1
|
Guo X, Li Z, He N, Zhang B, Liu X, Bao J. Detection and elimination of trace d-lactic acid in lignocellulose biorefining chain: Generation, flow, and impact on chiral lactide synthesis. Biotechnol Bioeng 2024; 121:670-682. [PMID: 37902776 DOI: 10.1002/bit.28583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/31/2023]
Abstract
High chiral purity of lactic acid is a crucial indicator for the synthesis of chiral lactide as the primary intermediate chemical for ring-open polymerization of high molecular weight polylactic acid (PLA). Lignocellulose biomass is the most promising carbohydrate feedstock for commercial production of PLA, but the presence of trace d-lactic acid in the biorefinery chain adversely affects the synthesis and quality of chiral lactide. This study analyzed the fingerprint of trace d-lactic acid in the biorefinery chain and found that the major source of d-lactic acid comes from lignocellulose feedstock. The naturally occurring lactic acid bacteria and water-soluble carbohydrates in lignocellulose feedstock provide the necessary conditions for d-lactic acid generation. Three strategies were proposed to eliminate the generation pathway of d-lactic acid, including reduction of moisture content, conversion of water-soluble carbohydrates to furan aldehydes in pretreatment, and conversion to l-lactic acid by inoculating engineered l-lactic acid bacteria. The natural reduction of lactic acid content in lignocellulose feedstock during storage was observed due to the lactate oxidase-catalyzed oxidation of l- and d-lactic acids. This study provided an important support for the production of cellulosic l-lactic acid with high chiral purity.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhibin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Niling He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Cao D, Li ZL, Shi K, Liang B, Zhu Z, Liu W, Nan J, Sun K, Wang AJ. Cathode potential regulates the microbiome assembly and function in electrostimulated bio- dechlorination system. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130113. [PMID: 36252407 DOI: 10.1016/j.jhazmat.2022.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Mechanism of microbiome assembly and function driven by cathode potential in electro-stimulated microbial reductive dechlorination system remain poorly understood. Here, core microbiome structure, interaction, function and assembly regulating by cathode potential were investigated in a 2,4,6-trichlorophenol bio-dechlorination system. The highest dechlorination rate (24.30 μM/d) was observed under - 0.36 V with phenol as a major end metabolite, while, lower (-0.56 V) or higher (0.04 V or -0.16 V) potentials resulted in 1.3-3.8 times decreased of dechlorination kinetic constant. The lower the cathode potential, the higher the generated CH4, revealing cathode participated in hydrogenotrophic methanogenesis. Taxonomic and functional structure of core microbiome significantly shifted within groups of - 0.36 V and - 0.56 V, with dechlorinators (Desulfitobacterium, Dehalobacter), fermenters (norank_f_Propionibacteriaceae, Dysgonomonas) and methanogen (Methanosarcina) highly enriched, and the more positive interactions between functional genera were found. The lowest number of nodes and links and the highest positive correlations were observed among constructed sub-networks classified by function, revealing simplified and strengthened cooperation of functional genera driven by group of - 0.36 V. Cathode potential plays one important driver controlling core microbiome assembly, and the low potentials drove the assembly of major dechlorinating, methanogenic and electro-active genera to be more deterministic, while, the major fermenting genera were mostly governed by stochastic processes.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ke Shi
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongli Zhu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- Key Lab of Structures Dynamic Behavior and Control of China Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
3
|
Hosmer J, Nasreen M, Dhouib R, Essilfie AT, Schirra HJ, Henningham A, Fantino E, Sly P, McEwan AG, Kappler U. Access to highly specialized growth substrates and production of epithelial immunomodulatory metabolites determine survival of Haemophilus influenzae in human airway epithelial cells. PLoS Pathog 2022; 18:e1010209. [PMID: 35085362 PMCID: PMC8794153 DOI: 10.1371/journal.ppat.1010209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae (Hi) infections are associated with recurring acute exacerbations of chronic respiratory diseases in children and adults including otitis media, pneumonia, chronic obstructive pulmonary disease and asthma. Here, we show that persistence and recurrence of Hi infections are closely linked to Hi metabolic properties, where preferred growth substrates are aligned to the metabolome of human airway epithelial surfaces and include lactate, pentoses, and nucleosides, but not glucose that is typically used for studies of Hi growth in vitro. Enzymatic and physiological investigations revealed that utilization of lactate, the preferred Hi carbon source, required the LldD L-lactate dehydrogenase (conservation: 98.8% of strains), but not the two redox-balancing D-lactate dehydrogenases Dld and LdhA. Utilization of preferred substrates was directly linked to Hi infection and persistence. When unable to utilize L-lactate or forced to rely on salvaged guanine, Hi showed reduced extra- and intra-cellular persistence in a murine model of lung infection and in primary normal human nasal epithelia, with up to 3000-fold attenuation observed in competitive infections. In contrast, D-lactate dehydrogenase mutants only showed a very slight reduction compared to the wild-type strain. Interestingly, acetate, the major Hi metabolic end-product, had anti-inflammatory effects on cultured human tissue cells in the presence of live but not heat-killed Hi, suggesting that metabolic endproducts also influence HI-host interactions. Our work provides significant new insights into the critical role of metabolism for Hi persistence in contact with host cells and reveals for the first time the immunomodulatory potential of Hi metabolites.
