1
|
Ibáñez A, Garrido-Chamorro S, Coque JJR, Barreiro C. From Genes to Bioleaching: Unraveling Sulfur Metabolism in Acidithiobacillus Genus. Genes (Basel) 2023; 14:1772. [PMID: 37761912 PMCID: PMC10531304 DOI: 10.3390/genes14091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Sulfur oxidation stands as a pivotal process within the Earth's sulfur cycle, in which Acidithiobacillus species emerge as skillful sulfur-oxidizing bacteria. They are able to efficiently oxidize several reduced inorganic sulfur compounds (RISCs) under extreme conditions for their autotrophic growth. This unique characteristic has made these bacteria a useful tool in bioleaching and biological desulfurization applications. Extensive research has unraveled diverse sulfur metabolism pathways and their corresponding regulatory systems. The metabolic arsenal of the Acidithiobacillus genus includes oxidative enzymes such as: (i) elemental sulfur oxidation enzymes, like sulfur dioxygenase (SDO), sulfur oxygenase reductase (SOR), and heterodisulfide reductase (HDR-like system); (ii) enzymes involved in thiosulfate oxidation pathways, including the sulfur oxidation (Sox) system, tetrathionate hydrolase (TetH), and thiosulfate quinone oxidoreductase (TQO); (iii) sulfide oxidation enzymes, like sulfide:quinone oxidoreductase (SQR); and (iv) sulfite oxidation pathways, such as sulfite oxidase (SOX). This review summarizes the current state of the art of sulfur metabolic processes in Acidithiobacillus species, which are key players of industrial biomining processes. Furthermore, this manuscript highlights the existing challenges and barriers to further exploring the sulfur metabolism of this peculiar extremophilic genus.
Collapse
Affiliation(s)
- Ana Ibáñez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (J.J.R.C.)
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Área de Investigación Agrícola, 47071 Valladolid, Spain
| | - Sonia Garrido-Chamorro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - Juan J. R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (J.J.R.C.)
| | - Carlos Barreiro
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| |
Collapse
|
2
|
Chen L, Li W, Zhao Y, Zhang S, Meng L. Mechanism of sulfur-oxidizing inoculants and nitrate on regulating sulfur functional genes and bacterial community at the thermophilic compost stage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116733. [PMID: 36372033 DOI: 10.1016/j.jenvman.2022.116733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The emission of H2S odors predominantly occurred at the thermophilic phase of composting, which could cause odorous gas pollution and reduce the fertilizer value of composting products. And sulfur-oxidizing bacteria (SOB) possess oxidative capacities for inorganic sulfur compounds with nitrate applied as electron acceptors. Therefore, this study aimed to assess the effectiveness of combined additives (SOB inoculants and nitrate) on the bacterial community diversity, sulfur-oxidizing gene abundances, and metabolic function prediction at the thermophilic stage of sewage sludge composting. The highest sulfate contents were increased by 1.02-1.34 folds, and the abundances of the sulfur-oxidizing genes (sqr, pdo, sox, and sor) were also enhanced by adding the combined additives. Network patterns revealed a strengthened interaction of inoculants and sulfur functional genes. Microbial functional pathways predicted higher metabolic levels of carbohydrate and amino acid metabolisms with the addition of combined additives, and the predicted relative abundances of sulfur metabolism and nitrogen metabolism were increased by 19.3 ± 2.5% and 24.7 ± 4.1%, respectively. Heatmap analysis showed that the SOB might have a competitive advantage over the indigenous denitrifying bacteria in using nitrate for biochemical reactions. Correlation analyses suggested that sulfur-oxidizing efficacy could be indirectly affected by the environmental parameters through changing the structure of bacterial community. These findings provide new insights toward an optimized inoculation strategy of using SOB and nitrate to enhance sulfur preservation and modulate the bacterial communities at the thermophilic phase of sewage sludge composting.
Collapse
Affiliation(s)
- Li Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
3
|
Cryo-electron structures of the extreme thermostable enzymes Sulfur Oxygenase Reductase and Lumazine Synthase. PLoS One 2022; 17:e0275487. [PMID: 36191023 PMCID: PMC9529111 DOI: 10.1371/journal.pone.0275487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
Thermostable enzymes have the potential for use in a wide variety of biotechnological applications. Cryo-electron microscopy (cryo-EM) enables the imaging of biomolecules in their native aqueous environment. Here, we present high resolution cryo-EM structures of two thermostable enzymes that exhibit multimeric cage-like structures arranged into two different point-group symmetries. First, we determined the structure of the Sulfur Oxygenase Reductase (SOR) enzyme that catalyzes both the oxygenation and disproportionation of elemental sulfur in Archea and is composed of 24 homomeric units each of MW ≃ 35 kDa arranged in octahedral symmetry. The structure of SOR from Acidianus ambivalens (7X9W) was determined at 2.78 Å resolution. The active site of each subunit inside the central nanocompartment is composed of Fe3+ coordinated to two water molecules and the three amino acids (H86, H90 and E114). Second, we determined the structure of Lumazine Synthase (LS) from Aquifex aeolicus (7X7M) at 2.33 Å resolution. LS forms a cage-like structure consisting of 60 identical subunits each of MW ≃ 15 kDa arranged in a strict icosahedral symmetry. The LS subunits are interconnected by ion-pair network. Due to their thermostability and relatively easy purification scheme, both SOR and LS can serve as a model for the catalytic and structural characterization of biocatalysts as well as a benchmark for cryo-EM sample preparation, optimization of the acquisition parameters and 3D reconstruction.
