1
|
A processive GH9 family endoglucanase of Bacillus licheniformis and the role of its carbohydrate-binding domain. Appl Microbiol Biotechnol 2022; 106:6059-6075. [PMID: 35948851 DOI: 10.1007/s00253-022-12117-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
One of the critical steps in lignocellulosic deconstruction is the hydrolysis of crystalline cellulose by cellulases. Endoglucanases initially facilitate the breakdown of cellulose in lignocellulosic biomass and are further aided by other cellulases to produce fermentable sugars. Furthermore, if the endoglucanase is processive, it can adsorb to the smooth surface of crystalline cellulose and release soluble sugars during repeated cycles of catalysis before dissociating. Most glycoside hydrolase family 9 (GH9) endoglucanases have catalytic domains linked to a CBM (carbohydrate-binding module) (mostly CBM3) and present the second-largest cellulase family after GH5. GH9 endoglucanases are relatively less characterized. Bacillus licheniformis is a mesophilic soil bacterium containing many glycoside hydrolase (GH) enzymes. We identified an endoglucanase gene, gh9A, encoding the GH9 family enzyme H1AD14 in B. licheniformis and cloned and overexpressed H1AD14 in Escherichia coli. The purified H1AD14 exhibited very high enzymatic activity on endoglucanase substrates, such as β-glucan, lichenan, Avicel, CMC-Na (sodium carboxymethyl cellulose) and PASC (phosphoric acid swollen cellulose), across a wide pH range. The enzyme is tolerant to 2 M sodium chloride and retains 74% specific activity on CMC after 10 days, the highest amongst the reported GH9 endoglucanases. The full-length H1AD14 is a processive endoglucanase and efficiently saccharified sugarcane bagasse. The deletion of the CBM reduces the catalytic activity and processivity. The results add to the sparse knowledge of GH9 endoglucanases and offer the possibility of characterizing and engineering additional enzymes from B. licheniformis toward developing a cellulase cocktail for improved biomass deconstruction. KEY POINTS: • H1AD14 is a highly active and processive GH9 endoglucanase from B. licheniformis. • H1AD14 is thermostable and has a very long half-life. • H1AD14 showed higher saccharification efficiency than commercial endoglucanase.
Collapse
|
2
|
Composition and diversity of gut microbiota in Pomacea canaliculata in sexes and between developmental stages. BMC Microbiol 2021; 21:200. [PMID: 34210255 PMCID: PMC8252327 DOI: 10.1186/s12866-021-02259-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/10/2021] [Indexed: 01/16/2023] Open
Abstract
Background The apple snail, Pomacea canaliculata, is one of the world’s 100 worst invasive alien species and vector of some pathogens relevant to human health. Methods On account of the importance of gut microbiota to the host animals, we compared the communities of the intestinal microbiota from P. canaliculata collected at different developmental stages (juvenile and adult) and different sexes by using high-throughput sequencing. Results The core bacteria phyla of P. canaliculata gut microbiota included Tenericutes (at an average relative abundance of 45.7 %), Firmicutes (27.85 %), Proteobacteria (11.86 %), Actinobacteria (4.45 %), and Cyanobacteria (3.61 %). The female group possessed the highest richness values, whereas the male group possessed the lowest bacterial richness and diversity compared with the female and juvenile group. Both the developmental stages and sexes had important effects on the composition of the intestinal microbiota of P. canaliculata. By LEfSe analysis, microbes from the phyla Proteobacteria and Actinobacteria were enriched in the female group, phylum Bacteroidetes was enriched in the male group, family Mycoplasmataceae and genus Leuconostoc were enriched in the juvenile group. PICRUSt analysis predicted twenty-four metabolic functions in all samples, including general function prediction, amino acid transport and metabolism, transcription, replication, recombination and repair, carbohydrate transport and metabolism, etc. Conclusions This study provided a general understanding of the diversity characteristics of intestinal microbial communities of P. canaliculata, and indicated that developmental stage and gender could both influence the intestinal microbes of P. canaliculata. Further study may focus on the interaction between the gut microbiota and their host. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02259-2.