Collapse
Affiliation(s)
- Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | | | | | - Anna Henningham
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Emmanuelle Fantino
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Peter Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
4
|
Liu Y, Wang X, Ma L, Lü M, Zhang W, Lü C, Gao C, Xu P, Ma C. Dehydrogenation Mechanism of Three Stereoisomers of Butane-2,3-Diol in Pseudomonas putida KT2440. Front Bioeng Biotechnol 2021; 9:728767. [PMID: 34513815 PMCID: PMC8427195 DOI: 10.3389/fbioe.2021.728767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida KT2440 is a promising chassis of industrial biotechnology due to its metabolic versatility. Butane-2,3-diol (2,3-BDO) is a precursor of numerous value-added chemicals. It is also a microbial metabolite which widely exists in various habiting environments of P. putida KT2440. It was reported that P. putida KT2440 is able to use 2,3-BDO as a sole carbon source for growth. There are three stereoisomeric forms of 2,3-BDO: (2R,3R)-2,3-BDO, meso-2,3-BDO and (2S,3S)-2,3-BDO. However, whether P. putida KT2440 can utilize three stereoisomeric forms of 2,3-BDO has not been elucidated. Here, we revealed the genomic and enzymic basis of P. putida KT2440 for dehydrogenation of different stereoisomers of 2,3-BDO into acetoin, which will be channeled to central mechanism via acetoin dehydrogenase enzyme system. (2R,3R)-2,3-BDO dehydrogenase (PP0552) was detailedly characterized and identified to participate in (2R,3R)-2,3-BDO and meso-2,3-BDO dehydrogenation. Two quinoprotein alcohol dehydrogenases, PedE (PP2674) and PedH (PP2679), were confirmed to be responsible for (2S,3S)-2,3-BDO dehydrogenation. The function redundancy and inverse regulation of PedH and PedE by lanthanide availability provides a mechanism for the adaption of P. putida KT2440 to variable environmental conditions. Elucidation of the mechanism of 2,3-BDO catabolism in P. putida KT2440 would provide new insights for bioproduction of 2,3-BDO-derived chemicals based on this robust chassis.
Collapse
Affiliation(s)
- Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiuqing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Liting Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Satti SM, Castro-Aguirre E, Shah AA, Marsh TL, Auras R. Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp. Int J Mol Sci 2021; 22:ijms22147385. [PMID: 34299026 PMCID: PMC8305213 DOI: 10.3390/ijms22147385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa and Sphingobacterium sp. are well known for their ability to decontaminate many environmental pollutants while Geobacillus sp. have been exploited for their thermostable enzymes. This study reports the annotation of genomes of P. aeruginosa S3, Sphingobacterium S2 and Geobacillus EC-3 that were isolated from compost, based on their ability to degrade poly(lactic acid), PLA. Draft genomes of the strains were assembled from Illumina reads, annotated and viewed with the aim of gaining insight into the genetic elements involved in degradation of PLA. The draft genome of Sphinogobacterium strain S2 (435 contigs) was estimated at 5,604,691 bp and the draft genome of P. aeruginosa strain S3 (303 contigs) was estimated at 6,631,638 bp. The draft genome of the thermophile Geobacillus strain EC-3 (111 contigs) was estimated at 3,397,712 bp. A total of 5385 (60% with annotation), 6437 (80% with annotation) and 3790 (74% with annotation) protein-coding genes were predicted for strains S2, S3 and EC-3, respectively. Catabolic genes for the biodegradation of xenobiotics, aromatic compounds and lactic acid as well as the genes attributable to the establishment and regulation of biofilm were identified in all three draft genomes. Our results reveal essential genetic elements that facilitate PLA metabolism at mesophilic and thermophilic temperatures in these three isolates.
Collapse
Affiliation(s)
- Sadia Mehmood Satti
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (S.M.S.); (A.A.S.)
- School of Packaging, Michigan State University, East Lansing, MI 48824-1223, USA;
- University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Shamasabad, Muree Road, Rawalpindi 46300, Pakistan
| | - Edgar Castro-Aguirre
- School of Packaging, Michigan State University, East Lansing, MI 48824-1223, USA;
- Kraft Heinz Company, Glenview, IL 60025-4312, USA
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (S.M.S.); (A.A.S.)
| | - Terence L. Marsh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1223, USA
- Correspondence: (T.L.M.); (R.A.)
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI 48824-1223, USA;
- Correspondence: (T.L.M.); (R.A.)
| |
Collapse
|
6
|
Li J, Hu A, Bai S, Yang X, Sun Q, Liao X, Yu CP. Characterization and Performance of Lactate-Feeding Consortia for Reductive Dechlorination of Trichloroethene. Microorganisms 2021; 9:microorganisms9040751. [PMID: 33918519 PMCID: PMC8065584 DOI: 10.3390/microorganisms9040751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the underlying mechanism that drives the microbial community mediated by substrates is crucial to enhance the biostimulation in trichloroethene (TCE)-contaminated sites. Here, we investigated the performance of stable TCE-dechlorinating consortia by monitoring the variations in TCE-related metabolites and explored their underlying assembly mechanisms using 16S rDNA amplicon sequencing and bioinformatics analyses. The monitoring results indicated that three stable TCE-dechlorinating consortia were successfully enriched by lactate-containing anaerobic media. The statistical analysis results demonstrated that the microbial communities of the enrichment cultures changed along with time and were distinguished by their sample sources. The deterministic and stochastic processes were simultaneously responsible for shaping the TCE-dechlorinating community assembly. The indicator patterns shifted with the exhaustion of the carbon source and the pollutants, and the tceA-carrying Dehalococcoides, as an indicator for the final stage samples, responded positively to TCE removal during the incubation period. Pseudomonas, Desulforhabdus, Desulfovibrio and Methanofollis were identified as keystone populations in the TCE-dechlorinating process by co-occurrence network analysis. The results of this study indicate that lactate can be an effective substrate for stimulated bioremediation of TCE-contaminated sites, and the reduction of the stochastic forces or enhancement of the deterministic interventions may promote more effective biostimulation.