Collapse
|
4
|
Pal N, Sinha S, Shivani, Chakraborty M. A review on bacterial and archaeal thermostable sulfur oxidoreductases (SORS)-an insight into the biochemical, molecular and in-silico structural comparative analysis of a neglected thermostable enzyme of industrial significance. Arch Microbiol 2022; 204:655. [PMID: 36175582 DOI: 10.1007/s00203-022-03256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Diverse thermophilic microorganisms with the potential to withstand extreme physiological conditions have long been investigated and explored for human commercial benefit. Thermozymes with distinct functional and structural properties isolated from these thermophiles are known to have high thermostability without significant loss of specific enzyme activity. Thermophiles isolated and characterised from the thermophilic ecological niche of India are well documented. There is a plethora of work in the literature emphasising its industrial significance. However, in-depth knowledge of the thermophilic oxidoreductase group of enzymes (Oxizymes) is restricted. Sulfur Oxygenase Reductases or Sulfur Oxygen-Reductases (SORs) are a group of thermophilic oxizymes reported predominantly from thermophilic and mesophilic archaea and bacteria, which catalyse oxygen-dependent disproportionation reactions of elemental sulfur, producing sulfite, thiosulfate, and sulphide. There have been few reports on isolated and characterised SORs from the Indian geothermal niche. The review article will highlight the SORs reported till date with a concise overview of different archaeal and bacterial species producing the enzymes. Based on the literature available till date, characteristics including physico-chemical properties, amino acid sequence homology, conserved motifs and their 3D structure comparison have been discussed. In-silico sequence and structure level preliminary comparative analysis of various SORs has also been discussed. However, a few SORs whose structural information is not reported in the protein data bank have been modelled to enrich our analysis.
Collapse
Affiliation(s)
- Nirmalya Pal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sanjana Sinha
- NMR Micro-Imaging and Spectroscopy Laboratory, Centre for Cellular and Molecular Biology, Uppal Rd, IICT Colony, Habsiguda, Hyderabad, 500007, Telangana, India
| | - Shivani
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mitun Chakraborty
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
5
|
Ferreira P, Fernandes P, Ramos M. The archaeal non-heme iron-containing Sulfur Oxygenase Reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Liu LJ, Jiang Z, Wang P, Qin YL, Xu W, Wang Y, Liu SJ, Jiang CY. Physiology, Taxonomy, and Sulfur Metabolism of the Sulfolobales, an Order of Thermoacidophilic Archaea. Front Microbiol 2021; 12:768283. [PMID: 34721370 PMCID: PMC8551704 DOI: 10.3389/fmicb.2021.768283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The order Sulfolobales (phylum Crenarchaeota) is a group of thermoacidophilic archaea. The first member of the Sulfolobales was discovered in 1972, and current 23 species are validly named under the International Code of Nomenclature of Prokaryotes. The majority of members of the Sulfolobales is obligately or facultatively chemolithoautotrophic. When they grow autotrophically, elemental sulfur or reduced inorganic sulfur compounds are their energy sources. Therefore, sulfur metabolism is the most important physiological characteristic of the Sulfolobales. The functions of some enzymes and proteins involved in sulfur reduction, sulfur oxidation, sulfide oxidation, thiosulfate oxidation, sulfite oxidation, tetrathionate hydrolysis, and sulfur trafficking have been determined. In this review, we describe current knowledge about the physiology, taxonomy, and sulfur metabolism of the Sulfolobales, and note future challenges in this field.
Collapse
Affiliation(s)
- Li-Jun Liu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Xu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yang Wang
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol Biotechnol 2019; 61:579-601. [DOI: 10.1007/s12033-019-00187-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. Front Microbiol 2019; 9:3290. [PMID: 30687275 PMCID: PMC6335251 DOI: 10.3389/fmicb.2018.03290] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sulfur oxidation is an essential component of the earth's sulfur cycle. Acidithiobacillus spp. can oxidize various reduced inorganic sulfur compounds (RISCs) with high efficiency to obtain electrons for their autotrophic growth. Strains in this genus have been widely applied in bioleaching and biological desulfurization. Diverse sulfur-metabolic pathways and corresponding regulatory systems have been discovered in these acidophilic sulfur-oxidizing bacteria. The sulfur-metabolic enzymes in Acidithiobacillus spp. can be categorized as elemental sulfur oxidation enzymes (sulfur dioxygenase, sulfur oxygenase reductase, and Hdr-like complex), enzymes in thiosulfate oxidation pathways (tetrathionate intermediate thiosulfate oxidation (S4I) pathway, the sulfur oxidizing enzyme (Sox) system and thiosulfate dehydrogenase), sulfide oxidation enzymes (sulfide:quinone oxidoreductase) and sulfite oxidation pathways/enzymes. The two-component systems (TCSs) are the typical regulation elements for periplasmic thiosulfate metabolism in these autotrophic sulfur-oxidizing bacteria. Examples are RsrS/RsrR responsible for S4I pathway regulation and TspS/TspR for Sox system regulation. The proposal of sulfur metabolic and regulatory models provide new insights and overall understanding of the sulfur-metabolic processes in Acidithiobacillus spp. The future research directions and existing barriers in the bacterial sulfur metabolism are also emphasized here and the breakthroughs in these areas will accelerate the research on the sulfur oxidation in Acidithiobacillus spp. and other sulfur oxidizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry 2018; 123:34-44. [DOI: 10.1016/j.bioelechem.2018.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022]
|
10
|
DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Front Microbiol 2016; 7:1521. [PMID: 27729905 PMCID: PMC5037290 DOI: 10.3389/fmicb.2016.01521] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| |
Collapse
|
11
|
Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus. Microorganisms 2015; 3:707-24. [PMID: 27682113 PMCID: PMC5023260 DOI: 10.3390/microorganisms3040707] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 12/15/2022] Open
Abstract
The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant.
