1
|
Li L, Yang B, Wang J, Wei Y, Xiang B, Liu Y, Wu P, Li W, Wang Y, Zhao X, Qin J, Liu M, Liu R, Ma G, Fu T, Wang M, Liu B. CobB-mediated deacetylation of the chaperone CesA regulates Escherichia coli O157:H7 virulence. Gut Microbes 2024; 16:2331435. [PMID: 38502202 PMCID: PMC10956630 DOI: 10.1080/19490976.2024.2331435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a common food-borne pathogen that can cause acute diseases. Lysine acetylation is a post-translational modification (PTM) that occurs in various prokaryotes and is regulated by CobB, the only deacetylase found in bacteria. Here, we demonstrated that CobB plays an important role in the virulence of EHEC O157:H7 and that deletion of cobB significantly decreased the intestinal colonization ability of bacteria. Using acetylation proteomic studies, we systematically identified several proteins that could be regulated by CobB in EHEC O157:H7. Among these CobB substrates, we found that acetylation at the K44 site of CesA, a chaperone for the type-III secretion system (T3SS) translocator protein EspA, weakens its binding to EspA, thereby reducing the stability of this virulence factor; this PTM ultimately attenuating the virulence of EHEC O157:H7. Furthermore, we showed that deacetylation of the K44 site, which is deacetylated by CobB, promotes the interaction between CesA and EspA, thereby increasing bacterial virulence in vitro and in animal experiments. In summary, we showed that acetylation influences the virulence of EHEC O157:H7, and uncovered the mechanism by which CobB contributes to bacterial virulence based on the regulation of CesA deacetylation.
Collapse
Affiliation(s)
- Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jing Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Binbin Xiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Pan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Wanwu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yanling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xinyu Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jingliang Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Miaomiao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Guozhen Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Tian Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| |
Collapse
|
2
|
Toyoda K, Sugaya R, Domon A, Suda M, Hiraga K, Inui M. Identification and Molecular Characterization of the Operon Required for L-Asparagine Utilization in Corynebacterium glutamicum. Microorganisms 2022; 10:1002. [PMID: 35630445 PMCID: PMC9145765 DOI: 10.3390/microorganisms10051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the metabolic pathways of amino acids and their regulation is important for the rational metabolic engineering of amino acid production. The catabolic pathways of L-asparagine and L-aspartate are composed of transporters for amino acid uptake and asparaginase and aspartase, which are involved in the sequential deamination to fumarate. However, knowledge of the catabolic genes for asparagine in bacteria of the Actinobacteria class has been limited. In this study, we identified and characterized the ans operon required for L-Asn catabolism in Corynebacterium glutamicum R. The operon consisted of genes encoding a transcriptional regulator (AnsR), asparaginase (AnsA2), aspartase (AspA2), and permease (AnsP). The enzymes and permease encoded in the operon were shown to be essential for L-Asn utilization, but another asparaginase, AnsA1, and aspartase, AspA1, were not essential. Expression analysis revealed that the operon was induced in response to extracellular L-Asn and was transcribed as a leaderless mRNA. The DNA-binding assay demonstrated that AnsR acted as a transcriptional repressor of the operon by binding to the inverted repeat at its 5'-end region. The AnsR binding was inhibited by L-Asn. This study provides insights into the functions and regulatory mechanisms of similar operon-like clusters in related bacteria.
Collapse
Affiliation(s)
- Koichi Toyoda
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa 619-0292, Japan; (K.T.); (M.S.); (K.H.)
| | - Riki Sugaya
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; (R.S.); (A.D.)
| | - Akihiro Domon
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; (R.S.); (A.D.)
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa 619-0292, Japan; (K.T.); (M.S.); (K.H.)
| | - Kazumi Hiraga
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa 619-0292, Japan; (K.T.); (M.S.); (K.H.)
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa 619-0292, Japan; (K.T.); (M.S.); (K.H.)
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; (R.S.); (A.D.)
| |
Collapse
|
3
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Göttl VL, Schmitt I, Braun K, Peters-Wendisch P, Wendisch VF, Henke NA. CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by Corynebacterium glutamicum. Microorganisms 2021; 9:670. [PMID: 33805131 PMCID: PMC8064071 DOI: 10.3390/microorganisms9040670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023] Open
Abstract
Corynebacterium glutamicum is a prominent production host for various value-added compounds in white biotechnology. Gene repression by dCas9/clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) allows for the identification of target genes for metabolic engineering. In this study, a CRISPRi-based library for the repression of 74 genes of C. glutamicum was constructed. The chosen genes included genes encoding enzymes of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, regulatory genes, as well as genes of the methylerythritol phosphate and carotenoid biosynthesis pathways. As expected, CRISPRi-mediated repression of the carotenogenesis repressor gene crtR resulted in increased pigmentation and cellular content of the native carotenoid pigment decaprenoxanthin. CRISPRi screening identified 14 genes that affected decaprenoxanthin biosynthesis when repressed. Carotenoid biosynthesis was significantly decreased upon CRISPRi-mediated repression of 11 of these genes, while repression of 3 genes was beneficial for decaprenoxanthin production. Largely, but not in all cases, deletion of selected genes identified in the CRISPRi screen confirmed the pigmentation phenotypes obtained by CRISPRi. Notably, deletion of pgi as well as of gapA improved decaprenoxanthin levels 43-fold and 9-fold, respectively. The scope of the designed library to identify metabolic engineering targets, transfer of gene repression to stable gene deletion, and limitations of the approach were discussed.
