1
|
John P, Sriram S, Palanichamy C, Subash PT, Sudandiradoss C. A multifarious bacterial surface display: potential platform for biotechnological applications. Crit Rev Microbiol 2025:1-26. [PMID: 39955766 DOI: 10.1080/1040841x.2025.2461054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Bacterial-cell surface display represents a novel field of protein engineering, which is grounds for presenting recombinant proteins or peptides on the surface of host cells. This technique is primarily used for endowing cellular activity on the host cells and enables several biotechnological applications. In this review, we comprehensively summarize the speciality of bacterial surface display, specifically in gram-positive and gram-negative organisms and then we depict the practical cases to show the importance of bacterial cell surface display in biomedicine and bioremediation domains. We manifest that among other display systems such as phages and ribosomes, the cell surface display using bacterial cells can be used to avoid the loss of combinatorial protein libraries and also open the possibility of isolating target-binding variants using high-throughput selection platforms. Thus, it is becoming a robust tool for functionalizing microbes to serve as a potential implement for various bioengineering purposes.
Collapse
Affiliation(s)
- Pearl John
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Srineevas Sriram
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandresh Palanichamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P T Subash
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Krüsemann JL, Rainaldi V, Cotton CA, Claassens NJ, Lindner SN. The cofactor challenge in synthetic methylotrophy: bioengineering and industrial applications. Curr Opin Biotechnol 2023; 82:102953. [PMID: 37320962 DOI: 10.1016/j.copbio.2023.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Methanol is a promising feedstock for industrial bioproduction: it can be produced renewably and has high solubility and limited microbial toxicity. One of the key challenges for its bio-industrial application is the first enzymatic oxidation step to formaldehyde. This reaction is catalysed by methanol dehydrogenases (MDH) that can use NAD+, O2 or pyrroloquinoline quinone (PQQ) as an electron acceptor. While NAD-dependent MDH are simple to express and have the highest energetic efficiency, they exhibit mediocre kinetics and poor thermodynamics at ambient temperatures. O2-dependent methanol oxidases require high oxygen concentrations, do not conserve energy and thus produce excessive heat as well as toxic H2O2. PQQ-dependent MDH provide a good compromise between energy efficiency and good kinetics that support fast growth rates without any drawbacks for process engineering. Therefore, we argue that this enzyme class represents a promising solution for industry and outline engineering strategies for the implementation of these complex systems in heterologous hosts.
Collapse
Affiliation(s)
- Jan L Krüsemann
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Vittorio Rainaldi
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steffen N Lindner
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Gallus S, Mittmann E, Rabe KS. A Modular System for the Rapid Comparison of Different Membrane Anchors for Surface Display on Escherichia coli. Chembiochem 2021; 23:e202100472. [PMID: 34767678 PMCID: PMC9298812 DOI: 10.1002/cbic.202100472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Indexed: 12/13/2022]
Abstract
Comparison of different membrane anchor motifs for the surface display of a protein of interest (passenger) is crucial for achieving the best possible performance. However, generating genetic fusions of the passenger to various membrane anchors is time-consuming. We herein employ a recently developed modular display system, in which the membrane anchor and the passenger are expressed separately and assembled in situ via SpyCatcher and SpyTag interaction, to readily combine a model passenger cytochrome P450 BM3 (BM3) with four different membrane anchors (Lpp-OmpA, PgsA, INP and AIDA-I). This approach has the significant advantage that passengers and membrane anchors can be freely combined in a modular fashion without the need to generate direct genetic fusion constructs in each case. We demonstrate that the membrane anchors impact not only cell growth and membrane integrity, but also the BM3 surface display capacity and whole-cell biocatalytic activity. The previously used Lpp-OmpA as well as PgsA were found to be efficient for the display of BM3 via SpyCatcher/SpyTag interaction. Our strategy can be transferred to other user-defined anchor and passenger combinations and could thus be used for acceleration and improvement of various applications involving cell surface display.
Collapse
Affiliation(s)
- Sabrina Gallus
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Esther Mittmann
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Yuan YC, Bai XL, Liu YM, Tang XY, Yuan H, Liao X. Ligand fishing based on cell surface display of enzymes for inhibitor screening. Anal Chim Acta 2021; 1156:338359. [PMID: 33781459 DOI: 10.1016/j.aca.2021.338359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
Ligand fishing for screening of enzyme inhibitors from complex chemical systems using baits prepared by cell surface display of the enzyme is herein demonstrated for the first time. Tyrosine phosphatase 1B (PTP1B), used as a model enzyme in this work, is displayed on the surface of E. coli cells by using ice nucleation protein (INP) as the anchoring motif. Infusion of PTP1B is characterized by western blot, immunofluorescence, proteinase K accessibility, and enzyme activity assays. Surface displayed PTP1B exhibits a maximum of 5.62 ± 0.251 U/OD600 enzymatic activity and a better stability compared with free enzyme. PTP1B displayed cells are used as solid-phase extraction adsorbent in combination with HPLC-MS to screen the inhibitors from the extracts of Rhodiola rosea, a traditional Chinese medicinal plant. Among many well-known active ingredients only arbutin is fished out with an IC50 value of 20.5 ± 0.873 μM, showing the inhibitor screening is highly selective. Furthermore, the equilibrium dissociation constant (KD) of the complex of arbutin and PTP1B was determined to be 79.6 μM by localized surface plasma resonance (LSPR) assay. The proposed ligand fishing technique using recombinant cells as baits opens a new avenue for screening of active compounds from natural products with accuracy and specificity.