Collapse
|
12
|
Peng TJ, Liu LJ, Liu C, Yang ZF, Liu SJ, Jiang CY. Metallosphaera tengchongensis sp. nov., an acidothermophilic archaeon isolated from a hot spring. Int J Syst Evol Microbiol 2015; 65:537-542. [DOI: 10.1099/ijs.0.070870-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel acidothermophilic archaea, strains Ric-AT and Ric-F, were isolated from muddy water samples of a sulfuric hot spring located in Tengchong County, Yunnan Province, PR China. The strains were aerobic and facultatively chemolithoautotrophic. Both strains could oxidize S0 and K2S4O6 for autotrophic growth, and could use organic materials for heterotrophic growth. Growth was observed at 55–75 °C and pH 1.5–6.5. The strains could oxidize metal sulfide ores, showing their potential in bioleaching. The DNA G+C contents of strains Ric-AT and Ric-F were 41.8 and 41.6 mol%, respectively. Analysis of 16S rRNA gene sequences showed that the two strains shared 99.8 % sequence similarity to each other, but <97 % to other known species of the genus
Metallosphaera
. DNA–DNA hybridization indicated that the isolates were different strains of a novel species of the genus
Metallosphaera
. Strains Ric-AT and Ric-F also shared a number of physiological and biochemical characteristics that distinguished them from recognized species of the genus
Metallosphaera
. On the basis of phenotypic, chemotaxonomic and phylogenetic comparisons with their closest relatives, it was concluded that strains Ric-AT and Ric-F represent a novel species of the genus
Metallosphaera
, for which the name Metallosphaera
tengchongensis sp. nov. is proposed. The type strain is Ric-AT ( = NBRC 109472T = CGMCC 1.12287T).
Collapse
Affiliation(s)
- Tang-Jian Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li-Jun Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Fang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xinong Road, Yangling, Shanxi 712100, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
13
|
Liu LJ, Stockdreher Y, Koch T, Sun ST, Fan Z, Josten M, Sahl HG, Wang Q, Luo YM, Liu SJ, Dahl C, Jiang CY. Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina. J Biol Chem 2014; 289:26949-26959. [PMID: 25122768 PMCID: PMC4175335 DOI: 10.1074/jbc.m114.591669] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S0)- and tetrathionate (S4O62−)-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys18-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys18) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C93S and DsrE3A-C101S retained the ability to transfer the thiosulfonate group to TusA. TusA-C18S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism.
Collapse
Affiliation(s)
- Li-Jun Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Yvonne Stockdreher
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany
| | - Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany
| | - Shu-Tao Sun
- Core Facility and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Michaele Josten
- Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Hans-Georg Sahl
- Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Qian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Ming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,.
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany,.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,.
| |
Collapse
|
14
|
Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, Hu Q, Xiao Y, Cong J, Ma L, Niu J, Liu X. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiol 2014; 14:179. [PMID: 24993543 PMCID: PMC4109375 DOI: 10.1186/1471-2180-14-179] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/19/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. RESULTS The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. CONCLUSION Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.
Collapse
Affiliation(s)
- Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xiaoqi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhili He
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xue Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Qi Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jing Cong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
15
|
Wang H, Liu S, Liu X, Li X, Wen Q, Lin J. Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp. Appl Microbiol Biotechnol 2014; 98:7511-22. [PMID: 24893664 DOI: 10.1007/s00253-014-5830-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Elemental sulfur (S(0)) oxidation in Acidithiobacillus spp. is an important process in metal sulfide bioleaching. However, the gene that encodes the sulfur dioxygenase (SDO) for S(0) oxidation has remained unclarified in Acidithiobacillus spp. By BLASTP with the eukaryotic mitochondrial sulfur dioxygenases (ETHE1s), the putative sdo genes (AFE_0269 and ACAL_0790) were recovered from the genomes of Acidithiobacillus ferrooxidans ATCC 23270 and Acidithiobacillus caldus MTH-04. The purified recombinant proteins of AFE_0269 and ACAL_0790 exhibited remarkable SDO activity at optimal mildly alkaline pH by using the GSH-dependent in vitro assay. Then, a sdo knockout mutant and a sdo overexpression strain of A. ferrooxidans ATCC 23270 were constructed and characterized. By overexpressing sdo in A. ferrooxidans ATCC 23270, a significantly increased transcriptional level of sdo (91-fold) and a 2.5-fold increase in SDO activity were observed when S(0) was used as sole energy source. The sdo knockout mutant of A. ferrooxidans displayed a slightly reduced growth capacity in S(0)-medium compared with the wild type but still maintained high S(0)-oxidizing activity, suggesting that there is at least one other S(0)-oxidizing enzyme besides SDO in A. ferrooxidans ATCC 23270 cells. In addition, no obvious changes in transcriptional levels of selected genes related to sulfur oxidation was observed in response to the sdo overexpression or knockout in A. ferrooxidans when cultivated in S(0)-medium. All the results might suggest that SDO is involved in sulfide detoxification rather than bioenergetic S(0) oxidation in chemolithotrophic bacteria.