Collapse
|
3
|
Kumar K, Singh S, Sharma K, Goyal A. Computational modeling and small-angle X-ray scattering based structure analysis and identifying ligand cleavage mechanism by processive endocellulase of family 9 glycoside hydrolase (HtGH9) from Hungateiclostridium thermocellum ATCC 27405. J Mol Graph Model 2020; 103:107808. [PMID: 33248343 DOI: 10.1016/j.jmgm.2020.107808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
The cellulases of family 9 glycoside hydrolase with subtle difference in amino acid sequence have shown different types of catalytic activities such as endo-, exo- or processive endocellulase. However, the reason behind the different types of catalytic activities still unclear. In this study, the processive endocellulase, HtGH9 of family 9 GH from Hungateiclostridium thermocellum was modeled by homology modeling. The catalytic module (HtGH9t) of HtGH9 modeled structure displayed the (α/α)6 barrel topology and associated family 3 carbohydrate binding module (HtCBM3c) displayed β-sandwich fold. Ramachandran plot of HtGH9 modeled structure displayed all the amino acid residues in allowed region except Asn225 and Asp317. Secondary structure analysis of modeled HtGH9 showed the presence of 41.3% α-helices and 11.0% β-strands which was validated through circular dichroism analysis that showed the presence of 42.6% α-helices and 14.5% β-strands. Molecular Dynamic (MD) simulation of HtGH9 structure for 50 ns showed Root Mean Square Deviation (RMSD), 0.84 nm and radius of gyration (Rg) 3.1 nm. The Small-angle X-ray scattering of HtGH9 confirmed the monodisperse state. The radius of gyration for globular shape (Rg) was 5.50 ± 0.15 nm and for rod shape (Rc) by Guinier plot was 2.0 nm. The loop formed by amino acid residues, 264-276 towards one end of the catalytic site of HtGH9 forms a barrier, that blocks the non-reducing end of the cellulose chain causing the processive cleavage resulting in the release of cellotetraose. The position of the corresponding loop in cellulases of family 9 GH is responsible for different types of cleavage patterns.
Collapse
Affiliation(s)
- Krishan Kumar
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shubha Singh
- Division of Biological Sciences and Engineering, Netaji Subhas University of Technology, Delhi, 110078, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Laboratory of Small Molecules & Macro Molecular Crystallography, Department of Bioengineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities. Appl Microbiol Biotechnol 2020; 104:2079-2096. [DOI: 10.1007/s00253-020-10388-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
|
5
|
Escobar-Correas S, Mendoza-Porras O, Dellagnola FA, Colgrave ML, Vega IA. Integrative Proteomic Analysis of Digestive Tract Glycosidases from the Invasive Golden Apple Snail, Pomacea canaliculata. J Proteome Res 2019; 18:3342-3352. [PMID: 31321981 DOI: 10.1021/acs.jproteome.9b00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The freshwater snail Pomacea canaliculata, an invasive species of global significance, possesses a well-developed digestive system and diverse feeding mechanisms enabling the intake of a wide variety of food. The identification of glycosidases in adult snails would increase the understanding of their digestive physiology and potentially generate new opportunities to eradicate and/or control this invasive species. In this study, liquid chromatography coupled to tandem mass spectrometry was applied to define the occurrence, diversity, and origin of glycoside hydrolases along the digestive tract of P. canaliculata. A range of cellulases, hemicellulases, amylases, maltases, fucosidases, and galactosidases were identified across the digestive tract. The digestive gland and the contents of the crop and style sac yield a higher diversity of glycosidase-derived peptides. Subsequently, peptides derived from 81 glycosidases (46 proteins from the public database and 35 uniquely from the transcriptome database) that were distributed among 13 glycoside hydrolase families were selected and quantified using multiple reaction monitoring mass spectrometry. This study showed a high glycosidase abundance and diversity in the gut contents of P. canaliculata which participate in extracellular digestion of complex dietary carbohydrates. Salivary and digestive glands were the main tissues involved in their synthesis and secretion.
