation(s)
- Chao-Lin Liu
- Graduate School of Biochemical Engineering, and Dept. of Safety Health and Environmental Engineering, MingChi University of Technology, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|