Collapse
Affiliation(s)
- Huiyan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | | | | | | | | | | |
Collapse
|
16
|
Construction and application of an expression vector from the new plasmid pLAtc1 of Acidithiobacillus caldus. Appl Microbiol Biotechnol 2014; 98:4083-94. [DOI: 10.1007/s00253-014-5507-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 11/26/2022]
|
17
|
Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules 2014; 4:117-39. [PMID: 24970208 PMCID: PMC4030981 DOI: 10.3390/biom4010117] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.
Collapse
Affiliation(s)
- Jose L Adrio
- Neol Biosolutions SA, BIC Granada, Granada 18016, Spain.
| | - Arnold L Demain
- Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ 07940, USA.
| |
Collapse
|
18
|
Distribution, diversity, and activities of sulfur dioxygenases in heterotrophic bacteria. Appl Environ Microbiol 2014; 80:1799-806. [PMID: 24389926 DOI: 10.1128/aem.03281-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe(2+) for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria.
Collapse
|
19
|
Proteomic and molecular investigations revealed that Acidithiobacillus caldus adopts multiple strategies for adaptation to NaCl stress. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-0039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Site-specific mutagenesis and functional analysis of active sites of sulfur oxygenase reductase from Gram-positive moderate thermophile Sulfobacillus acidophilus TPY. Microbiol Res 2013; 168:654-60. [PMID: 23726793 DOI: 10.1016/j.micres.2013.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/03/2013] [Accepted: 04/13/2013] [Indexed: 11/23/2022]
Abstract
Sequence alignments revealed that the conserved motifs of SORSa which formed an independent branch between archaea and Gram-negative bacteria SORs according to the phylogenetic relationship were similar with the archaea and Gram-negative bacteria SORs. In order to investigate the active sites of SORSa, cysteines 31, 101 and 104 (C31, C101, C104), histidines 86 and 90 (H86 and H90) and glutamate 114 (E114) of SORSa were chosen as the target amino acid residues for site-specific mutagenesis. The wild type and six mutant SORs were expressed in E. coli BL21, purified and confirmed by SDS-PAGE and Western blotting analysis. Enzyme activity determination revealed that the active sites of SORSa were identical with the archaea and Gram-negative bacteria SORs reported. Replacement of any cysteine residues reduced SOR activity by 53-100%, while the mutants of H86A, H90A and E114A lost their enzyme activities largely, only remaining 20%, 19% and 32% activity of the wild type SOR respectively. This study will enrich our awareness for active sites of SOR in a Gram-positive bacterium.
Collapse
|
21
|
Zhu W, Xia JL, Yang Y, Nie ZY, Peng AA, Liu HC, Qiu GZ. Thermophilic archaeal community succession and function change associated with the leaching rate in bioleaching of chalcopyrite. BIORESOURCE TECHNOLOGY 2013; 133:405-413. [PMID: 23454386 DOI: 10.1016/j.biortech.2013.01.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
The community succession and function change of thermophilic archaea Acidianus brierleyi, Metallosphaera sedula, Acidianus manzaensis and Sulfolobus metallicus were studied by denaturing gradient gel electrophoresis (DGGE) analysis of amplifying 16S rRNA genes fragments and real-time qPCR analysis of amplifying sulfur-oxidizing soxB gene associated with chalcopyrite bioleaching rate at different temperatures and initial pH values. The analysis results of the community succession indicated that temperature and initial pH value had a significant effect on the consortium, and S. metallicus was most sensitive to the environmental change, A. brierleyi showed the best adaptability and sulfur oxidation ability and predominated in various leaching systems. Meanwhile, the leaching rate of chalcopyrite closely related to the consortium function embodied by soxB gene, which could prove a desirable way for revealing microbial sulfur oxidation difference and tracking the function change of the consortium, and for optimizing the leaching parameters and improving the recovery of valuable metals.
Collapse
Affiliation(s)
- Wei Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Chen L, Ren Y, Lin J, Liu X, Pang X, Lin J. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS One 2012; 7:e39470. [PMID: 22984393 PMCID: PMC3440390 DOI: 10.1371/journal.pone.0039470] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system. RESULTS An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor) was created and its growth abilities were measured in media using elemental sulfur (S(0)) and tetrathionate (K(2)S(4)O(6)) as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR) of the wild type and the Δsor mutant in S(0) and K(2)S(4)O(6) media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO) and heterodisulfide reductase (HDR), the truncated Sox pathway, and the S(4)I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media. CONCLUSION An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.