Collapse
Affiliation(s)
| | | | | | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (V.L.G.); (I.S.); (K.B.); (P.P.-W.); (N.A.H.)
| | | |
Collapse
|
5
|
Toyoda K, Inui M. The ldhA Gene Encoding Fermentative l-Lactate Dehydrogenase in Corynebacterium Glutamicum Is Positively Regulated by the Global Regulator GlxR. Microorganisms 2021; 9:microorganisms9030550. [PMID: 33800875 PMCID: PMC7999487 DOI: 10.3390/microorganisms9030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial metabolism shifts from aerobic respiration to fermentation at the transition from exponential to stationary growth phases in response to limited oxygen availability. Corynebacterium glutamicum, a Gram-positive, facultative aerobic bacterium used for industrial amino acid production, excretes l-lactate, acetate, and succinate as fermentation products. The ldhA gene encoding l-lactate dehydrogenase is solely responsible for l-lactate production. Its expression is repressed at the exponential phase and prominently induced at the transition phase. ldhA is transcriptionally repressed by the sugar-phosphate-responsive regulator SugR and l-lactate-responsive regulator LldR. Although ldhA expression is derepressed even at the exponential phase in the sugR and lldR double deletion mutant, a further increase in its expression is still observed at the stationary phase, implicating the action of additional transcription regulators. In this study, involvement of the cAMP receptor protein-type global regulator GlxR in the regulation of ldhA expression was investigated. The GlxR-binding site found in the ldhA promoter was modified to inhibit or enhance binding of GlxR. The ldhA promoter activity and expression of ldhA were altered in proportion to the binding affinity of GlxR. Similarly, l-lactate production was also affected by the binding site modification. Thus, GlxR was demonstrated to act as a transcriptional activator of ldhA.
Collapse
Affiliation(s)
- Koichi Toyoda
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Correspondence:
| |
Collapse
|
6
|
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:5901-5910. [DOI: 10.1007/s00253-018-9085-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
|
7
|
Toyoda K, Inui M. Extracytoplasmic function sigma factor σDconfers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures inCorynebacterium glutamicum. Mol Microbiol 2017; 107:312-329. [DOI: 10.1111/mmi.13883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
- Graduate School of Biological Sciences; Nara Institute of Science and Technology, 8916-5; Takayama, Ikoma, Nara 630-0101 Japan
| |
Collapse
|
8
|
Enhanced Glucose Consumption and Organic Acid Production by Engineered Corynebacterium glutamicum Based on Analysis of a pfkB1 Deletion Mutant. Appl Environ Microbiol 2017; 83:AEM.02638-16. [PMID: 27881414 DOI: 10.1128/aem.02638-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/17/2016] [Indexed: 02/08/2023] Open
Abstract
In the analysis of a carbohydrate metabolite pathway, we found interesting phenotypes in a mutant strain of Corynebacterium glutamicum deficient in pfkB1, which encodes fructose-1-phosphate kinase. After being aerobically cultivated with fructose as a carbon source, this mutant consumed glucose and produced organic acid, predominantly l-lactate, at a level more than 2-fold higher than that of the wild-type grown with glucose under conditions of oxygen deprivation. This considerably higher fermentation capacity was unique for the combination of pfkB1 deletion and cultivation with fructose. In the metabolome and transcriptome analyses of this strain, marked intracellular accumulation of fructose-1-phosphate and significant upregulation of several genes related to the phosphoenolpyruvate:carbohydrate phosphotransferase system, glycolysis, and organic acid synthesis were identified. We then examined strains overexpressing several of the identified genes and demonstrated enhanced glucose consumption and organic acid production by these engineered strains, whose values were found to be comparable to those of the model pfkB1 deletion mutant grown with fructose. l-Lactate production by the ppc deletion mutant of the engineered strain was 2,390 mM (i.e., 215 g/liter) after 48 h under oxygen deprivation, which was a 2.7-fold increase over that of the wild-type strain with a deletion of ppc IMPORTANCE: Enhancement of glycolytic flux is important for improving microbiological production of chemicals, but overexpression of glycolytic enzymes has often resulted in little positive effect. That is presumably because the central carbon metabolism is under the complex and strict regulation not only transcriptionally but also posttranscriptionally, for example, by the ATP/ADP ratio. In contrast, we studied a mutant strain of Corynebacterium glutamicum that showed markedly enhanced glucose consumption and organic acid production and, based on the findings, identified several genes whose overexpression was effective in enhancing glycolytic flux under conditions of oxygen deprivation. These results will further understanding of the regulatory mechanisms of glycolytic flux and can be widely applied to the improvement of the microbial production of useful chemicals.