Collapse
Affiliation(s)
- Sophia Escobar-Correas
- IHEM, CONICET , Universidad Nacional de Cuyo , Mendoza , Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas , Instituto de Fisiología , Mendoza 5500 , Argentina
| | - Omar Mendoza-Porras
- Agriculture & Food , CSIRO , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Federico A Dellagnola
- IHEM, CONICET , Universidad Nacional de Cuyo , Mendoza , Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas , Instituto de Fisiología , Mendoza 5500 , Argentina.,Universidad Nacional de Cuyo , Facultad de Ciencias Exactas y Naturales, Departamento de Biología , Mendoza 5500 , Argentina
| | - Michelle L Colgrave
- Agriculture & Food , CSIRO , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Israel A Vega
- IHEM, CONICET , Universidad Nacional de Cuyo , Mendoza , Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas , Instituto de Fisiología , Mendoza 5500 , Argentina.,Universidad Nacional de Cuyo , Facultad de Ciencias Exactas y Naturales, Departamento de Biología , Mendoza 5500 , Argentina
| |
Collapse
|
6
|
Guan X, Chen P, Xu Q, Qian L, Huang J, Lin B. Expression, purification and molecular characterization of a novel endoglucanase protein from Bacillus subtilis SB13. Protein Expr Purif 2017; 134:125-131. [DOI: 10.1016/j.pep.2017.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 04/17/2017] [Indexed: 11/28/2022]
|
7
|
Wang X, Rong L, Wang M, Pan Y, Zhao Y, Tao F. Improving the activity of endoglucanase I (EGI) from Saccharomyces cerevisiae by DNA shuffling. RSC Adv 2017. [DOI: 10.1039/c6ra26508a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To enhance the endo-β-1,4-glucanase activity of three mixedTrichodermasp. (Trichoderma reesei, Trichoderma longibrachiatum, andTrichoderma pseudokoningii), we optimized the efficiency of the encoding gene using DNA shuffling andSaccharomyces cerevisiaeINVSc1 as a host.
Collapse
Affiliation(s)
- Xu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- School of Life Sciences
| | - Liang Rong
- USC School of Pharmacy
- University of Southern California
- Los Angeles
- USA
| | - Mingfu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Yingjie Pan
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Yong Zhao
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
| | - Fang Tao
- School of Life Sciences
- Anhui Agricultural University
- China
| |
Collapse
|
8
|
Yu M, Qiu Y, Chen W, Zhao F, Shao J. Action modes of recombinant endocellulase, EGA, and its domains on cotton fabrics. Biotechnol Lett 2015; 37:1615-22. [PMID: 25975370 DOI: 10.1007/s10529-015-1832-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The action modes of an endocellulase, EGA, and its domains (CD9 and CBM3) during enzymatic treatment of cotton fabrics were investigated. RESULTS EGA, CD9 and CBM3 had the binding capacity to cellulose substrates, of which the filter paper was the substrate with the strongest binding capacity. Analyses of scanning electronic microscopy indicated that EGA and its catalytic domain CD9 etched the surface of cotton fabrics and broke the fibers of long chains. On the other hand, the binding domain CBM3 only resulted in swelling of cotton fibers. Both EGA and its catalytic domain CD9 had minimal effect on the weight loss of cotton fabrics, whereas the effect of EGA and CD9 on the degree of polymerization and breaking strength was significant. After 12 h enzymatic action, the values of weight loss ratio for EGA and CD9 were 2.07 and 2.21 %, respectively, meanwhile the reductions in fabric strength were 27.04 % for EGA and 17.23 % for CD9. CONCLUSIONS In contrast to the action of EGA and CD9, CBM3 showed no significant changes in terms of the weight loss ratio, degree of polymerization, and fabric strength.
