1
|
Yang Y, Zhang Y, Liu C, Su Z, Zhao R, Zhou J. Low-temperature phenol-degrading microbial agent: construction and mechanism. Arch Microbiol 2023; 205:193. [PMID: 37060452 DOI: 10.1007/s00203-023-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
In this study, three cold-tolerant phenol-degrading strains, Pseudomonas veronii Ju-A1 (Ju-A1), Leifsonia naganoensis Ju-A4 (Ju-A4), and Rhodococcus qingshengii Ju-A6 (Ju-A6), were isolated. All three strains can produce cis, cis-muconic acid by ortho-cleavage of catechol at 12 ℃. Response surface methodology (RSM) was used to optimize the proportional composition of low-temperature phenol-degrading microbiota. Degradation of phenol below 160 mg L-1 by low-temperature phenol-degrading microbiota followed first-order degradation kinetics. When the phenol concentration was greater than 200 mg L-1, the overall degradation trend was in accordance with the modified Gompertz model. The experiments showed that the microbial agent (three strains of low-temperature phenol-degrading bacteria were fermented separately and constructed in the optimal ratio) could completely degrade 200 mg L-1 phenol within 36 h. The above construction method is more advantageous in bio-enhanced treatment of actual wastewater. Through the construction of microbial agents to enhance the degradation effect of phenol, it provides a feasible scheme for the biodegradation of phenol wastewater at low temperature and shows good application potential.
Collapse
Affiliation(s)
- Yu Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China.
| | - Cong Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Zhiqiang Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Ruizhi Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| |
Collapse
|
2
|
Bilgi M, Peksel A. Induction of Phenol Hydroxylase from
Aspergillus niger
and Its Optimization. ChemistrySelect 2022. [DOI: 10.1002/slct.202103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mesut Bilgi
- Department of Chemistry Yildiz Technical University Davutpasa Campus 34220 Davutpasa Istanbul Turkey
| | - Aysegul Peksel
- Department of Chemistry Yildiz Technical University Davutpasa Campus 34220 Davutpasa Istanbul Turkey
| |
Collapse
|
3
|
Abstract
The aquatic ecosystem is continuously threatened by the infiltration and discharge of anthropogenic wastewaters. This issue requires the unending improvement of monitoring systems to become more comprehensive and specific to targeted pollutants. This review intended to elucidate the overall aspects explored by researchers in developing better water pollution monitoring tools in recent years. The discussion is encircled around three main elements that have been extensively used as the basis for the development of monitoring methods, namely the dissolved compounds, bacterial indicator, and nucleic acids. The latest technologies applied in wastewater and surface water mapped from these key players were reviewed and categorized into physicochemical and compound characterizations, biomonitoring, and molecular approaches in taxonomical and functional analyses. Overall, researchers are continuously rallying to enhance the detection of causal source for water pollution through either conventional or mostly advanced approaches focusing on spectrometry, high-throughput sequencing, and flow cytometry technology among others. From this review’s perspective, each pollution evaluation technology has its own advantages and it would be beneficial for several aspects of pollutants assessments to be combined and established as a complementary package for better aquatic environmental management in the long run.
Collapse
|
4
|
Harzallah B, Bousseboua H, Jouanneau Y. Diversity shift in bacterial phenol hydroxylases driven by alkyl-phenols in oil refinery wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14376-14386. [PMID: 28432622 DOI: 10.1007/s11356-017-8950-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Phenol hydroxylases (PHs) play a primary role in the bacterial degradation of phenol and alkylphenols. They are divided into two main classes, single-component and multi-component PHs, having distinctive catalytic subunits designated as PheA1 and LmPH, respectively. The diversity of these enzymes is still largely unexplored. Here, both LmPH and pheA1 gene sequences were examined in activated sludge from oil refinery wastewaters. Phenol, p-cresol, or 3,4-dimethylphenol (3,4-DMP) supplied as extra carbon sources were rapidly mineralized by the microbial community. Analysis of LmPH genes revealed a wide range of sequences, most of which exhibited moderate similarity with homologs found in Proteobacteria. Moreover, the LmPH diversity profiles showed a dramatic shift upon sludge treatment with p-cresol or 3,4-DMP amendment. This resulted in an enrichment in sequences similar to LmPHs from Betaproteobacteria and Gammaproteobacteria. RT-PCR analysis of RNA extracted from wastewater sludge highlighted LmPH genes best expressed in situ. A PCR approach was implemented to analyze the pheA1 gene diversity in the same microbial community. Retrieved sequences fell into four clusters and appeared to be distantly related to pheA1 genes from Actinobacteria. Altogether, our results provide evidence that phenol degraders carrying LmPH are more diverse than PheA1 carrying bacteria and suggest that PHs with best adapted substrate specificity are recruited in response to (methyl)phenol availability.