Collapse
|
9
|
Elucidation of the regulatory role of the fructose operon reveals a novel target for enhancing the NADPH supply in Corynebacterium glutamicum. Metab Eng 2016; 38:344-357. [PMID: 27553884 DOI: 10.1016/j.ymben.2016.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022]
Abstract
The performance of Corynebacterium glutamicum cell factories producing compounds which rely heavily on NADPH has been reported to depend on the sugar being metabolized. While some aspects of this phenomenon have been elucidated, there are still many unresolved questions as to how sugar metabolism is linked to redox and to the general metabolism. We here provide new insights into the regulation of the metabolism of this important platform organism by systematically characterizing mutants carrying various lesions in the fructose operon. Initially, we found that a strain where the dedicated fructose uptake system had been inactivated (KO-ptsF) was hampered in growth on sucrose minimal medium, and suppressor mutants appeared readily. Comparative genomic analysis in conjunction with enzymatic assays revealed that suppression was linked to inactivation of the pfkB gene, encoding a fructose-1-phosphate kinase. Detailed characterization of KO-ptsF, KO-pfkB and double knock-out (DKO) derivatives revealed a strong role for sugar-phosphates, especially fructose-1-phosphate (F1P), in governing sugar as well as redox metabolism due to effects on transcriptional regulation of key genes. These findings allowed us to propose a simple model explaining the correlation between sugar phosphate concentration, gene expression and ultimately the observed phenotype. To guide us in our analysis and help us identify bottlenecks in metabolism we debugged an existing genome-scale model onto which we overlaid the transcriptome data. Based on the results obtained we managed to enhance the NADPH supply and transform the wild-type strain into delivering the highest yield of lysine ever obtained on sucrose and fructose, thus providing a good example of how regulatory mechanisms can be harnessed for bioproduction.
Collapse
|
10
|
Engineering Corynebacterium glutamicum for fast production of l-lysine and l-pipecolic acid. Appl Microbiol Biotechnol 2016; 100:8075-90. [DOI: 10.1007/s00253-016-7682-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
|
11
|
Oliveira A, Teixeira P, Azevedo M, Jamal SB, Tiwari S, Almeida S, Silva A, Barh D, Dorneles EMS, Haas DJ, Heinemann MB, Ghosh P, Lage AP, Figueiredo H, Ferreira RS, Azevedo V. Corynebacterium pseudotuberculosis may be under anagenesis and biovar Equi forms biovar Ovis: a phylogenic inference from sequence and structural analysis. BMC Microbiol 2016; 16:100. [PMID: 27251711 PMCID: PMC4890528 DOI: 10.1186/s12866-016-0717-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Corynebacterium pseudotuberculosis can be classified into two biovars or biovars based on their nitrate-reducing ability. Strains isolated from sheep and goats show negative nitrate reduction and are termed biovar Ovis, while strains from horse and cattle exhibit positive nitrate reduction and are called biovar Equi. However, molecular evidence has not been established so far to understand this difference, specifically if these C. pseudotuberculosis strains are under an evolutionary process. RESULTS The ERIC 1 + 2 Minimum-spanning tree from 367 strains of C. pseudotuberculosis showed that the great majority of biovar Ovis strains clustered together, but separately from biovar Equi strains that also clustered amongst themselves. Using evolutionarily conserved genes (rpoB, gapA, fusA, and rsmE) and their corresponding amino acid sequences, we analyzed the phylogenetic relationship among eighteen strains of C. pseudotuberculosis belonging to both biovars Ovis and Equi. Additionally, conserved point mutation based on structural variation analysis was also carried out to elucidate the genotype-phenotype correlations and speciation. We observed that the biovars are different at the molecular phylogenetic level and a probable anagenesis is occurring slowly within the species C. pseudotuberculosis. CONCLUSIONS Taken together the results suggest that biovar Equi is forming the biovar Ovis. However, additional analyses using other genes and other bacterial strains are required to further support our anagenesis hypothesis in C. pseudotuberculosis.