Collapse
Affiliation(s)
- Linxu Chen
- State Key Lab of Microbial Technology, Shandong University, Jinan, China
| | - Yilin Ren
- School of Life Science, Shandong Normal University, Jinan, China
| | - Jianqun Lin
- State Key Lab of Microbial Technology, Shandong University, Jinan, China
| | - Xiangmei Liu
- State Key Lab of Microbial Technology, Shandong University, Jinan, China
| | - Xin Pang
- State Key Lab of Microbial Technology, Shandong University, Jinan, China
| | - Jianqiang Lin
- State Key Lab of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
24
|
|
25
|
Ellis JT, Sims RC, Miller CD. Monitoring microbial diversity of bioreactors using metagenomic approaches. Subcell Biochem 2012; 64:73-94. [PMID: 23080246 DOI: 10.1007/978-94-007-5055-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the rapid development of molecular techniques, particularly 'omics' technologies, the field of microbial ecology is growing rapidly. The applications of next generation sequencing have allowed researchers to produce massive amounts of genetic data on individual microbes, providing information about microbial communities and their interactions through in situ and in vitro measurements. The ability to identify novel microbes, functions, and enzymes, along with developing an understanding of microbial interactions and functions, is necessary for efficient production of useful and high value products in bioreactors. The ability to optimize bioreactors fully and understand microbial interactions and functions within these systems will establish highly efficient industrial processes for the production of bioproducts. This chapter will provide an overview of bioreactors and metagenomic technologies to help the reader understand microbial communities, interactions, and functions in bioreactors.
Collapse
Affiliation(s)
- Joshua T Ellis
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | | | | |
Collapse
|
26
|
Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. THE ISME JOURNAL 2012; 6:158-70. [PMID: 21716305 PMCID: PMC3246232 DOI: 10.1038/ismej.2011.75] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 11/08/2022]
Abstract
Highly acidic (pH 0-1) biofilms, known as 'snottites', form on the walls and ceilings of hydrogen sulfide-rich caves. We investigated the population structure, physiology and biogeochemistry of these biofilms using metagenomics, rRNA methods and lipid geochemistry. Snottites from the Frasassi cave system (Italy) are dominated (>70% of cells) by Acidithiobacillus thiooxidans, with smaller populations including an archaeon in the uncultivated 'G-plasma' clade of Thermoplasmatales (>15%) and a bacterium in the Acidimicrobiaceae family (>5%). Based on metagenomic evidence, the Acidithiobacillus population is autotrophic (ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), carboxysomes) and oxidizes sulfur by the sulfide-quinone reductase and sox pathways. No reads matching nitrogen fixation genes were detected in the metagenome, whereas multiple matches to nitrogen assimilation functions are present, consistent with geochemical evidence, that fixed nitrogen is available in the snottite environment to support autotrophic growth. Evidence for adaptations to extreme acidity include Acidithiobacillus sequences for cation transporters and hopanoid synthesis, and direct measurements of hopanoid membrane lipids. Based on combined metagenomic, molecular and geochemical evidence, we suggest that Acidithiobacillus is the snottite architect and main primary producer, and that snottite morphology and distributions in the cave environment are directly related to the supply of C, N and energy substrates from the cave atmosphere.
Collapse
Affiliation(s)
- Daniel S Jones
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Heidi L Albrecht
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Katherine S Dawson
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Irene Schaperdoth
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Katherine H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - Yundan Pi
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Jennifer L Macalady
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
The sulfur oxygenase reductase from the mesophilic bacterium Halothiobacillus neapolitanus is a highly active thermozyme. J Bacteriol 2011; 194:677-85. [PMID: 22139503 DOI: 10.1128/jb.06531-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A biochemical, biophysical, and phylogenetic study of the sulfur oxygenase reductase (SOR) from the mesophilic gammaproteobacterium Halothiobacillus neapolitanus (HnSOR) was performed in order to determine the structural and biochemical properties of the enzyme. SOR proteins from 14 predominantly chemolithoautotrophic bacterial and archaeal species are currently available in public databases. Sequence alignment and phylogenetic analysis showed that they form a coherent protein family. The HnSOR purified from Escherichia coli after heterologous gene expression had a temperature range of activity of 10 to 99°C with an optimum at 80°C (42 U/mg protein). Sulfite, thiosulfate, and hydrogen sulfide were formed at various stoichiometries in a range between pH 5.4 and 11 (optimum pH 8.4). Circular dichroism (CD) spectroscopy and dynamic light scattering showed that the HnSOR adopts secondary and quaternary structures similar to those of the 24-subunit enzyme from the hyperthermophile Acidianus ambivalens (AaSOR). The melting point of the HnSOR was ≈20°C lower than that of the AaSOR, when analyzed with CD-monitored thermal unfolding. Homology modeling showed that the secondary structure elements of single subunits are conserved. Subtle changes in the pores of the outer shell and increased flexibility might contribute to activity at low temperature. We concluded that the thermostability was the result of a rigid protein core together with the stabilizing effect of the 24-subunit hollow sphere.
