1
|
Yin YR, Li XW, Long CH, Li L, Hang YY, Rao MD, Yan X, Liu QL, Sang P, Li WJ, Yang LQ. Characterization of a GH10 extremely thermophilic xylanase from the metagenome of hot spring for prebiotic production. Sci Rep 2023; 13:16053. [PMID: 37749183 PMCID: PMC10520001 DOI: 10.1038/s41598-023-42920-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023] Open
Abstract
A xylanase gene (named xyngmqa) was identified from the metagenomic data of the Gumingquan hot spring (92.5 °C, pH 9.2) in Tengchong City, Yunnan Province, southwest China. It showed the highest amino acid sequence identity (82.70%) to endo-1,4-beta-xylanase from Thermotoga caldifontis. A constitutive expression plasmid (denominated pSHY211) and double-layer plate (DLP) method were constructed for cloning, expression, and identification of the XynGMQA gene. The XynGMQA gene was synthesized and successfully expressed in Escherichia coli DH5α. XynGMQA exhibited optimal activity at 90 °C and pH 4.6, being thermostable by maintaining 100% of its activity after 2 h incubated at 80 °C. Interestingly, its enzyme activity was enhanced by high temperatures (70 and 80 °C) and low pH (3.0-6.0). About 150% enzyme activity was detected after incubation at 70 °C for 20 to 60 min or 80 °C for 10 to 40 min, and more than 140% enzyme activity after incubation at pH 3.0 to 6.0 for 12 h. Hydrolytic products of beechwood xylan with XynGMQA were xylooligosaccharides, including xylobiose (X2), xylotriose (X3), and xylotetraose (X4). These properties suggest that XynGMQA as an extremely thermophilic xylanase, may be exploited for biofuel and prebiotic production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yi-Rui Yin
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China.
| | - Xin-Wei Li
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, 671003, People's Republic of China
| | - Chao-Hua Long
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Lei Li
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Yu-Ying Hang
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Meng-Di Rao
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Xin Yan
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Quan-Lin Liu
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
| | - Peng Sang
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, 671003, People's Republic of China
| | - Wen-Jun Li
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China.
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Li-Quan Yang
- College of Agriculture and Biological Science, Dali University, Dali, 671003, People's Republic of China.
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali, 671003, People's Republic of China.
| |
Collapse
|
2
|
Su X, Deng L, Kong KF, Tsang JSH. Enhanced degradation of haloacid by heterologous expression in related Burkholderia species. Biotechnol Bioeng 2013; 110:2687-2696. [PMID: 23568428 DOI: 10.1002/bit.24917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/08/2013] [Accepted: 03/21/2013] [Indexed: 11/07/2022]
Abstract
Haloacids are environmental pollutant and can be transformed to non-toxic alkanoic acids by microbial dehalogenase. Bacterium Burkholderia species MBA4 was enriched from soil for its ability to bioremediate haloacids such as mono-chloroacetate (MCA), mono-bromoacetate (MBA), 2-mono-chloropropionate, and 2-mono-bromopropionate. MBA4 produces an inducible dehalogenase Deh4a that catalyzes the dehalogenation process. The growth of MBA4 on haloacid also relies on the presence of a haloacid-uptake system. Similar dehalogenase genes can be found in the genome of many related species. However, wildtype Burkholderia caribensis MWAP64, Burkholderia phymatum STM815, and Burkholderia xenovorans LB400 were not able to grow on MCA. When a plasmid containing the regulatory and structural gene of Deh4a was transformed to these species, they were able to grow on haloacid. The specific enzyme activities in these recombinants ranges from 2- to 30-fold that of MBA4 in similar condition. Reverse transcription-quantitative real-time PCR showed that the relative transcript levels in these recombinant strains ranges from 9 to over 1,600 times that of MBA4 in similar condition. A recombinant has produced nearly five times of dehalogenase that MBA4 could ever achieve. While the expressions of Deh4a were more relaxed in these phylogenetically related species, an MCA-uptake activity was found to be inducible. These metabolically engineered strains are better degraders than the haloacid-enriched MBA4.
Collapse
Affiliation(s)
- Xianbin Su
- Molecular Microbiology Laboratory, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| | | | | | | |
Collapse
|