Collapse
Affiliation(s)
- Alberto Oliveira
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pammella Teixeira
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcela Azevedo
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Syed Babar Jamal
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sintia Almeida
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Departmento de Genética, Universidade Federal do Pará, Pará, Brazil
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba, Medinipur, WB-721172, India
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dionei Joaquim Haas
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Bryan Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia - Universidade de São Paulo, São Paulo, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária - Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Figueiredo
- Aquacen, National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Toyoda K, Inui M. The extracytoplasmic function σ factor σ(C) regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol Microbiol 2016; 100:486-509. [PMID: 26789738 DOI: 10.1111/mmi.13330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 11/30/2022]
Abstract
Bacteria modify their expression of different terminal oxidases in response to oxygen availability. Corynebacterium glutamicum, a facultative anaerobic bacterium of the phylum Actinobacteria, possesses aa3 -type cytochrome c oxidase and cytochrome bd-type quinol oxidase, the latter of which is induced by oxygen limitation. We report that an extracytoplasmic function σ factor, σ(C) , is responsible for the regulation of this process. Chromatin immunoprecipitation with microarray analysis detected eight σ(C) -binding regions in the genome, facilitating the identification of a consensus promoter sequence for σ(C) recognition. The promoter sequences were found upstream of genes for cytochrome bd, heme a synthesis enzymes and uncharacterized membrane proteins, all of which were upregulated by sigC overexpression. However, one consensus promoter sequence found on the antisense strand upstream of an operon encoding the cytochrome bc1 complex conferred a σ(C) -dependent negative effect on expression of the operon. The σ(C) regulon was induced by cytochrome aa3 deficiency without modifying sigC expression, but not by bc1 complex deficiency. These findings suggest that σ(C) is activated in response to impaired electron transfer via cytochrome aa3 and not directly to a shift in oxygen levels. Our results reveal a new paradigm for transcriptional regulation of the aerobic respiratory system in bacteria.
Collapse
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
| |
Collapse
|
13
|
Toyoda K, Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:45-60. [DOI: 10.1007/s00253-015-7074-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
14
|
Yu X, Zhang C, Yang L, Zhao L, Lin C, Liu Z, Mao Z. CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain. BMC Microbiol 2015; 15:25. [PMID: 25880528 PMCID: PMC4327974 DOI: 10.1186/s12866-015-0356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Agrobacterium sp. ATCC31749 is an efficient curdlan producer at low pH and under nitrogen starvation. The helix-turn-helix transcriptional regulatory protein (crdR) essential for curdlan production has been analyzed, but whether crdR directly acts to cause expression of the curdlan biosynthesis operon (crdASC) is uncertain. To elucidate the molecular function of crdR in curdlan biosynthesis, we constructed a crdR knockout mutant along with pBQcrdR and pBQNcrdR vectors with crdR expression driven by a T5 promoter and crdR native promoter, respectively. Also, we constructed a pAG with the green fluorescent protein (GFP) gene driven by a curdlan biosynthetic operon promoter (crdP) to measure the effects of crdR expression on curdlan biosynthesis. Results Compared with wild-type (WT) strain biomass production, the biomass of the crdR knockout mutant was not significantly different in either exponential or stationary phases of growth. Mutant cells were non-capsulated and planktonic and produced significantly less curdlan. WT cells were curdlan-capsulated and aggregated in the stationery phase. pBQcrdR transformed to the WT strain had a 38% greater curdlan yield and pBQcrdR and pBQNcrdR transformed to the crdR mutant strain recovered 18% and 105% curdlan titers of the WT ATCC31749 strain, respectively. Consistent with its function of promoting curdlan biosynthesis, curdlan biosynthetic operon promoter (crdP) controlled GFP expression caused the transgenic strain to have higher GFP relative fluorescence in the WT strain, and no color change was observed with low GFP relative fluorescence in the crdR mutant strain as evidenced by fluorescent microscopy and spectrometric assay. q-RT-PCR revealed that crdR expression in the stationary phase was greater than in the exponential phase, and crdR overexpression in the WT strain increased crdA, crdS, and crdC expression. We also confirmed that purified crdR protein can specifically bind to the crd operon promoter region, and we inferred that crdR directly acts to cause expression of the curdlan biosynthesis operon (crdASC). Conclusions CrdR is a positive transcriptional regulator of the crd operon for promoting curdlan biosynthesis in ATCC31749. The potential binding region of crdR is located within the −98 bp fragment upstream from the crdA start codon Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0356-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoqin Yu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Chao Zhang
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Liping Yang
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Lamei Zhao
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Chun Lin
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Zhengjie Liu
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.
| | - Zichao Mao
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China. .,National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China.