Collapse
|
28
|
You XY, Guo X, Zheng HJ, Zhang MJ, Liu LJ, Zhu YQ, Zhu B, Wang SY, Zhao GP, Poetsch A, Jiang CY, Liu SJ. Unraveling the Acidithiobacillus caldus complete genome and its central metabolisms for carbon assimilation. J Genet Genomics 2011; 38:243-52. [DOI: 10.1016/j.jgg.2011.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 11/25/2022]
|
29
|
Kusumi A, Li XS, Katayama Y. Mycobacteria isolated from angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur. Front Microbiol 2011; 2:104. [PMID: 21747806 PMCID: PMC3128992 DOI: 10.3389/fmicb.2011.00104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/27/2011] [Indexed: 11/30/2022] Open
Abstract
To characterize sulfate-producing microorganisms from the deteriorated sandstones of Angkor monuments in Cambodia, strains of Mycobacterium spp. were isolated from most probable number-positive cultures. All five strains isolated were able to use both elemental sulfur (S0) for chemolithoautotrophic growth and organic substances for chemoorganoheterotrophic growth. Results of phylogenetic and phenotypic analyses indicated that all five isolates were rapid growers of the genus Mycobacterium and were most similar to Mycobacterium cosmeticum and Mycobacterium pallens. Chemolithoautotrophic growth was further examined in the representative strain THI503. When grown in mineral salts medium, strain THI503 oxidized S0 to thiosulfate and sulfate; oxidation was accompanied by a decrease in the pH of the medium from 4.7 to 3.6. The link between sulfur oxidation and energy metabolism was confirmed by an increase in ATP. Fluorescence microscopy of DAPI-stained cells revealed that strain THI503 adheres to and proliferates on the surface of sulfur particles. The flexible metabolic ability of facultative chemolithoautotrophs enables their survival in nutrient-limited sandstone environments.
Collapse
Affiliation(s)
- Asako Kusumi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology Tokyo, Japan
| | | | | |
Collapse
|
30
|
Veith A, Urich T, Seyfarth K, Protze J, Frazão C, Kletzin A. Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of acidianus ambivalens. Front Microbiol 2011; 2:37. [PMID: 21747782 PMCID: PMC3128934 DOI: 10.3389/fmicb.2011.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/17/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The sulfur oxygenase reductase (SOR) is the initial enzyme of the sulfur oxidation pathway in the thermoacidophilic Archaeon Acidianus ambivalens. The SOR catalyzes an oxygen-dependent sulfur disproportionation to H(2)S, sulfite and thiosulfate. The spherical, hollow, cytoplasmic enzyme is composed of 24 identical subunits with an active site pocket each comprising a mononuclear non-heme iron site and a cysteine persulfide. Substrate access and product exit occur via apolar chimney-like protrusions at the fourfold symmetry axes, via narrow polar pores at the threefold symmetry axes and via narrow apolar pores within in each subunit. In order to investigate the function of the pores we performed site-directed mutagenesis and inhibitor studies. RESULTS Truncation of the chimney-like protrusions resulted in an up to sevenfold increase in specific enzyme activity compared to the wild type. Replacement of the salt bridge-forming Arg(99) residue by Ala at the threefold symmetry axes doubled the activity and introduced a bias toward reduced reaction products. Replacement of Met(296) and Met(297), which form the active site pore, lowered the specific activities by 25-55% with the exception of an M(296)V mutant. X-ray crystallography of SOR wild type crystals soaked with inhibitors showed that Hg(2+) and iodoacetamide (IAA) bind to cysteines within the active site, whereas Zn(2+) binds to a histidine in a side channel of the enzyme. The Zn(2+) inhibition was partially alleviated by mutation of the His residue. CONCLUSIONS The expansion of the pores in the outer shell led to an increased enzyme activity while the integrity of the active site pore seems to be important. Hg(2+) and IAA block cysteines in the active site pocket, while Zn(2+) interferes over a distance, possibly by restriction of protein flexibility or substrate access or product exit.
Collapse
Affiliation(s)
- Andreas Veith
- Institute of Microbiology and Genetics, Technische Universität DarmstadtDarmstadt, Germany
| | - Tim Urich
- Institute of Microbiology and Genetics, Technische Universität DarmstadtDarmstadt, Germany,Structural Biology Laboratory, Macromolecular Crystallography Unit, ITQB-UNLOeiras, Portugal
| | - Kerstin Seyfarth
- Institute of Microbiology and Genetics, Technische Universität DarmstadtDarmstadt, Germany
| | - Jonas Protze
- Institute of Microbiology and Genetics, Technische Universität DarmstadtDarmstadt, Germany
| | - Carlos Frazão
- Structural Biology Laboratory, Macromolecular Crystallography Unit, ITQB-UNLOeiras, Portugal
| | - Arnulf Kletzin
- Institute of Microbiology and Genetics, Technische Universität DarmstadtDarmstadt, Germany,*Correspondence: Arnulf Kletzin, Institute of Microbiology and Genetics, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany. e-mail:
| |
Collapse
|
31
|
Kumar L, Awasthi G, Singh B. Extremophiles: A Novel Source of Industrially Important Enzymes. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/biotech.2011.121.135] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Gröning JAD, Tischler D, Kaschabek SR, Schlömann M. Optimization of a genome-walking method to suit GC-rich template DNA from biotechnological relevant Actinobacteria. J Basic Microbiol 2010; 50:499-502. [PMID: 20806255 DOI: 10.1002/jobm.201000032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SiteFinding-PCR has been recently reported to be a useful technique in order to identify unknown DNA fragments located adjacent to available sequences. However, this method has so far only been applied to few DNA sources including plants, samples from bioleaching communities, and a Pseudomonas strain. In order to complete the sequence information of two gene clusters in Gram-positive rhodococci the original protocol was applied yielding amplicons of insufficient size. The binding site of the previously published SiteFinder-2 oligo proved to be unsuitable for Rhodococcus and other members of the Actinobacteria since the binding motif occurred too frequently. Available genome sequences of different Actinobacteria were analysed and the binding site of the SiteFinder oligo modified. Moreover, PCR conditions were adapted to the high GC content of the template DNA allowing the successful adaptation of this method to two members of the Actinobacteria.