Collapse
Affiliation(s)
- Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
| | - Shijie Bai
- Institute of Deep Sea Science and Engineering, Chinese Academic of Sciences, Sanya 572000, China;
| | - Xiaoyong Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
| | - Xu Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
- Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei 10617, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Lin XQ, Li ZL, Liang B, Zhai HL, Cai WW, Nan J, Wang AJ. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. WATER RESEARCH 2019; 162:236-245. [PMID: 31279315 DOI: 10.1016/j.watres.2019.06.068] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 05/20/2023]
Abstract
Microbial reductive dechlorination of chlorinated aromatics frequently suffers from the long dechlorination period and the generation of toxic metabolites. Biocathode bioelectrochemical systems were verified to be effective in the degradation of various refractory pollutants. However, the electrochemical and microbial related working mechanisms for bio-dechlorination by electro-stimulation remain poorly understood. In this study, we reported the significantly improved 2,4,6-trichlorophenol dechlorination activity through the weak electro-stimulation (cathode potential of -0.36 V vs. SHE), as evidenced by the 3.1 times higher dechlorination rate and the complete dechlorination ability with phenol as the end dechlorination product. The high reductive dechlorination rate (20.8 μM/d) could be maintained by utilizing electrode as an effective electron donor (coulombic efficiency of 82.3 ± 4.8%). Cyclic voltammetry analysis of the cathodic biofilm gave the direct evidences of the cathodic respiration with the improved and positive-shifted reduction peaks of 2,4,6-TCP, 2,4-DCP and 4-CP. The optimal 2,4,6-TCP reductive dechlorination rate (24.2 μM/d) was obtained when a small amount of lactate (2 mM) was added, and the generation of H2 and CH4 were accompanied due to the biological fermentation and methanogenesis. The electrical stimulation significantly altered the cathodic biofilm structure and composition with some potential dechlorinators (like Acetobacterium) predominated. The microbial interactions in the ecological network of cathodic biofilm were more simplified than the planktonic community. However, some potential dechlorinators (Acetobacterium, Desulfovibrio, etc.) shared more positive interactions. The co-existence and possible cooperative relationships between potential dechlorinators and fermenters (Sedimentibacter, etc.) were revealed. Meanwhile, the competitive interrelations between potential dechlorinators and methanogens (Methanomassiliicoccus) were found. In the network of plankton, the fermenters and methanogens possessed the more positive interrelations. Electro-stimulation at the cathodic potential of -0.36 V selectively enhanced the dechlorination function, while it showed little influence on either fermentation or methanogenesis process. The study gave suggestions for the enhanced bioremediation of chlorinated aromatics, in views of the electro-stimulation capacity, efficiency and microbial interrelations related microbial mechanism.
Collapse
Affiliation(s)
- Xiao-Qiu Lin
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Hong-Liang Zhai
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei-Wei Cai
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
8
|
Wu B, Yu Q, Zheng S, Pedroso MM, Guddat LW, He B, Schenk G. Relative catalytic efficiencies and transcript levels of three d- and two l-lactate dehydrogenases for optically pure d-lactate production in Sporolactobacillus inulinus. Microbiologyopen 2018; 8:e00704. [PMID: 30066438 PMCID: PMC6528580 DOI: 10.1002/mbo3.704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022] Open
Abstract
As the optical purity of the lactate monomer is pivotal for polymerization, the production of optically pure d‐lactate is of significant importance. Sporolactobacillus inulinus YBS1‐5 is a superior optically pure d‐lactate‐producing bacterium. However, little is known about the relationship between lactate dehydrogenases in S. inulinus YBS1‐5 and the optical purity of d‐lactate. Three potential d‐lactate dehydrogenase (D‐LDH1‐3)‐ and two putative l‐lactate dehydrogenase (L‐LDH1‐2)‐encoding genes were cloned from the YBS1‐5 strain and expressed in Escherichia coli D‐LDH1 exhibited the highest catalytic efficiency toward pyruvate, whereas two L‐LDHs showed low catalytic efficiency. Different neutralizers significantly affected the optical purity of d‐lactate produced by strain YBS1‐5 as well as the transcription levels of ldhDs and ldhLs. The high catalytic efficiency of D‐LDH1 and elevated ldhD1 mRNA levels suggest that this enzyme is essential for d‐lactate synthesis in S. inulinus YBS1‐5. The correlation between the optical purity of d‐lactate and transcription levels of ldhL1 in the case of different neutralizers indicate that ldhL1 is a key factor affecting the optical purity of d‐lactate in S. inulinus YBS1‐5.
Collapse
Affiliation(s)
- Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate. Nat Commun 2018; 9:2114. [PMID: 29844506 PMCID: PMC5974017 DOI: 10.1038/s41467-018-04513-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Glutarate is a five carbon platform chemical produced during the catabolism of L-lysine. It is known that it can be catabolized through the glutaryl-CoA dehydrogenation pathway. Here, we discover that Pseudomonas putida KT2440 has an additional glutarate catabolic pathway involving L-2-hydroxyglutarate (L-2-HG), an abnormal metabolite produced from 2-ketoglutarate (2-KG). In this pathway, CsiD, a Fe2+/2-KG-dependent glutarate hydroxylase, is capable of converting glutarate into L-2-HG, and LhgO, an L-2-HG oxidase, can catalyze L-2-HG into 2-KG. We construct a recombinant strain that lacks both glutarate catabolic pathways. It can produce glutarate from L-lysine with a yield of 0.85 mol glutarate/mol L-lysine. Thus, L-2-HG anabolism and catabolism is a metabolic alternative to the glutaryl-CoA dehydrogenation pathway in P. putida KT2440; L-lysine can be both ketogenic and glucogenic.