Collapse
Affiliation(s)
- Besma Harzallah
- CEA, DRF, BIG, Laboratoire de Chimie et Biologie des Métaux, F-38054 Cedex 9, Grenoble, France
- CNRS, UMR 5249, F-38054, Grenoble, France
- Université Grenoble Alpes, F-38000, Grenoble, France
- Laboratoire de Génie Microbiologique et Applications, FSNV, Université des Frères Mentouri, BP 325 25117, Constantine, Algeria
- Département de Biologie, FSESNV, Université d'Oum El Bouaghi, BP358 04000, Oum El Bouaghi, Algeria
| | - Hacène Bousseboua
- Ecole Nationale Supérieure de Biotechnologies, BP E66 25100, Constantine, Algeria
| | - Yves Jouanneau
- CEA, DRF, BIG, Laboratoire de Chimie et Biologie des Métaux, F-38054 Cedex 9, Grenoble, France.
- CNRS, UMR 5249, F-38054, Grenoble, France.
- Université Grenoble Alpes, F-38000, Grenoble, France.
| |
Collapse
|
5
|
Ayarza JM, Mazzella MA, Erijman L. Expression of stress-related proteins in Sediminibacterium sp. growing under planktonic conditions. J Basic Microbiol 2015; 55:1134-40. [PMID: 25847231 DOI: 10.1002/jobm.201400725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/22/2015] [Indexed: 01/03/2023]
Abstract
Aggregation is a common trait of bacteria in natural and engineered biological systems. Microbial aggregates, such as flocs, granules, and biofilms, are spatially heterogeneous environments. It is generally observed that by growing under aggregated conditions bacteria respond and adapt to environmental stress better than free-swimming bacteria of the same species. We performed a proteomic analysis of a strain of Sediminibacterium, isolated from activated sludge, which grew planktonically in diluted culture media and in an aggregated form in media containing a high concentration of organic substrate. Auto-aggregation was also observed in the presence of pyruvate in dilute media. Expression of a number of stress-related proteins significantly increased under planktonic growth in comparison to aggregate growth. The upregulated proteins, identified by MALDI-TOF mass spectrometry, were two isoforms of a protein belonging to the universal stress family (UspA), a thioredoxin-disulfide reductase, the Campylobacter jejuni orthologue transcriptional regulator (Cj1172c), and the CocE/NonD hydrolase. We conclude that Sediminibaterium sp. C3 growth is stressed under planktonic conditions and that aggregation induced by pyruvate protects the bacteria against oxidative stress.
Collapse
Affiliation(s)
- Joaquín M Ayarza
- Instituto de Investigaciones en Ingeniería Genetica y Biología Molecular "Dr. Hector N. Torres" (INGEBI-CONICET), ADN1428 Buenos Aires, Argentina
| | - María Agustina Mazzella
- Instituto de Investigaciones en Ingeniería Genetica y Biología Molecular "Dr. Hector N. Torres" (INGEBI-CONICET), ADN1428 Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genetica y Biología Molecular "Dr. Hector N. Torres" (INGEBI-CONICET), ADN1428 Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Vedler E, Heinaru E, Jutkina J, Viggor S, Koressaar T, Remm M, Heinaru A. Limnobacter spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes. Syst Appl Microbiol 2013; 36:525-32. [DOI: 10.1016/j.syapm.2013.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/10/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
|
7
|
Djokic L, Narancic T, Nikodinovic-Runic J, Savic M, Vasiljevic B. Isolation and characterization of four novel Gram-positive bacteria associated with the rhizosphere of two endemorelict plants capable of degrading a broad range of aromatic substrates. Appl Microbiol Biotechnol 2011; 91:1227-38. [PMID: 21706169 DOI: 10.1007/s00253-011-3426-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/12/2023]
Abstract
Four new Gram-positive, phenol-degrading strains were isolated from the rhizospheres of endemorelict plants Ramonda serbica and Ramonda nathaliae known to exude high amounts of phenolics in the soil. Isolates were designated Bacillus sp. PS1, Bacillus sp. PS11, Streptomyces sp. PS12, and Streptomyces sp. PN1 based on 16S rDNA sequence and biochemical analysis. In addition to their ability to tolerate and utilize high amounts of phenol of either up to 800 or up to 1,400 mg l(-1) without apparent inhibition in growth, all four strains were also able to degrade a broad range of aromatic substrates including benzene, toluene, ethylbenzene, xylenes, styrene, halogenated benzenes, and naphthalene. Isolates were able to grow in pure culture and in defined mixed culture on phenol and on the mixture of BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds as a sole source of carbon and energy. Pure culture of Bacillus sp. PS11 yielded 1.5-fold higher biomass amounts in comparison to mixed culture, under all conditions. Strains successfully degraded phenol in the soil model system (2 g kg(-1)) within 6 days. Activities of phenol hydroxylase, catechol 1,2-dioxygenase, and catechol 2,3-dioxygenase were detected and analyzed from the crude cell extract of the isolates. While all four strains use ortho degradation pathway, enzyme indicative of meta degradation pathway (catechol 2,3-dioxygenase) was also detected in Bacillus sp. PS11 and Streptomyces sp. PN1. Phenol degradation activities were induced 2 h after supplementation by phenol, but not by catechol. Catechol slightly inhibited activity of catechol 2,3-dioxygenase in strains PS11 and PN1.