| |
Collapse
|
15
|
Expanding the regulatory network governed by the extracytoplasmic function sigma factor σH in Corynebacterium glutamicum. J Bacteriol 2014; 197:483-96. [PMID: 25404703 DOI: 10.1128/jb.02248-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracytoplasmic function sigma factor σ(H) is responsible for the heat and oxidative stress response in Corynebacterium glutamicum. Due to the hierarchical nature of the regulatory network, previous transcriptome analyses have not been able to discriminate between direct and indirect targets of σ(H). Here, we determined the direct genome-wide targets of σ(H) using chromatin immunoprecipitation with microarray technology (ChIP-chip) for analysis of a deletion mutant of rshA, encoding an anti-σ factor of σ(H). Seventy-five σ(H)-dependent promoters, including 39 new ones, were identified. σ(H)-dependent, heat-inducible transcripts for several of the new targets, including ilvD encoding a labile Fe-S cluster enzyme, dihydroxy-acid dehydratase, were detected, and their 5' ends were mapped to the σ(H)-dependent promoters identified. Interestingly, functional internal σ(H)-dependent promoters were found in operon-like gene clusters involved in the pentose phosphate pathway, riboflavin biosynthesis, and Zn uptake. Accordingly, deletion of rshA resulted in hyperproduction of riboflavin and affected expression of Zn-responsive genes, possibly through intracellular Zn overload, indicating new physiological roles of σ(H). Furthermore, sigA encoding the primary σ factor was identified as a new target of σ(H). Reporter assays demonstrated that the σ(H)-dependent promoter upstream of sigA was highly heat inducible but much weaker than the known σ(A)-dependent one. Our ChIP-chip analysis also detected the σ(H)-dependent promoters upstream of rshA within the sigH-rshA operon and of sigB encoding a group 2 σ factor, supporting the previous findings of their σ(H)-dependent expression. Taken together, these results reveal an additional layer of the sigma factor regulatory network in C. glutamicum.
Collapse
|
16
|
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol 2014; 98:5633-43. [PMID: 24668244 DOI: 10.1007/s00253-014-5676-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/27/2022]
Abstract
Sustainable supply of feedstock has become a key issue in process development in microbial biotechnology. The workhorse of industrial amino acid production Corynebacterium glutamicum has been engineered towards utilization of alternative carbon sources. Utilization of the chitin-derived aminosugar N-acetyl-glucosamine (GlcNAc) for both cultivation and production with C. glutamicum has hitherto not been investigated. Albeit this organism harbors the enzymes N-acetylglucosamine-6-phosphatedeacetylase and glucosamine-6P deaminase of GlcNAc metabolism (encoded by nagA and nagB, respectively) growth of C. glutamicum with GlcNAc as substrate was not observed. This was attributed to the lack of a functional system for GlcNAc uptake. Of the 17 type strains of the genus Corynebacterium tested here for their ability to grow with GlcNAc, only Corynebacterium glycinophilum DSM45794 was able to utilize this substrate. Complementation studies with a GlcNAc-uptake deficient Escherichia coli strain revealed that C. glycinophilum possesses a nagE-encoded EII permease for GlcNAc uptake. Heterologous expression of the C. glycinophilum nagE in C. glutamicum indeed enabled uptake of GlcNAc. For efficient GlcNac utilization in C. glutamicum, improved expression of nagE with concurrent overexpression of the endogenous nagA and nagB genes was found to be necessary. Based on this strategy, C. glutamicum strains for the efficient production of the amino acid L-lysine as well as the carotenoid lycopene from GlcNAc as sole substrate were constructed.
Collapse
Affiliation(s)
- Christian Matano
- Faculty of Biology and CeBiTec, Bielefeld University, 33501, Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Reddy GK, Wendisch VF. Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiol 2014; 14:54. [PMID: 24593686 PMCID: PMC3996851 DOI: 10.1186/1471-2180-14-54] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum cg1790/pgk encodes an enzyme active as a 3-phosphoglycerate kinase (PGK) (EC 2.7.2.3) catalyzing phosphoryl transfer from 1,3-biphosphoglycerate (bPG) to ADP to yield 3-phosphoglycerate (3-PG) and ATP in substrate chain phosphorylation. RESULTS C. glutamicum 3-phosphoglycerate kinase was purified to homogeneity from the soluble fraction of recombinant E. coli. PGK(His) was found to be active as a homodimer with molecular weight of 104 kDa. The enzyme preferred conditions of pH 7.0 to 7.4 and required Mg²⁺ for its activity. PGK(His) is thermo labile and it has shown maximal activity at 50-65°C. The maximal activity of PGK(His) was estimated to be 220 and 150 U mg-1 with KM values of 0.26 and 0.11 mM for 3-phosphoglycerate and ATP, respectively. A 3-phosphoglycerate kinase negative C. glutamicum strain ∆pgk was constructed and shown to lack the ability to grow under glycolytic or gluconeogenic conditions unless PGK was expressed from a plasmid to restore growth. When pgk was overexpressed in L-arginine and L-ornithine production strains the production increased by 8% and by 17.5%, respectively. CONCLUSION Unlike many bacterial PGKs, C. glutamicum PGK is active as a homodimer. PGK is essential for growth of C. glutamicum with carbon sources requiring glycolysis and gluconeogenesis. Competitive inhibition by ADP reveals the critical role of PGK in gluconeogenesis by energy charge. Pgk overexpression improved the productivity in L-arginine and L-ornithine production strains.