Collapse
Affiliation(s)
- Meilan Yu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | | | | | | | | |
Collapse
|
9
|
Hayes KA, Burks RL, Castro-Vazquez A, Darby PC, Heras H, Martín PR, Qiu JW, Thiengo SC, Vega IA, Wada T, Yusa Y, Burela S, Cadierno MP, Cueto JA, Dellagnola FA, Dreon MS, Frassa MV, Giraud-Billoud M, Godoy MS, Ituarte S, Koch E, Matsukura K, Pasquevich MY, Rodriguez C, Saveanu L, Seuffert ME, Strong EE, Sun J, Tamburi NE, Tiecher MJ, Turner RL, Valentine-Darby PL, Cowie RH. Insights from an Integrated View of the Biology of Apple Snails (Caenogastropoda: Ampullariidae). MALACOLOGIA 2015. [DOI: 10.4002/040.058.0209] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Zi-Zhong T, Zhen-Fang W, Hui C, Xin L, Xue-yi H, Qi W. Characterization of Novel EGs Reconstructed from Bacillus subtilis Endoglucanase. Appl Biochem Biotechnol 2013; 169:1764-73. [DOI: 10.1007/s12010-013-0111-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 11/28/2022]
|
11
|
Dissecting structure–function–stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem J 2011; 441:95-104. [DOI: 10.1042/bj20110869] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCel5A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.
Collapse
|
12
|
Yin Q, Teng Y, Ding M, Zhao F. Site-directed mutagenesis of aromatic residues in the carbohydrate-binding module of Bacillus endoglucanase EGA decreases enzyme thermostability. Biotechnol Lett 2011; 33:2209-16. [PMID: 21720844 DOI: 10.1007/s10529-011-0680-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 06/20/2011] [Indexed: 11/28/2022]
Abstract
The endoglucanase, EGA, from Bacillus sp. AC-1 comprises a glycosyl hydrolase family-9 catalytic module (CM9) and a family-3 carbohydrate-binding module (CBM3). Seven aromatic residues were subjected to site-directed mutagenesis in both CBM3 and EGA to investigate their roles in enzyme thermostability. The complexes generated by mixing CBMY527G, CBMW532A, or CBMF592G with CM9 each lost their activities after 15 min at 45°C, while the wild-type complex retained >70% activity after 2 h. The mutants EGAY527G, EGAW532A, and EGAF592G showed little activity after 15 min at 60°C, whereas EGA remained 70% active after 2 h. Thus the residues Tyr(527), Trp(532), and Phe(592) contribute not only to CBM3-mediated stability of CM9 but also to EGA thermostability suggesting that hydrophobic interaction between the two modules, independent of covalent linkages, is important for enzyme thermostability.
Collapse
Affiliation(s)
- Qiuyu Yin
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
13
|
Expression and characterization of full-length Ampullaria crossean endoglucanase EG65s and their two functional modules. Biosci Biotechnol Biochem 2011; 75:240-6. [PMID: 21307602 DOI: 10.1271/bbb.100529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three endoglucanase cDNAs, eg65a, eg65b, and eg65c, were cloned from the mollusk Ampullaria crossean in previous work. To characterize the full-length enzymes as well as their individual functional modules via heterologous expression analysis, the three full-length putative endoglucanases (rEG65a, rEG65b, and rEG65c) and the corresponding catalytic modules (EG65a-CM, EG65b-CM, and EG65c-CM) were expressed in Pichia pastoris GS115, and the three corresponding carbohydrate-binding modules (EG65a-CBM, EG65b-CBM, and EG65c-CBM) were expressed in Escherichia coli BL21 (DE3). The properties of recombinant rEG65b, EG65a-CM, EG65b-CM, and EG65c-CM were characterized. Binding assays of CBMs with insoluble polysaccharides indicated that both EG65b-CBM and EG65c-CBM bound to phosphoric-acid swollen cellulose (PASC), Avicel, and oat-spelt xylan, while EG65a-CBM did not. The relative equilibrium constants (K(r)) of EG65b-CBM and EG65c-CBM were determined by absorption isotherm measurements. In this study, the CBMs of animal cellulases were expressed and characterized for the first time.