Collapse
|
33
|
Liu LJ, You XY, Guo X, Liu SJ, Jiang CY. Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. Int J Syst Evol Microbiol 2010; 61:2395-2400. [PMID: 21057050 DOI: 10.1099/ijs.0.026591-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel acidothermophilic archaeon, strain Ar-4(T), was isolated from a sulfuric hot spring in Tengchong, Yunnan, China. Cells of strain Ar-4(T) were Gram-staining-negative, irregular cocci and motile by means of flagella. Strain Ar-4(T) grew over a temperature range of 55-75 °C (optimum, 65 °C), a pH range of 2.5-5.5 (optimum, pH 3.5) and a NaCl concentration range of 0-1 % (w/v). The novel strain was aerobic and facultatively chemolithoautotrophic. The strain could extract metal ions from sulfidic ore. It was also able to oxidize reduced sulfur compounds. In addition, it was able to use heterogeneous organic materials for organotrophic growth. The main cellular lipids were calditoglycerocaldarchaeol (CGTE) and caldarchaeol (DGTE). The DNA G+C content of the strain was 40.2 mol%. Analysis of 16S rRNA gene sequences showed that strain Ar-4(T) was phylogenetically related to members of the genus Metallosphaera and had sequence similarities of 97.7 %, 97.0 % and 96.8 % with Metallosphaera hakonensis DSM 7519(T), Metallosphaera sedula DSM 5348(T) and Metallosphaera prunae DSM 10039(T), respectively. Strain Ar-4(T) showed DNA-DNA relatedness values of 47.5 %, 30.8 % and 29.1 % with M. hakonensis DSM 7519(T), M. sedula DSM 5348(T) and M. prunae DSM 10039(T), respectively. The differences in cell motility, the temperature and pH ranges for growth, the ability to utilize carbon sources, the DNA G+C content, and the low DNA-DNA relatedness values distinguished strain Ar-4(T) from recognized species of the genus Metallosphaera. On the basis of these results, it was concluded that strain Ar-4(T) represents a novel species of the genus Metallosphaera, for which the name Metallosphaera cuprina is proposed. The type strain is Ar-4(T) ( = JCM 15769(T) = CGMCC 1.7082(T)).
Collapse
Affiliation(s)
- Li-Jun Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Yan You
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
34
|
Wang Q, Wu H, Wang A, Du P, Pei X, Li H, Yin X, Huang L, Xiong X. Prospecting metagenomic enzyme subfamily genes for DNA family shuffling by a novel PCR-based approach. J Biol Chem 2010; 285:41509-16. [PMID: 20962349 DOI: 10.1074/jbc.m110.139659] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64-99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering.
Collapse
Affiliation(s)
- Qiuyan Wang
- Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou 310012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tuffin M, Anderson D, Heath C, Cowan DA. Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnol J 2010; 4:1671-83. [PMID: 19946882 DOI: 10.1002/biot.200900235] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metagenomics emerged in the late 1990s as a tool for accessing and studying the collective microbial genetic material in the environment. The advent of the technology generated great excitement, as it has provided new opportunities and technologies for studying the wealth of microbial genetic diversity in the environment. Metagenomics has been widely predicted to access new dimensions of protein sequence space. A decade on, we review how far we have actually moved into new sequence space (and other aspects of protein space) using metagenomic tools. While several novel enzyme activities and protein structures have been identified through metagenomic strategies, the greatest advancement has been made in the isolation of novel protein sequences, some of which have no close relatives, form deeply branched lineages and even represent novel families. This is particularly true for glycosyl hydrolases and lipase/esterases, despite the fact that these activities are frequently screened for in metagenomic studies. However, there is much room for improvement in the methods employed and they will need to be addressed so that access to novel biocatalytic activities can be widened.
Collapse
Affiliation(s)
- Marla Tuffin
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of Western Cape, Cape town, South Africa
| | | | | | | |
Collapse
|
36
|
Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 2009; 20:616-22. [DOI: 10.1016/j.copbio.2009.09.010] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/18/2009] [Accepted: 09/25/2009] [Indexed: 11/17/2022]
|
37
|
Abstract
The elemental sulfur oxidising enzyme Sulfur Oxygenase Reductase (SOR) is very well investigated in acidothermophilic archaea, such as Acidianus brierleyi and Sulfolobus metallicus. In contrast, not much is known about the biochemistry of elemental sulfur oxidation in acidophilic bacteria. Recently, however, the SOR-encoding gene has been found also in a bacterial strain closely related to the moderate thermophile Acidithiobacillus caldus. Confusingly, for the latter species, also the involvement of the SOX system as well as thiosulfate:quinone oxidoreductase (TQO) and tetrathionate hydrolase (TTH) in sulfur compound oxidation has been proposed based on genome analysis. In this study, we have detected the sor-gene in other Acidithiobacillus caldus-like strains, isolated from various bioleaching habitats, indicating that SOR plays an important role in sulfur oxidation in this species. Based on sequence comparison, the new bacterial sor-genes are closely related and distant from the known archaeal sequences as well as from the SOR found in the neutrophilic bacterium Aquifex aeolicus. In addition, SOR activity has been detected in crude cell extracts from all Acidithiobacillus caldus-like strains tested. The enzyme is truly thermophilic as highest activities were achieved at 65 °C, which is far beyond the growth optimum of Acidithiobacillus caldus. This finding may give rise to the question whether the presence of SOR in Acidithiobacillus caldus is only relevant while growing at elevated temperatures. Currently, experiments are performed for testing this hypothesis (comparing growth and enzyme activities at 30 vs. 45 °C).