Collapse
|
10
|
Satomura T, Hayashi J, Sakamoto H, Nunoura T, Takaki Y, Takai K, Takami H, Ohshima T, Sakuraba H, Suye SI. d-Lactate electrochemical biosensor prepared by immobilization of thermostable dye-linked d-lactate dehydrogenase from Candidatus Caldiarchaeum subterraneum. J Biosci Bioeng 2018; 126:425-430. [PMID: 29691195 DOI: 10.1016/j.jbiosc.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
A stable d-lactate electrochemical sensing system was developed using a dye-linked d-lactate dehydrogenase (Dye-DLDH) from an uncultivated thermophilic archaeon, Candidatus Caldiarchaeum subterraneum. To develop the system, the putative gene encoding the Dye-DLDH from Ca. Caldiarchaeum subterraneum was overexpressed in Escherichia coli, and the expressed product was purified. The recombinant enzyme was a highly thermostable Dye-DLDH that retained full activity after incubation for 10 min at 70°C. The electrode for detection of d-lactate was prepared by immobilizing the thermostable Dye-DLDH and multi-walled carbon nanotube (MWCNT) within Nafion membrane. The electrocatalytic response of the electrode was clearly observed upon exposure to d-lactate. The electrode response to d-lactate was linear within the concentration range of 0.03-2.5 mM, and it showed little reduction in responsiveness after 50 days. This is the first report describing a d-lactate sensing system using a thermostable Dye-DLDH.
Collapse
Affiliation(s)
- Takenori Satomura
- Division of Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
| | - Junji Hayashi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Hiroaki Sakamoto
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Takuro Nunoura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yoshihiro Takaki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ken Takai
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Hideto Takami
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technoligy, Ohmiya, 5-16-1 Asahi-ku, Ohsaka 535-8585 Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Shin-Ichiro Suye
- Division of Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
11
|
An B, Lan J, Deng X, Chen S, Ouyang C, Shi H, Yang J, Li Y. Silencing of D-Lactate Dehydrogenase Impedes Glyoxalase System and Leads to Methylglyoxal Accumulation and Growth Inhibition in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2071. [PMID: 29259615 PMCID: PMC5723347 DOI: 10.3389/fpls.2017.02071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/20/2017] [Indexed: 05/24/2023]
Abstract
D-Lactate is oxidized by two classes of D-lactate dehydrogenase (D-LDH), namely, NAD-dependent and NAD-independent D-LDHs. Little is known about the characteristics and biological functions of D-LDHs in rice. In this study, a functional NAD-independent D-LDH (LOC_Os07g06890) was identified in rice, as a result of alternative splicing events. Characterization of the expression profile, subcellular localization, and enzymatic properties of the functional OsD-LDH revealed that it is a mitochondrial cytochrome-c-dependent D-LDH with high affinity and catalytic efficiency. Functional analysis of OsD-LDH RNAi transgenic rice demonstrated that OsD-LDH participates in methylglyoxal metabolism by affecting the activity of the glyoxalase system and aldo-keto reductases. Under methylglyoxal treatment, silencing of OsD-LDH in rice resulted in the accumulation of methylglyoxal and D-lactate, the decrease of reduced glutathione in leaves, and ultimately severe growth inhibition. Moreover, the detached leaves of OsD-LDH RNAi plants were more sensitive to salt stress. However, the silencing of OsD-LDH did not affect the growth under photorespiration conditions. Our results provide new insights into the role of NAD-independent D-LDHs in rice.
Collapse
Affiliation(s)
- Baoguang An
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Jie Lan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolong Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huiyun Shi
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization. J Bacteriol 2017; 199:JB.00342-17. [PMID: 28847921 DOI: 10.1128/jb.00342-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial membrane-associated NAD-independent d-lactate dehydrogenase (Fe-S d-iLDH) oxidizes d-lactate into pyruvate. A sequence analysis of the enzyme reveals that it contains an Fe-S oxidoreductase domain in addition to a flavin adenine dinucleotide (FAD)-containing dehydrogenase domain, which differs from other typical d-iLDHs. Fe-S d-iLDH from Pseudomonas putida KT2440 was purified as a His-tagged protein and characterized in detail. This monomeric enzyme exhibited activities with l-lactate and several d-2-hydroxyacids. Quinone was shown to be the preferred electron acceptor of the enzyme. The two domains of the enzyme were then heterologously expressed and purified separately. The Fe-S cluster-binding motifs predicted by sequence alignment were preliminarily verified by site-directed mutagenesis of the Fe-S oxidoreductase domain. The FAD-containing dehydrogenase domain retained 2-hydroxyacid-oxidizing activity, although it decreased compared to the full Fe-S d-iLDH. Compared to the intact enzyme, the FAD-containing dehydrogenase domain showed increased catalytic efficiency with cytochrome c as the electron acceptor, but it completely lost the ability to use coenzyme Q10 Additionally, the FAD-containing dehydrogenase domain was no longer associated with the cell membrane, and it could not support the utilization of d-lactate as a carbon source. Based on the results obtained, we conclude that the Fe-S oxidoreductase domain functions as an electron transfer component to facilitate the utilization of quinone as an electron acceptor by Fe-S d-iLDH, and it helps the enzyme associate with the cell membrane. These functions make the Fe-S oxidoreductase domain crucial for the in vivo d-lactate utilization function of Fe-S d-iLDH.IMPORTANCE Lactate metabolism plays versatile roles in most domains of life. Lactate utilization processes depend on certain enzymes to oxidize lactate to pyruvate. In recent years, novel bacterial lactate-oxidizing enzymes have been continually reported, including the unique NAD-independent d-lactate dehydrogenase that contains an Fe-S oxidoreductase domain besides the typical flavin-containing domain (Fe-S d-iLDH). Although Fe-S d-iLDH is widely distributed among bacterial species, the investigation of it is insufficient. Fe-S d-iLDH from Pseudomonas putida KT2440, which is the major d-lactate-oxidizing enzyme for the strain, might be a representative of this type of enzyme. A study of it will be helpful in understanding the detailed mechanisms underlying the lactate utilization processes.