Collapse
|
14
|
Wang Y, Yuan H, Wang J, Yu Z. Truncation of the cellulose binding domain improved thermal stability of endo-beta-1,4-glucanase from Bacillus subtilis JA18. BIORESOURCE TECHNOLOGY 2009; 100:345-9. [PMID: 18632263 DOI: 10.1016/j.biortech.2008.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/01/2008] [Accepted: 06/04/2008] [Indexed: 05/23/2023]
Abstract
The C-terminus region of endo-beta-glucanase Egl499 from Bacillus subtilis JA18 was suggested to be a putative family 3 cellulose-binding domain (CBD) by computer analysis. To prove this proposal, C-terminus truncation mutant Egl330 was constructed and expressed. Compared with Egl499, Egl330 lost the cellulose binding capability at 4 degrees C, confirming the C-terminus region was a CBD. Binding of the CBD to Avicel was inhibited by carboxymethylcellulose (CMC), but not by barley beta-glucan and glucose at concentration of 0.1% and 0.5%. Kinetic analysis showed both the turnover rate (k(cat)) and the catalytic efficiency (k(cat)/K(m)) of Egl330 increased for the substrate CMC compared to Egl499. A great improvement in thermal stability was observed in Egl330. The half life of Egl330 at 65 degrees C increased to three folds that of Egl499, from 10 to 29 min. After treated at 80 degrees C for 10 min, Egl330 could recover more than 60% of its original activity while Egl499 only recovered 12% activity. UV spectrometry analysis showed Egl330 and Egl499 differed in refolding efficiency after heat treatment.
Collapse
Affiliation(s)
- Yujuan Wang
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei, PR China
| | | | | | | |
Collapse
|
15
|
Improved catalytic efficiency of endo-beta-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl Microbiol Biotechnol 2008; 82:671-9. [PMID: 19050861 DOI: 10.1007/s00253-008-1789-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/06/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Bacillus subtilis endo-beta-1,4-glucanase (Cel5A) hydrolyzes cellulose by cleavage of the internal bonds in the glucose chains, producing new ends randomly. Using directed evolution techniques of error-prone polymerase chain reaction (PCR) and DNA shuffling, several Cel5A variants with improved catalytic activity had been screened from the mutant library, which contained 71,000 colonies. Compared with the wild-type enzyme, the variants (M44-11, S75 and S78) showed 2.03 to 2.68-fold increased activities toward sodium carboxymethyl cellulose (CMC), while the M44-11 also exhibited a wider pH tolerance and higher thermostability. Structural models of M44-11, S75, S78, and WT proteins revealed that most of the substitutions were not located in the strictly conserved regions, except the mutation V255A of S75, which was closed to the nucleophile Glu257 in the catalytic center of the enzyme. Moreover, V74A and D272G of M44-11, which were not located in the substrate binding sites and the catalytic center, might result in improved stability and catalytic activity. These results provided useful references for directed evolution of the enzymes that belonged to the glycoside hydrolase family 5 (GH5).
Collapse
|
16
|
Ding M, Teng Y, Yin Q, Zhao J, Zhao F. The N-terminal cellulose-binding domain of EGXA increases thermal stability of xylanase and changes its specific activities on different substrates. Acta Biochim Biophys Sin (Shanghai) 2008; 40:949-54. [PMID: 18989576 DOI: 10.1111/j.1745-7270.2008.00481.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A full-length EGXA enzyme from a mollusk, Ampullaria crossean, was cloned into pFastBac vector and then heterogeneously expressed in insect Tn5 cells. Its natural N-terminal signal peptide worked well in the insect Tn5 cells. The recombinant EGXA was a 63 kDa protein and had active endo-beta-1,4-glucanase (EC 3.2.1.4) and endo-beta-1,4-xylanase (EC 3.2.1.8). The specific activity of endo-beta-1,4-xylanase was higher than in the EGX, which was purified from the stomach tissues of Ampullaria crossen. The N-terminal cellulose-binding domain of EGXA made it bind to cellulose and xylan more efficiently. This cellulose-binding domain also increased the thermal stability of this recombinant enzyme and decreased the recombinant EGXA's specific activities on p-nitrophenyl-beta-D-cellobioside and sodium carboxymethyl cellulose.
Collapse
Affiliation(s)
- Ming Ding
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | | | | | | | | |
Collapse
|
17
|
Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean. J Comp Physiol B 2007; 178:209-15. [DOI: 10.1007/s00360-007-0214-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/01/2007] [Accepted: 09/15/2007] [Indexed: 10/22/2022]
|