Collapse
|
38
|
Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis. Biochem Biophys Res Commun 2008; 369:919-23. [PMID: 18329378 DOI: 10.1016/j.bbrc.2008.02.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/26/2008] [Indexed: 11/21/2022]
Abstract
Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hollow sphere. Within the icosatetramer sphere, the tetramer and trimer channels were proposed as the paths for the substrate and products, respectively. Moreover, a comparison of SOR-AT with SOR-AA (SOR from Acidianus ambivalens) structures showed that significant differences existed at the active site. Firstly, Cys31 is not persulfurated in SOR-AT structures. Secondly, the iron atom is five-coordinated rather than six-coordinated, since one of the water molecules ligated to the iron atom in the SOR-AA structure is lost. Consequently, the binding sites of substrates and a hypothetical catalytic process of SOR were proposed.
Collapse
|
39
|
The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 2007; 74:682-92. [PMID: 18083856 DOI: 10.1128/aem.02019-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, approximately 2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized.
Collapse
|
40
|
First characterisation of the active oligomer form of sulfur oxygenase reductase from the bacterium Aquifex aeolicus. Extremophiles 2007; 12:205-15. [PMID: 18060346 DOI: 10.1007/s00792-007-0119-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
Sulfur oxygenase reductase (SOR) enzyme is responsible for the initial oxidation step of elemental sulfur in archaea. Curiously, Aquifex aeolicus, a hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium, has the SOR-encoding gene in its genome. We showed, for the first time the presence of the SOR enzyme in A. aeolicus, its gene was cloned and recombinantly expressed in Escherichia coli and the protein was purified and characterised. It is a 16 homo-oligomer of approximately 600 kDa that contains iron atoms indispensable for the enzyme activity. The optimal temperature of SOR activity is 80 degrees C and it is inactive at 20 degrees C. Studies of the factors involved in getting the fully active molecule at high temperature show clearly that (1) incubation at high temperature induces more homogeneous form of the enzyme, (2) conformational changes observed at high temperature are required to get the fully active molecule and (3) acquisition of an active conformation induced by the temperature seems to be more important than the subunit number. Differences between A. aeolicus SOR and the archaea SORs are described.
Collapse
|
41
|
Analysis of the Microbial Community in the Leachate Collected from an Experimental Bioleaching Column by Cloning and RFLP. ACTA ACUST UNITED AC 2007. [DOI: 10.4028/www.scientific.net/amr.20-21.485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A culture independent molecular methodology was used to investigate the bacterial and archaeal microbial dynamics of leachate collected from a 60°C chalcopyrite bioleaching column inoculated with a known microbial consortium. A 16S rRNA gene clone library was constructed for both the bacterial and archaeal populations in the leachate from the column. PCR-RFLP analysis of these clone libraries indicate species dominance and generally low species diversity.
Collapse
|
42
|
Rohwerder T, Sand W. Oxidation of Inorganic Sulfur Compounds in Acidophilic Prokaryotes. Eng Life Sci 2007. [DOI: 10.1002/elsc.200720204] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
43
|
Ferrer M, Golyshina O, Beloqui A, Golyshin PN. Mining enzymes from extreme environments. Curr Opin Microbiol 2007; 10:207-14. [PMID: 17548239 DOI: 10.1016/j.mib.2007.05.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/09/2007] [Accepted: 05/17/2007] [Indexed: 11/21/2022]
Abstract
Current advances in metagenomics have revolutionized the research in fields of microbial ecology and biotechnology, enabling not only a glimpse into the uncultured microbial population and mechanistic understanding of possible biogeochemical cycles and lifestyles of extreme organisms but also the high-throughput discovery of new enzymes for industrial bioconversions. Nowadays, the genetic and enzymatic differences across the gradients from 'neutral and pristine' to 'extreme and polluted' environments are well documented. Yet, extremophilic organisms are possibly the least well understood because our ability to study and understand their metabolic potential has been hampered by our inability to isolate pure cultures. There are at least two obstacles for reaping the fruit of the microbial diversity of extremophiles: first, in spite of the recent progress in development of new culturing techniques most extremophiles cannot be cultured using traditional culturing technologies; and second, the problem of the very low biomass densities often occurs under the conditions hostile for life, which often do not yield enough DNA and reduces the effectiveness of cloning.
Collapse
Affiliation(s)
- Manuel Ferrer
- Division of Applied Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|