Collapse
|
13
|
Liu J, Li J, Shin HD, Liu L, Du G, Chen J. Protein and metabolic engineering for the production of organic acids. BIORESOURCE TECHNOLOGY 2017; 239:412-421. [PMID: 28538198 DOI: 10.1016/j.biortech.2017.04.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Stasiak-Różańska L, Błażejak S, Gientka I, Bzducha-Wróbel A, Lipińska E. Utilization of a waste glycerol fraction using and reusing immobilized Gluconobacter oxydans ATCC 621 cell extract. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Zhang Y, Jiang T, Sheng B, Long Y, Gao C, Ma C, Xu P. Coexistence of two d-lactate-utilizing systems in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:699-707. [PMID: 27264531 DOI: 10.1111/1758-2229.12429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 06/05/2023]
Abstract
It is advantageous for rhizosphere-dwelling microorganisms to utilize organic acids such as lactate. Pseudomonas putida KT2440 is one of the most widely studied rhizosphere-dwelling model organisms. The P. putida KT2440 genome contains an NAD-dependent d-lactate dehydrogenase encoding gene, but mutation of this gene does not play a role in d-lactate utilization. Instead, it was found that d-lactate utilization in P. putida KT2440 proceeds via a multidomain NAD-independent d-lactate dehydrogenase with a C-terminal domain containing several Fe-S cluster-binding motifs (Fe-S d-iLDH) and glycolate oxidase, which is widely distributed in various microorganisms. Both Fe-S d-iLDH and glycolate oxidase were identified to be membrane-bound proteins. Neither Fe-S d-iLDH nor glycolate oxidase is constitutively expressed but both of them can be induced by either enantiomer of lactate in P. putida KT2440. This study shows a case in which an environmental microbe contains two types of enzymes specific for d-lactate utilization.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China
| | - Binbin Sheng
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Yangdanyu Long
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
16
|
Min K, Yeon YJ, Um Y, Kim YH. Novel NAD-independent d-lactate dehydrogenases from Acetobacter aceti and Acidocella species MX-AZ02 as potential candidates for in vitro biocatalytic pyruvate production. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Kouzuma A, Kasai T, Hirose A, Watanabe K. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front Microbiol 2015; 6:609. [PMID: 26136738 PMCID: PMC4468914 DOI: 10.3389/fmicb.2015.00609] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
Abstract
Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs), as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer (EET) pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the EET processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extracellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological basis for MFCs.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Japan
| | - Takuya Kasai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Japan
| | - Atsumi Hirose
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Japan
| |
Collapse
|
18
|
Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans. Appl Environ Microbiol 2015; 81:4098-110. [PMID: 25862219 DOI: 10.1128/aem.00527-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase.
Collapse
|
19
|
Wang Y, Zhang Y, Jiang T, Meng J, Sheng B, Yang C, Gao C, Xu P, Ma C. A novel biocatalyst for efficient production of 2-oxo-carboxylates using glycerol as the cost-effective carbon source. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:186. [PMID: 26609321 PMCID: PMC4659176 DOI: 10.1186/s13068-015-0368-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND The surplus of glycerol has increased remarkably as a main byproduct during the biofuel's production. Exploiting an alternative route for glycerol utilization is significantly important for sustainability of biofuels. RESULTS A novel biocatalyst that could be prepared from glycerol for producing 2-oxo-carboxylates was developed. First, Pseudomonas putida KT2440 was reconstructed by deleting lldR to develop a mutant expressing the NAD-independent lactate dehydrogenases (iLDHs) constitutively. Then, the Vitreoscilla hemoglobin (VHb) was heterologously expressed to further improve the biotransformation activity. The reconstructed strain, P. putida KT2440 (ΔlldR)/pBSPPcGm-vgb, exhibited high activities of iLDHs when cultured with glycerol as the carbon source. This cost-effective biocatalyst could efficiently produce pyruvate and 2-oxobutyrate from dl-lactate and dl-2-hydroxybutyrate with high molar conversion rates of 91.9 and 99.8 %, respectively. CONCLUSIONS The process would not only be a promising alternative for the production of 2-oxo-carboxylates, but also be an example for preparation of efficient biocatalysts for the value-added utilization of glycerol.
