1
|
Jia N, Ding MZ, Luo H, Gao F, Yuan YJ. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103. Sci Rep 2017; 7:44786. [PMID: 28317865 PMCID: PMC5357945 DOI: 10.1038/srep44786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022] Open
Abstract
More and more new natural products have been found in Streptomyces species, which become the significant resource for antibiotics production. Among them, Streptomyces lydicus has been known as its ability of streptolydigin biosynthesis. Herein, we present the genome analysis of S. lydicus based on the complete genome sequencing. The circular chromosome of S. lydicus 103 comprises 8,201,357 base pairs with average GC content 72.22%. With the aid of KEGG analysis, we found that S. lydicus 103 can transfer propanoate to succinate, glutamine or glutamate to 2-oxoglutarate, CO2 and L-glutamate to ammonia, which are conducive to the the supply of amino acids. S. lydicus 103 encodes acyl-CoA thioesterase II that takes part in biosynthesis of unsaturated fatty acids, and harbors the complete biosynthesis pathways of lysine, valine, leucine, phenylalanine, tyrosine and isoleucine. Furthermore, a total of 27 putative gene clusters have been predicted to be involved in secondary metabolism, including biosynthesis of streptolydigin, erythromycin, mannopeptimycin, ectoine and desferrioxamine B. Comparative genome analysis of S. lydicus 103 will help us deeply understand its metabolic pathways, which is essential for enhancing the antibiotic production through metabolic engineering.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hao Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Department of Physics, Tianjin University, Tianjin, 300072, P. R. China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Department of Physics, Tianjin University, Tianjin, 300072, P. R. China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Insights into the roles of exogenous glutamate and proline in improving streptolydigin production of Streptomyces lydicus with metabolomic analysis. ACTA ACUST UNITED AC 2013; 40:1303-14. [DOI: 10.1007/s10295-013-1326-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
Abstract
Abstract
The addition of precursors was one strategy to improve antibiotic production. The exogenous proline and glutamate, as precursors of streptolydigin, could significantly improve the streptolydigin production, but their underlying molecular mechanisms remain unknown. Herein, metabolomic analysis was carried out to explore the metabolic responses of Streptomyces lydicus to the additions of proline and glutamine. The significant differences in the quantified 53 metabolites after adding the exogenous proline and glutamate were enunciated by gas chromatography coupled to time-of-flight mass spectrometry. Among them, the levels of some fatty acids (e.g., dodecanoic acid, octadecanoic acid, hexadecanoic acid) were significantly decreased after adding glutamate and proline, indicating that the inhibition of fatty acid synthesis might be benefit for the accumulation of streptolydigin. Particularly, the dramatic changes of the identified metabolites, which are involved in glycolysis, the tricarboxylic acid cycle, and the amino acid and fatty acid metabolism, revealed that the additions of glutamate and proline possibly caused the metabolic cross-talk in S. lydicus. Additionally, the level of intracellular glutamate dramatically enhanced at 12 h after adding proline, showing that exogenous proline may be firstly convert into glutamate and consequently result in crease of the streptolydigin production. The high levels of streptolydigin at 12 and 24 h after adding glutamate unveiled that part glutamate were rapidly used to synthesize the streptolydigin. Furthermore, there is the significant difference in metabolomic characteristics of S. lydicus after adding glutamate and proline, uncovering that multiple regulatory pathways are involved in responses to the additions of exogenous glutamate and proline. Taken together, exogenous glutamate and proline not only directly provided the precursors of streptolydigin biosynthesis, but also might alter the metabolic homeostasis of S. lydicus E9 during improving the production of streptolydigin.
Collapse
|
5
|
Olano C, Gómez C, Pérez M, Palomino M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA. Deciphering Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin and Generation of Glycosylated Derivatives. ACTA ACUST UNITED AC 2009; 16:1031-44. [DOI: 10.1016/j.chembiol.2009.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
|