Collapse
Affiliation(s)
- Yun-Cong Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, 39217, USA.
| | - Xiao-Yue Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
5
|
Chordia S, Narasimhan S, Lucini Paioni A, Baldus M, Roelfes G. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*. Angew Chem Int Ed Engl 2021; 60:5913-5920. [PMID: 33428816 PMCID: PMC7986609 DOI: 10.1002/anie.202014771] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/14/2022]
Abstract
We report the supramolecular assembly of artificial metalloenzymes (ArMs), based on the Lactococcal multidrug resistance regulator (LmrR) and an exogeneous copper(II)-phenanthroline complex, in the cytoplasm of E. coli cells. A combination of catalysis, cell-fractionation, and inhibitor experiments, supplemented with in-cell solid-state NMR spectroscopy, confirmed the in-cell assembly. The ArM-containing whole cells were active in the catalysis of the enantioselective Friedel-Crafts alkylation of indoles and the Diels-Alder reaction of azachalcone with cyclopentadiene. Directed evolution resulted in two different improved mutants for both reactions, LmrR_A92E_M8D and LmrR_A92E_V15A, respectively. The whole-cell ArM system required no engineering of the microbial host, the protein scaffold, or the cofactor to achieve ArM assembly and catalysis. We consider this a key step towards integrating abiological catalysis with biosynthesis to generate a hybrid metabolism.
Collapse
Affiliation(s)
- Shreyans Chordia
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
- Current address: Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
| | - Alessandra Lucini Paioni
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
6
|
Chordia S, Narasimhan S, Lucini Paioni A, Baldus M, Roelfes G. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole‐Cell Biocatalysis**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shreyans Chordia
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Current address: Structural and Computational Biology Unit European Molecular Biology Laboratory Meyerhofstraße 1 69117 Heidelberg Germany
| | - Alessandra Lucini Paioni
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Marc Baldus
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
7
|
Microbial cell surface display of oxidoreductases: Concepts and applications. Int J Biol Macromol 2020; 165:835-841. [DOI: 10.1016/j.ijbiomac.2020.09.237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022]
|
8
|
Gallus S, Peschke T, Paulsen M, Burgahn T, Niemeyer CM, Rabe KS. Surface Display of Complex Enzymes by in Situ SpyCatcher-SpyTag Interaction. Chembiochem 2020; 21:2126-2131. [PMID: 32182402 PMCID: PMC7497234 DOI: 10.1002/cbic.202000102] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Indexed: 11/07/2022]
Abstract
The display of complex proteins on the surface of cells is of great importance for protein engineering and other fields of biotechnology. Herein, we describe a modular approach, in which the membrane anchor protein Lpp-OmpA and a protein of interest (passenger) are expressed independently as genetically fused SpyCatcher and SpyTag units and assembled in situ by post-translational coupling. Using fluorescent proteins, we first demonstrate that this strategy allows the construct to be installed on the surface of E. coli cells. The scope of our approach was then demonstrated by using three different functional enzymes, the stereoselective ketoreductase Gre2p, the homotetrameric glucose 1-dehydrogenase GDH, and the bulky heme- and diflavin-containing cytochrome P450 BM3 (BM3). In all cases, the SpyCatcher-SpyTag method enabled the generation of functional whole-cell biocatalysts, even for the bulky BM3, which could not be displayed by conventional fusion with Lpp-OmpA. Furthermore, by using a GDH variant carrying an internal SpyTag, the system could be used to display an enzyme with unmodified N- and C-termini.