Collapse
Affiliation(s)
- Yujiao Wang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yingxin Zhang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Tianyi Jiang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Jingjing Meng
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Binbin Sheng
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Chunyu Yang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Chao Gao
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ping Xu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
- />State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Cuiqing Ma
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
20
|
Wang Y, Lv M, Zhang Y, Xiao X, Jiang T, Zhang W, Hu C, Gao C, Ma C, Xu P. Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production. Sci Rep 2014; 4:6939. [PMID: 25373400 PMCID: PMC4221787 DOI: 10.1038/srep06939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022] Open
Abstract
As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and reconstruction of the lactate utilization system in the P. putida strain, a novel biocatalyst that only exhibited NAD-independent D-lactate dehydrogenase activity was prepared and used in L-2-hydroxy-carboxylates production. Since the side reaction catalyzed by the NAD-independent L-lactate dehydrogenase was eliminated in whole cells of recombinant P. putida KT2440, two important L-2-hydroxy-carboxylates (L-lactate and L-2-hydroxybutyrate) were produced in high yield and high optical purity by kinetic resolution of racemic 2-hydroxy carboxylic acids. The results highlight the promise in biocatalysis by the biotechnologically important organism P. putida KT2440 through genomic analysis and recombination.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Min Lv
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Yingxin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Xieyue Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Wen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Chunhui Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Ping Xu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China [2] State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
21
|
Affiliation(s)
- Bernhard Schink
- Fachbereich Biologie, Universitaet Konstanz, Universitaetsstr. 10, D-78457, Konstanz, Germany
| |
Collapse
|
22
|
Jiang T, Gao C, Ma C, Xu P. Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol 2014; 22:589-99. [PMID: 24950803 DOI: 10.1016/j.tim.2014.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022]
Abstract
Lactate utilization endows microbes with the ability to use lactate as a carbon source. Lactate oxidizing enzymes play key roles in the lactate utilization pathway. Various types of these enzymes have been characterized, but novel ones remain to be identified. Lactate determination techniques and biocatalysts have been developed based on these enzymes. Lactate utilization has also been found to induce pathogenicity of several microbes, and the mechanisms have been investigated. More recently, studies on the structure and organization of operons of lactate utilization have been carried out. This review focuses on the recent progress and future perspectives in understanding microbial lactate utilization.
Collapse
Affiliation(s)
- Tianyi Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
23
|
Weghoff MC, Bertsch J, Müller V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 2014; 17:670-7. [PMID: 24762045 DOI: 10.1111/1462-2920.12493] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0 ' = -190 mV excludes direct NAD(+) reduction (E0 ' = -320 mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron-transferring flavoprotein (Etf) that exhibited NAD(+) reduction only when reduced ferredoxin (Fd(2-) ) was present. Biochemical analyses revealed that the LDH/Etf complex of A. woodii uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD(+) as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0 ' ≈ -500 mV) to NAD(+) according to: lactate + Fd(2-) + 2 NAD(+) → pyruvate + Fd + 2 NADH. The reduced Fd(2-) is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical ( Δ μ ˜ Na + ) and finally redox energy (Fd(2-) from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes.
Collapse
Affiliation(s)
- Marie Charlotte Weghoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
24
|
Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis. Enzyme Microb Technol 2014; 58-59:29-35. [DOI: 10.1016/j.enzmictec.2014.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/04/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
|
25
|
Wang X, Lv M, Zhang L, Li K, Gao C, Ma C, Xu P. Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:155. [PMID: 24176113 PMCID: PMC4177140 DOI: 10.1186/1754-6834-6-155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND 2,3-Butanediol is a platform and fuel biochemical that can be efficiently produced from biomass. However, a value-added process for this chemical has not yet been developed. To expand the utilization of 2,3-butanediol produced from biomass, an improved derivative process of 2,3-butanediol is desirable. RESULTS In this study, a Gluconobacter oxydans strain DSM 2003 was found to have the ability to transform 2,3-butanediol into acetoin, a high value feedstock that can be widely used in dairy and cosmetic products, and chemical synthesis. All three stereoisomers, meso-2,3-butanediol, (2R,3R)-2,3-butanediol, and (2S,3S)-2,3-butanediol, could be transformed into acetoin by the strain. After optimization of the bioconversion conditions, the optimum growth temperature for acetoin production by strain DSM 2003 was found to be 30°C and the medium pH was 6.0. With an initial 2,3-butanediol concentration of 40 g/L, acetoin at a high concentration of 89.2 g/L was obtained from 2,3-butanediol by fed-batch bioconversion with a high productivity (1.24 g/L · h) and high yield (0.912 mol/mol). CONCLUSIONS G. oxydans DSM 2003 is the first strain that can be used in the direct production of acetoin from 2,3-butanediol. The product concentration and yield of the novel process are both new records for acetoin production. The results demonstrate that the method developed in this study could provide a promising process for efficient acetoin production and industrially produced 2,3-butanediol utilization.
