1
|
Wang JW, Han PJ, Han DY, Zhou S, Li K, He PY, Zhen P, Yu HX, Liang ZR, Wang XW, Bai FY. Genetic diversity and population structure of the amylolytic yeast Saccharomycopsis fibuligera associated with Baijiu fermentation in China. J Microbiol 2021; 59:753-762. [PMID: 34219208 DOI: 10.1007/s12275-021-1115-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
The amylolytic yeast Saccharomycopsis fibuligera is a predominant species in starters and the early fermentation stage of Chinese liquor (Baijiu). However, the genetic diversity of the species remains largely unknown. Here we sequenced the genomes of 97 S. fibuligera strains from different Chinese Baijiu companies. The genetic diversity and population structure of the strains were analyzed based on 1,133 orthologous genes and the whole genome single nucleotide polymorphisms (SNPs). Four main lineages were recognized. One lineage contains 60 Chinese strains which are exclusively homozygous with relatively small genome sizes (18.55-18.72 Mb) and low sequence diversity. The strains clustered in the other three lineages are heterozygous with larger genomes (21.85-23.72 Mb) and higher sequence diversity. The genomes of the homozygous strains showed nearly 100% coverage with the genome of the reference strain KPH12 and the sub-genome A of the hybrid strain KJJ81 at the above 98% sequence identity level. The genomes of the heterozygous strains showed nearly 80% coverage with both the sub-genome A and the whole genome of KJJ81, suggesting that the Chinese heterozygous strains are also hybrids with nearly 20% genomes from an unidentified source. Eighty-three genes were found to show significant copy number variation between different lineages. However, remarkable lineage specific variations in glucoamylase and α-amylase activities and growth profiles in different carbon sources and under different environmental conditions were not observed, though strains exhibiting relatively high glucoamylase activity were mainly found from the homozygous lineage.
Collapse
Affiliation(s)
- Ju-Wei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sen Zhou
- Niulanshan Distillery, Shunxin Agriculture Co. Ltd., Beijing, 101301, P. R. China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Peng-Yu He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pan Zhen
- ShanxiFenjiu Co. Ltd., Fenyang, Shanxi, 032205, P. R. China
| | - Hui-Xin Yu
- ShanxiFenjiu Co. Ltd., Fenyang, Shanxi, 032205, P. R. China
| | - Zhen-Rong Liang
- Tianlongquan Distillery Co. Ltd., Hechi, Guangxi, 546400, P. R. China
| | - Xue-Wei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
2
|
Cheng HJ, Sun YH, Chang HW, Cui FF, Xue HJ, Shen YB, Wang M, Luo JM. Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance. Bioprocess Biosyst Eng 2020; 43:895-908. [PMID: 31993798 DOI: 10.1007/s00449-020-02286-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/10/2020] [Indexed: 01/19/2023]
Abstract
Ethanol-tolerant Arthrobacter simplex is desirable since ethanol facilitates hydrophobic substrates dissolution on an industrial scale. Herein, alterations in compatible solutes were investigated under ethanol stress. The results showed that the amount of trehalose and glycerol increased while that of glutamate and proline decreased. The trehalose protectant role was verified and its concentration was positively related to the degree of cell tolerance. otsA, otsB and treS, three trehalose biosynthesis genes in A. simplex, also enhanced Escherichia coli stress tolerance, but the increased tolerance was dependent on the type and level of the stress. A. simplex strains accumulating trehalose showed a higher productivity in systems containing more ethanol and substrate because of better viability. The underlying mechanisms of trehalose were involved in better cell integrity, higher membrane stability, stronger reactive oxygen species scavenging capacity and higher energy level. Therefore, trehalose was a general protectant and the upregulation of its biosynthesis by genetic modification enhanced cell stress tolerance, consequently promoted productivity.
Collapse
Affiliation(s)
- Hong-Jin Cheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Ya-Hua Sun
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Han-Wen Chang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Fang-Fang Cui
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Hai-Jie Xue
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China. .,Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
3
|
A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One 2012; 7:e31235. [PMID: 22363590 PMCID: PMC3281935 DOI: 10.1371/journal.pone.0031235] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 01/04/2012] [Indexed: 12/01/2022] Open
Abstract
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.
Collapse
|
5
|
Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs. Appl Environ Microbiol 2008; 74:5845-9. [PMID: 18641164 DOI: 10.1128/aem.00998-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding gamma-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking.
Collapse
|