Collapse
Affiliation(s)
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Bielefeld 33615, Germany.
| |
Collapse
|
18
|
Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection. Appl Microbiol Biotechnol 2013; 97:9597-608. [PMID: 24068337 DOI: 10.1007/s00253-013-5250-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
Abstract
Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces.
Collapse
|
19
|
Involvement of regulatory interactions among global regulators GlxR, SugR, and RamA in expression of ramA in Corynebacterium glutamicum. J Bacteriol 2013; 195:1718-26. [PMID: 23396909 DOI: 10.1128/jb.00016-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The central carbon metabolism genes in Corynebacterium glutamicum are under the control of a transcriptional regulatory network composed of several global regulators. It is known that the promoter region of ramA, encoding one of these regulators, interacts with its gene product, RamA, as well as with the two other regulators, GlxR and SugR, in vitro and/or in vivo. Although RamA has been confirmed to repress its own expression, the roles of GlxR and SugR in ramA expression have remained unclear. In this study, we examined the effects of GlxR binding site inactivation on expression of the ramA promoter-lacZ fusion in the genetic background of single and double deletion mutants of sugR and ramA. In the wild-type background, the ramA promoter activity was reduced to undetectable levels by the introduction of mutations into the GlxR binding site but increased by sugR deletion, indicating that GlxR and SugR function as the transcriptional activator and repressor, respectively. The marked repression of ramA promoter activity by the GlxR binding site mutations was largely compensated for by deletions of sugR and/or ramA. Furthermore, ramA promoter activity in the ramA-sugR double mutant was comparable to that in the ramA mutant but was significantly higher than that in the sugR mutant. Taken together, it is likely that the level of ramA expression is dynamically balanced by GlxR-dependent activation and repression by RamA along with SugR in response to perturbation of extracellular and/or intracellular conditions. These findings add multiple regulatory loops to the transcriptional regulatory network model in C. glutamicum.
Collapse
|
20
|
Teramoto H, Inui M. Regulation of Sugar Uptake, Glycolysis, and the Pentose Phosphate Pathway in Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Tanaka Y, Ehira S, Teramoto H, Inui M, Yukawa H. Coordinated regulation of gnd, which encodes 6-phosphogluconate dehydrogenase, by the two transcriptional regulators GntR1 and RamA in Corynebacterium glutamicum. J Bacteriol 2012; 194:6527-36. [PMID: 23024346 PMCID: PMC3497509 DOI: 10.1128/jb.01635-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/21/2012] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulation of Corynebacterium glutamicum gnd, encoding 6-phosphogluconate dehydrogenase, was investigated. Two transcriptional regulators, GntR1 and RamA, were isolated by affinity purification using gnd promoter DNA. GntR1 was previously identified as a repressor of gluconate utilization genes, including gnd. Involvement of RamA in gnd expression had not been investigated to date. The level of gnd mRNA was barely affected by the single deletion of ramA. However, gnd expression was downregulated in the ramA gntR1 double mutant compared to that of the gntR1 single mutant, suggesting that RamA activates gnd expression. Two RamA binding sites are found in the 5' upstream region of gnd. Mutation proximal to the transcriptional start site diminished the gluconate-dependent induction of gnd-lacZ. DNase I footprinting assay revealed two GntR1 binding sites, with one corresponding to a previously proposed site that overlaps with the -10 region. The other site overlaps the RamA binding site. GntR1 binding to this newly identified site inhibits DNA binding of RamA. Therefore, it is likely that GntR1 represses gnd expression by preventing both RNA polymerase and RamA binding to the promoter. In addition, DNA binding activity of RamA was reduced by high concentrations of NAD(P)H but not by NAD(P), implying that RamA senses the redox perturbation of the cell.
Collapse
Affiliation(s)
- Yuya Tanaka
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto, Japan
| | | | | | | | | |
Collapse
|
22
|
Chen J, Xie J. Role and regulation of bacterial LuxR-like regulators. J Cell Biochem 2011; 112:2694-702. [DOI: 10.1002/jcb.23219] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum. J Biotechnol 2011; 154:114-25. [DOI: 10.1016/j.jbiotec.2011.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/07/2011] [Accepted: 01/18/2011] [Indexed: 11/21/2022]
|
24
|
Genome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum. J Bacteriol 2011; 193:4123-33. [PMID: 21665967 DOI: 10.1128/jb.00384-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Corynebacterium glutamicum GlxR is a cyclic AMP (cAMP) receptor protein-type regulator. Although over 200 GlxR-binding sites in the C. glutamicum genome are predicted in silico, studies on the physiological function of GlxR have been hindered by the severe growth defects of a glxR mutant. This study identified the GlxR regulon by chromatin immunoprecipitation in conjunction with microarray (ChIP-chip) analyses. In total, 209 regions were detected as in vivo GlxR-binding sites. In vitro binding assays and promoter-reporter assays demonstrated that GlxR directly activates expression of genes for aerobic respiration, ATP synthesis, and glycolysis and that it is required for expression of genes for cell separation and mechanosensitive channels. GlxR also directly represses a citrate uptake gene in the presence of citrate. Moreover, ChIP-chip analyses showed that GlxR was still able to interact with its target sites in a mutant with a deletion of cyaB, the sole adenylate cyclase gene in the genome, even though binding affinity was markedly decreased. Thus, GlxR is physiologically functional at the relatively low cAMP levels in the cyaB mutant, allowing the cyaB mutant to grow much better than the glxR mutant.