Collapse
Affiliation(s)
- Xiuqing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Min Lv
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Lijie Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Kun Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
26
|
Xue YP, Tian FF, Ruan LT, Liu ZQ, Zheng YG, Shen YC. Concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids by asymmetric oxidation with a newly isolated Pseudomonas aeruginosa ZJB1125. J Biotechnol 2013; 167:271-8. [PMID: 23831556 DOI: 10.1016/j.jbiotec.2013.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa ZJB1125 harboring a stereoselective 2-hydroxyacid dehydrogenase (2-HADH) can catalyze asymmetric oxidation of mandelic acid and 2-chloromandelic acid into (R)-isomers and corresponding 2-ketoacids with high activity and enantioselectivity, while no consecutive oxidation of 2-ketoacids was observed during whole-cell catalysis. The 2-HADH in P. aeruginosa ZJB1125 is a FMN-dependent flavoprotein and did not require NAD(P)⁺ as cofactors to catalyze the oxidation reaction. Enzyme activity staining identified 2-HADH as the key enzyme that enantioselectively oxidized (S)-hydroxyacid to 2-ketoacid. The 2-HADH in P. aeruginosa ZJB1125 is inducible and 2-chloromandelic acid was found to induce its synthesis efficiently. The bacterium displayed pretty high activity and enantioselectivity for most of the aromatic 2-hydroxyacids examined, and have a potential for the concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids in near theoretical conversions. Using a simple organic extract process, aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids can be effectively separated from the biocatalytic reaction mixture with high yield (>95%). This work provided a novel method for the concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids by oxidation of aromatic 2-hydroxyacids in one-step biotransformation, which would be a valuable process due to its high atom economy.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | | | | | | | | | | |
Collapse
|
27
|
Peters B, Mientus M, Kostner D, Junker A, Liebl W, Ehrenreich A. Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Appl Microbiol Biotechnol 2013; 97:6397-412. [DOI: 10.1007/s00253-013-4824-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
|
28
|
Jun C, Sa YS, Gu SA, Joo JC, Kim S, Kim KJ, Kim YH. Discovery and characterization of a thermostable d-lactate dehydrogenase from Lactobacillus jensenii through genome mining. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Abstract
Pseudomonas aeruginosa XMG, isolated from soil, utilizes lactate. Here we present a 6.45-Mb assembly of its genome sequence. Besides the lactate utilization mechanism of the strain, the genome sequence may also provide other useful information related to P. aeruginosa, such as identifying genes involved in virulence, drug resistance, and aromatic catabolism.
Collapse
|
30
|
Gao C, Qiu J, Ma C, Xu P. Efficient production of pyruvate from DL-lactate by the lactate-utilizing strain Pseudomonas stutzeri SDM. PLoS One 2012; 7:e40755. [PMID: 22792404 PMCID: PMC3392241 DOI: 10.1371/journal.pone.0040755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The platform chemical lactate is currently produced mainly through the fermentation of sugars presented in biomass. Besides the synthesis of biodegradable polylactate, lactate is also viewed as a feedstock for the green chemistry of the future. Pyruvate, another important platform chemical, can be produced from lactate through biocatalysis. METHODOLOGY/PRINCIPAL FINDINGS It was established that whole cells of Pseudomonas stutzeri SDM catalyze lactate oxidation with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) through the inherent electron transfer chain. Unlike the lactate oxidation processes observed in previous reports, the mechanism underlying lactate oxidation described in the present study excluded the costliness of the cofactor regeneration step and production of the byproduct hydrogen peroxide. CONCLUSIONS/SIGNIFICANCE Biocatalysis conditions were optimized by using the cheap dl-lactate as the substrate and whole cells of the lactate-utilizing P. stutzeri SDM as catalyst. Under optimal conditions, the biocatalytic process produced pyruvate at a high concentration (48.4 g l(-1)) and a high yield (98%). The bioconversion system provides a promising alternative for the green production of pyruvate.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People’s Republic of China
| | - Jianhua Qiu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People’s Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People’s Republic of China
- * E-mail:
| | - Ping Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Gao C, Jiang T, Dou P, Ma C, Li L, Kong J, Xu P. NAD-independent L-lactate dehydrogenase is required for L-lactate utilization in Pseudomonas stutzeri SDM. PLoS One 2012; 7:e36519. [PMID: 22574176 PMCID: PMC3344892 DOI: 10.1371/journal.pone.0036519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Various Pseudomonas strains can use L-lactate as their sole carbon source for growth. However, the L-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. METHODOLOGY/PRINCIPAL FINDINGS An NAD-independent L-lactate dehydrogenase (L-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of L-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), L-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on L-lactate, but retained the ability to grow on pyruvate. CONCLUSIONS/SIGNIFICANCE It is proposed that L-iLDH plays an indispensable function in Pseudomonas L-lactate utilization by catalyzing the conversion of L-lactate into pyruvate.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Peipei Dou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Lixiang Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Genome sequence of Pseudomonas stutzeri SDM-LAC, a typical strain for studying the molecular mechanism of lactate utilization. J Bacteriol 2012; 194:894-5. [PMID: 22275095 DOI: 10.1128/jb.06478-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas stutzeri SDM-LAC is an efficient lactate utilizer with various applications in biocatalysis. Here we present a 4.2-Mb assembly of its genome. The annotated four adjacent genes form a lactate utilization operon, which could provide further insights into the molecular mechanism of lactate utilization.
Collapse
|
33
|
Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. J Bacteriol 2012; 194:2687-92. [PMID: 22408166 DOI: 10.1128/jb.06579-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD-independent L-lactate dehydrogenase (l-iLDH) and NAD-independent D-lactate dehydrogenase (D-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an L-iLDH), and lldE (encoding a D-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses D-iLDH and L-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldR(M), lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. L-Lactate and D-lactate interfered with the DNA-binding activity of LldR. Thus, L-iLDH and D-iLDH were expressed when the operon was induced in the presence of L-lactate or D-lactate.