Collapse
Affiliation(s)
- Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
8
|
Figuerola ELM, Erijman L. Diversity of nitrifying bacteria in a full-scale petroleum refinery wastewater treatment plant experiencing unstable nitrification. JOURNAL OF HAZARDOUS MATERIALS 2010; 181:281-288. [PMID: 20570044 DOI: 10.1016/j.jhazmat.2010.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 03/27/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
We have investigated bacterial populations relevant to nitrification in a full-scale activated sludge plant receiving wastewater from a petroleum refinery showing unstable nitrification. Inhibition of ammonia oxidation was related to phenol concentration according to a model of non-competitive inhibition. While the number of ammonia-oxidizing bacteria (AOB) did not correlate with nitrification performance, the total number of nitrite-oxidizing bacteria (NOB) dropped considerably during periods of nitrite accumulation or no nitrification. Diversity of nitrifiers in the sludge of the full-scale facility was examined at a time of full nitrification with the construction of clone libraries of ammonia monooxygenase (amoA) gene and of the 16S rRNA gene of NOB. Nucleotide sequences of amoA gene belonged to one dominant population, associated with Nitrosomonas europaea, and to a minor population related to the Nitrosomonas nitrosa lineage. The majority of sequences retrieved in the NOB-like clone library also clustered within a single operational taxonomic unit. The high dominance of Nitrobacter over Nitrospira and the low diversity of nitrifying bacteria observed in this wastewater treatment plant might account for the increased risk of failure in the presence of disturbances.
Collapse
Affiliation(s)
- Eva L M Figuerola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
9
|
Basile LA, Erijman L. Maintenance of phenol hydroxylase genotypes at high diversity in bioreactors exposed to step increases in phenol loading. FEMS Microbiol Ecol 2010; 73:336-48. [PMID: 20500527 DOI: 10.1111/j.1574-6941.2010.00898.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To better understand how the composition of bacterial communities changes in response to different environmental conditions, we examined the influence of increasing phenol load on the distribution of the protein-coding functional gene of the largest subunit of phenol hydroxylase (LmPH) and of the 16S rRNA gene in lab-scale activated sludge reactors. LmPH diversity was assessed initially from a total of 124 clone sequences retrieved from two reactors exposed to a low (0.25 g L(-1)) and a high (2.5 g L(-1)) phenol concentration. The quantitative changes in the concentration of the eight detected genotypes accompanied changes in the phenol degradation rates, indicating a community structure-function relationship. Nonmetric dimensional analysis showed that LmPH genotypes and the denaturing gradient gel electrophoresis banding patterns clustered together by phenol concentration, rather than by reactor identity. Seven isolates, representing cultivated strains of each of the observed LmPH genotypes, exhibited a rather narrow range of physiological diversity, in terms of the growth rate and the kinetic parameters of the phenol-degrading activity. We suggest that lab-scale reactors support many ecological niches, which allow the maintenance of a high diversity of ecotypes through varying concentrations of phenol, but the ability of particular strains to become dominant members of the community under the different environmental conditions cannot be predicted easily solely from their phenol-degrading properties.
Collapse
Affiliation(s)
- Laura A Basile
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
10
|
Sandhu A, Halverson LJ, Beattie GA. Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities. MICROBIAL ECOLOGY 2009; 57:276-285. [PMID: 19034559 DOI: 10.1007/s00248-008-9473-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/29/2008] [Indexed: 05/27/2023]
Abstract
Microbial communities on aerial plant leaves may contribute to the degradation of organic air pollutants such as phenol. Epiphytic bacteria capable of phenol degradation were isolated from the leaves of green ash trees grown at a site rich in airborne pollutants. Bacteria from these communities were subjected, in parallel, to serial enrichments with increasing concentrations of phenol and to direct plating followed by a colony autoradiography screen in the presence of radiolabeled phenol. Ten isolates capable of phenol mineralization were identified. Based on 16S rDNA sequence analysis, these isolates included members of the genera Acinetobacter, Alcaligenes, and Rhodococcus. The sequences of the genes encoding the large subunit of a multicomponent phenol hydroxylase (mPH) in these isolates indicated that the mPHs of the gram-negative isolates belonged to a single kinetic class, and that is one with a moderate affinity for phenol; this affinity was consistent with the predicted phenol levels in the phyllosphere. PCR amplification of genes for catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O) in combination with a functional assay for C23O activity provided evidence that the gram-negative strains had the C12O-, but not the C23O-, phenol catabolic pathway. Similarly, the Rhodococcus isolates lacked C23O activity, although consensus primers to the C12O and C23O genes of Rhodococcus could not be identified. Collectively, these results demonstrate that these leaf surface communities contained several taxonomically distinct phenol-degrading bacteria that exhibited diversity in their mPH genes but little diversity in the catabolic pathways they employ for phenol degradation.
Collapse
Affiliation(s)
- Amarjyoti Sandhu
- Department of Plant Pathology and Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|