Collapse
|
25
|
Cho HY, Lee SG, Hyeon JE, Han SO. Identification and characterization of a transcriptional regulator, SucR, that influences sucCD transcription in Corynebacterium glutamicum. Biochem Biophys Res Commun 2010; 401:300-5. [DOI: 10.1016/j.bbrc.2010.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 12/01/2022]
|
26
|
Teramoto H, Inui M, Yukawa H. Regulation of genes involved in sugar uptake, glycolysis and lactate production in Corynebacterium glutamicum. Future Microbiol 2010; 5:1475-81. [DOI: 10.2217/fmb.10.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Corynebacterium glutamicum is a nonpathogenic, GC-rich, Gram-positive bacterium with a long history in the industrial production of amino acids. Recently, the species has become of increasing interest as a model bacterium for closely related, medically important pathogenic species such as Corynebacterium diphtheriae and Mycobacterium tuberculosis. In this article, recent advances in understanding of the C. glutamicum regulatory network of genes involved in carbohydrate metabolism are reviewed with regards to sugar uptake, glycolysis and lactate production.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth, 9–2, Kizugawadai, Kizugawa, Kyoto 619–0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9–2, Kizugawadai, Kizugawa, Kyoto 619–0292, Japan
| | | |
Collapse
|
27
|
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M. Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics. Appl Environ Microbiol 2010; 76:6910-9. [PMID: 20802079 PMCID: PMC2953031 DOI: 10.1128/aem.01375-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/14/2010] [Indexed: 11/20/2022] Open
Abstract
In this study, we analyzed the influence of phosphate (P(i)) limitation on the metabolism of Corynebacterium glutamicum. Metabolite analysis by gas chromatography-time-of-flight (GC-TOF) mass spectrometry of cells cultivated in glucose minimal medium revealed a greatly increased maltose level under P(i) limitation. As maltose formation could be linked to glycogen metabolism, the cellular glycogen content was determined. Unlike in cells grown under P(i) excess, the glycogen level in P(i)-limited cells remained high in the stationary phase. Surprisingly, even acetate-grown cells, which do not form glycogen under P(i) excess, did so under P(i) limitation and also retained it in stationary phase. Expression of pgm and glgC, encoding the first two enzymes of glycogen synthesis, phosphoglucomutase and ADP-glucose pyrophosphorylase, was found to be increased 6- and 3-fold under P(i) limitation, respectively. Increased glycogen synthesis together with a decreased glycogen degradation might be responsible for the altered glycogen metabolism. Independent from these experimental results, flux balance analysis suggested that an increased carbon flux to glycogen is a solution for C. glutamicum to adapt carbon metabolism to limited P(i) concentrations.
Collapse
Affiliation(s)
- Han Min Woo
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Stephan Noack
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Gerd M. Seibold
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Sabine Willbold
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Bernhard J. Eikmanns
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Michael Bott
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
28
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
29
|
Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol 2010; 154:126-39. [PMID: 20620178 DOI: 10.1016/j.jbiotec.2010.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 04/12/2010] [Accepted: 07/01/2010] [Indexed: 11/17/2022]
Abstract
In Corynebacterium glutamicum, the transcriptional regulators of acetate metabolism RamA (encoded by cg2831) and RamB (encoded by cg0444) play an important role in expression control of genes involved in acetate and ethanol metabolism. Both regulators were speculated to have broader significance in expression control of further genes in the central metabolism of C. glutamicum. Here we investigated the RamA and RamB regulons by genome-wide transcriptome analysis with special emphasis on genes encoding enzymes of the central carbon metabolism. When compared to the parental wild-type, 253 genes and 81 genes showed different mRNA levels in defined RamA- and RamB-deficient C. glutamicum strains, respectively. Among these were genes involved in sugar uptake, glycolysis, gluconeogenesis, acetate, l-lactate or ethanol metabolism. The direct interaction of RamA and RamB proteins with the respective promoter/operator fragments was demonstrated in vitro by electrophoretic mobility shift assays. Taken together, we present evidence for an important role of RamA and RamB in global gene expression control in C. glutamicum.