Collapse
|
34
|
Gao C, Ma C, Xu P. Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 2011; 29:930-9. [DOI: 10.1016/j.biotechadv.2011.07.022] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
35
|
Zheng Z, Ma C, Gao C, Li F, Qin J, Zhang H, Wang K, Xu P. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM. PLoS One 2011; 6:e19030. [PMID: 21533054 PMCID: PMC3080406 DOI: 10.1371/journal.pone.0019030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/15/2011] [Indexed: 11/23/2022] Open
Abstract
Background Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. Methodology/Principal Findings A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Conclusions/Significance Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- * E-mail: (CM); (PX)
| | - Chao Gao
- MOE Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fengsong Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jiayang Qin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Haiwei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Kai Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- MOE Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- * E-mail: (CM); (PX)
| |
Collapse
|
36
|
Gao C, Zhang W, Ma C, Liu P, Xu P. Kinetic resolution of 2-hydroxybutanoate racemic mixtures by NAD-independent L-lactate dehydrogenase. BIORESOURCE TECHNOLOGY 2011; 102:4595-4599. [PMID: 21295977 DOI: 10.1016/j.biortech.2011.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
Optically active D-2-hydroxybutanoate is an important building block intermediate for medicines and biodegradable poly(2-hydroxybutanoate). Kinetic resolution of racemic 2-hydroxybutanoate may be a green and desirable alternative for D-2-hydroxybutanoate production. In this work, D-2-hydroxybutanoate at a high concentration (0.197 M) and a high enantiomeric excess (99.1%) was produced by an NAD-independent L-lactate dehydrogenase (L-iLDH) containing biocatalyst. 2-Oxobutanoate, another important intermediate, was co-produced at a high concentration (0.193 M). Using a simple ion exchange process with the macroporous anion exchange resin D301, D-2-hydroxybutanoate was separated from the biotransformation system with a high recovery of 84.7%.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Gao C, Xu X, Hu C, Zhang W, Zhang Y, Ma C, Xu P. Pyruvate producing biocatalyst with constitutive NAD-independent lactate dehydrogenases. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Efficient production of 2-oxobutyrate from 2-hydroxybutyrate by using whole cells of Pseudomonas stutzeri strain SDM. Appl Environ Microbiol 2010; 76:1679-82. [PMID: 20080995 DOI: 10.1128/aem.02470-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2-Oxobutyrate is an important intermediate in the chemical, drug, and food industries. Whole cells of Pseudomonas stutzeri SDM, containing NAD-independent lactate dehydrogenases, effectively converted 2-hydroxybutyrate into 2-oxobutyrate. Under optimal conditions, the biocatalytic process produced 2-oxobutyrate at a high concentration (44.4 g liter(-1)) and a high yield (91.5%).
Collapse
|
39
|
Gao C, Qiu J, Li J, Ma C, Tang H, Xu P. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM. BIORESOURCE TECHNOLOGY 2009; 100:1878-1880. [PMID: 19000943 DOI: 10.1016/j.biortech.2008.09.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 05/27/2023]
Abstract
D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Shandananlu 27, Jinan 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Qin J, Zhao B, Wang X, Wang L, Yu B, Ma Y, Ma C, Tang H, Sun J, Xu P. Non-sterilized fermentative production of polymer-grade L-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2-6. PLoS One 2009; 4:e4359. [PMID: 19194504 PMCID: PMC2632756 DOI: 10.1371/journal.pone.0004359] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/12/2008] [Indexed: 11/30/2022] Open
Abstract
Background The demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA), which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure l-lactic acid is essential for polymerization of PLA. The high fermentation cost of l-lactic acid is another limitation for PLA polymers to compete with conventional plastics. Methodology/Principal Findings A Bacillus sp. strain 2–6 for production of l-lactic acid was isolated at 55°C from soil samples. Its thermophilic characteristic made it a good lactic acid producer because optically pure l-lactic acid could be produced by this strain under open condition without sterilization. In 5-liter batch fermentation of Bacillus sp. 2–6, 118.0 g/liter of l-lactic acid with an optical purity of 99.4% was obtained from 121.3 g/liter of glucose. The yield was 97.3% and the average productivity was 4.37 g/liter/h. The maximum l-lactic acid concentration of 182.0 g/liter was obtained from 30-liter fed-batch fermentation with an average productivity of 3.03 g/liter/h and product optical purity of 99.4%. Conclusions/Significance With the newly isolated Bacillus sp. strain 2–6, high concentration of optically pure l-lactic acid could be produced efficiently in open fermentation without sterilization, which would lead to a new cost-effective method for polymer-grade l-lactic acid production from renewable resources.
Collapse
Affiliation(s)
- Jiayang Qin
- Tianjin Industrial Biotechnology R&D Center, Chinese Academy of Sciences, Tianjin, People's Republic of China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Bo Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiuwen Wang
- Tianjin Industrial Biotechnology R&D Center, Chinese Academy of Sciences, Tianjin, People's Republic of China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Limin Wang
- Tianjin Industrial Biotechnology R&D Center, Chinese Academy of Sciences, Tianjin, People's Republic of China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bo Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanhe Ma
- Tianjin Industrial Biotechnology R&D Center, Chinese Academy of Sciences, Tianjin, People's Republic of China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Hongzhi Tang
- Key Laboratory of Microbial Metabolism, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jibin Sun
- Tianjin Industrial Biotechnology R&D Center, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Ping Xu
- Tianjin Industrial Biotechnology R&D Center, Chinese Academy of Sciences, Tianjin, People's Republic of China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- Key Laboratory of Microbial Metabolism, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
41
|
Xu P, Qiu J, Gao C, Ma C. Biotechnological routes to pyruvate production. J Biosci Bioeng 2008; 105:169-75. [PMID: 18397764 DOI: 10.1263/jbb.105.169] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/22/2007] [Indexed: 11/17/2022]
Abstract
Pyruvate is an important metabolite in the central metabolism of living cells. It has been widely applied in food, pharmaceutical, and agrochemical industries. Pyruvate can be produced by both chemical and biological systems. Novel biotechnological systems that can yield pyruvate have been the focus of process development in pyruvate production. In this review, we summarize recent developments related to pyruvate production by biotechnological systems, with emphasis on the enzymatic synthesis of pyruvate from the cheaper substrate lactate.
Collapse
Affiliation(s)
- Ping Xu
- Key Laboratory of Microbial Metabolism, Ministry of Education, College of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | | | | | | |
Collapse
|