Collapse
Affiliation(s)
- Marc Auchter
- Institute of Microbiology and Biotechnology, University of Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Okibe N, Suzuki N, Inui M, Yukawa H. Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett Appl Microbiol 2009; 50:173-80. [PMID: 20002569 DOI: 10.1111/j.1472-765x.2009.02776.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To obtain strong, carbon source-inducible promoters useful for industrial applications of Corynebacterium glutamicum. METHODS AND RESULTS DNA microarray and qRT-PCR enabled identification of the promoters of cgR_2367 (malE1) and cgR_2459 (git1) as strong, maltose- and gluconate-inducible promoters, respectively, in C. glutamicum. Promoter probe assays revealed that in the presence of the inducing sugars, PmalE1 and Pgit1, respectively, facilitated 3.4- and 4.2-fold increased beta-galactosidase activities compared to the same activity induced by glucose. In addition, PmalE1 was not functional in Escherichia coli, in which Pgit1 function was repressible, which enabled the cloning of a hitherto 'difficult-to-clone' heterologous gene of a lignocellulolytic enzyme, whose secretion was consequently induced by the carbon sources. CONCLUSIONS PmalE1 and Pgit1 are strong, carbon source-inducible promoters of C. glutamicum whose characteristics in E. coli are integral to the secretion ability of C. glutamicum to secrete lignocellulolytic enzyme. SIGNIFICANCE AND IMPACT OF THE STUDY Corynebacterium glutamicum, like its counterpart industrial workhorses E. coli and Bacillus subtilis, does exhibit strong, carbon source-inducible promoters, and the functionality of two of which was demonstrated in this study. While this study may be most relevant in the ongoing efforts to establish technologies of the biorefinery, it should also be of interest to general microbiologists exploring the versatility of industrial micro-organisms. In so doing, the study should impact future advances in industrial microbiology.
Collapse
Affiliation(s)
- N Okibe
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto, Japan
| | | | | | | |
Collapse
|
31
|
The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR. J Bacteriol 2009; 191:4251-8. [PMID: 19429617 DOI: 10.1128/jb.00303-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum ldhA encodes L-lactate dehydrogenase, a key enzyme that couples L-lactate production to reoxidation of NADH formed during glycolysis. We previously showed that in the absence of sugar, SugR binds to the ldhA promoter region, thereby repressing ldhA expression. In this study we show that LldR is another protein that binds to the ldhA promoter region, thus regulating ldhA expression. LldR has hitherto been characterized as an L-lactate-responsive transcriptional repressor of L-lactate utilization genes. Transposon mutagenesis of a reporter strain carrying a chromosomal ldhA promoter-lacZ fusion (PldhA-lacZ) revealed that ldhA disruption drastically decreased expression of PldhA-lacZ. PldhA-lacZ expression in the ldhA mutant was restored by deletion of lldR, suggesting that LldR acts as a repressor of ldhA in the absence of L-lactate and the LldR-mediated repression is not relieved in the ldhA mutant due to its inability to produce L-lactate. lldR deletion did not affect PldhA-lacZ expression in the wild-type background during growth on either glucose, acetate, or L-lactate. However, it upregulated PldhA-lacZ expression in the sugR mutant background during growth on acetate. The binding sites of LldR and SugR are located around the -35 and -10 regions of the ldhA promoter, respectively. C. glutamicum ldhA expression is therefore primarily repressed by SugR in the absence of sugar. In the presence of sugar, SugR-mediated repression of ldhA is alleviated, and ldhA expression is additionally enhanced by LldR inactivation in response to L-lactate produced by LdhA.
Collapse
|
32
|
Toyoda K, Teramoto H, Inui M, Yukawa H. Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding l-lactate dehydrogenase in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2009; 83:315-27. [DOI: 10.1007/s00253-009-1887-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/24/2022]
|
33
|
Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J Bacteriol 2008; 191:968-77. [PMID: 19047347 DOI: 10.1128/jb.01425-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SugR, RamA, GlxR, GntR1, and a MarR-type transcriptional regulator bind to the promoter region of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), essential for glycolysis in Corynebacterium glutamicum. We previously showed that SugR, a transcriptional repressor of phosphotransferase system genes for the sugar transport system, is involved in the downregulation of gapA expression in the absence of sugar. In this study, the role of RamA in the expression of the gapA gene was examined. Comparing the gapA expression and GAPDH activity of a ramA mutant with those of the wild type revealed that RamA is involved in upregulation of gapA expression in glucose-grown cells. DNase I footprint analyses and electrophoretic mobility shift assays revealed that RamA binds with different affinities to three sites in the gapA promoter. lacZ reporter assays with mutated RamA binding sites in the gapA promoter showed that the middle binding site is the most important for RamA to activate gapA expression and that binding of RamA to the gapA promoter activates the gene expression not only in glucose-grown cells but also in acetate-grown cells. Furthermore, RamA also directly activates sugR expression, indicating that two global regulators, RamA and SugR, are coordinately involved in the complex regulation of gapA expression in C. glutamicum.
Collapse
|