Collapse
Affiliation(s)
- Sabrina Gallus
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces 1 (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Theo Peschke
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces 1 (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Novartis Pharma AG Chemical and Analytical Development (CHAD)4056BaselSwitzerland
| | - Malte Paulsen
- European Molecular Biology Laboratory (EMBL) Flow Cytometry Core FacilityMeyerhofstraße 169117HeidelbergGermany).
| | - Teresa Burgahn
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces 1 (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces 1 (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces 1 (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
9
|
Enzymatic Synthesis of Nucleoside Triphosphates and Deoxynucleoside Triphosphates by Surface-Displayed Kinases. Appl Biochem Biotechnol 2019; 190:1271-1288. [PMID: 31745822 DOI: 10.1007/s12010-019-03138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Nucleoside triphosphates and deoxynucleoside triphosphates are important biochemical molecules. In this study, recombinant Escherichia coli that could display nucleotide kinases (INP-N-NMKases) and acetate kinase (INP-N-ACKase) on the cell surface were constructed by fusing an enzyme (NMKase/ACKase) to the N-terminus of ice nucleation protein (INP-N). By using intact recombinant bacteria cells as a catalyst coupled with an ACKase-catalyzed adenosine-5'-triphosphate (ATP) regeneration system, nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) could be synthesized efficiently. In a reaction system with 5 mmol/l substrate, the conversion rates of cytidine-5'-triphosphate (CTP) and deoxycytidine-5'-triphosphate (dCTP) were 96% and 93%, respectively, the conversion rate of ATP and deoxyadenosine-5'-triphosphate (dATP) was 96%, the conversion rate of deoxythymidine-5'-triphosphate (dTTP) was 91%, and the conversion rate of uridine-5'-triphosphate (UTP) was 80%. There was no obvious degradation. At 37 °C, the stability of the surface-displayed fusion protein, especially in the presence of the substrate, was significantly improved. Each whole cell could be reused more than 8 times.
Collapse
|
10
|
Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors. Appl Biochem Biotechnol 2017; 185:396-418. [PMID: 29168153 DOI: 10.1007/s12010-017-2662-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.
Collapse
|
11
|
|
12
|
Deciphering EGFP production via surface display and self-cleavage intein system in different hosts. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Goosens VJ, Monteferrante CG, van Dijl JM. The Tat system of Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1698-706. [PMID: 24140208 DOI: 10.1016/j.bbamcr.2013.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
The twin-arginine protein translocation (Tat) system has a unique ability to translocate folded and co-factor-containing proteins across lipid bilayers. The Tat pathway is present in bacteria, archaea and in the thylakoid membranes of chloroplasts and, depending on the organism and environmental conditions, it can be deemed important for cell survival, virulence or bioproduction. This review provides an overview of the current understanding of the Tat system with specific focus on Gram-positive bacteria. The 'universal minimal Tat system' is composed of a TatA and a TatC protein. However, this pathway is more commonly composed of two TatA-like proteins and one TatC protein. Often the TatA-like proteins have diverged to have two different functions and, in this case, the second TatA-like protein is usually referred to as TatB. The correct folding and/or incorporation of co-factors are requirements for translocation, and the known quality control mechanisms are examined in this review. A number of examples of crosstalk between the Tat system and other protein transport systems, such as the Sec-YidC translocon and signal peptidases or sheddases are also discussed. Further, an overview of specific Gram-positive bacterial Tat systems found in monoderm and diderm species is detailed. Altogether, this review highlights the unique features of Gram-positive bacterial Tat systems and pinpoints key questions that remain to be addressed in future research. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Vivianne J Goosens
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Carmine G Monteferrante
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
14
|
Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl Environ Microbiol 2013; 79:6697-705. [PMID: 23974145 DOI: 10.1128/aem.02400-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration.
Collapse
|
15
|
Dudek HM, Popken P, van Bloois E, Duetz WA, Fraaije MW. A generic, whole-cell-based screening method for Baeyer-Villiger monooxygenases. ACTA ACUST UNITED AC 2013; 18:678-87. [PMID: 23536548 DOI: 10.1177/1087057113480390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) have been receiving increasing attention as enzymes useful for biocatalytic applications. Industrial requirements call for rapid and extensive redesign of these enzymes. In response to the need for screening large libraries of BVMO mutants, we established a generic screening method that allows screening of Escherichia coli cells expressing active BVMOs in 96-well plate format. For this, we first developed an expression system for production of phenylacetone monooxygenase (PAMO) in the periplasm of E. coli. This allows probing the enzyme for any target substrate while it is also compatible with extracellular coenzyme regeneration. For coenzyme regeneration, we used phosphite dehydrogenase, which forms phosphate upon NADPH recycling. This allowed the use of a chromogenic molybdate-based phosphate determination assay. The screening procedure was supplemented with a detection method for identification of mutant enzymes that act as NADPH oxidases, thereby excluding false-positives. The whole-cell-based screening method was validated by screening site-saturation libraries of PAMO and resulted in the identification of PAMO mutants with altered catalytic properties. This new method can be used for screening libraries of BVMOs for activity with any desired substrate and therefore is a powerful tool for engineering of these enzymes.
Collapse
Affiliation(s)
- Hanna M Dudek
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Winter RT, Heuts DPHM, Rijpkema EMA, van Bloois E, Wijma HJ, Fraaije MW. Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B. Appl Microbiol Biotechnol 2012; 95:389-403. [PMID: 22231860 PMCID: PMC3371188 DOI: 10.1007/s00253-011-3750-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/01/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
Abstract
We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47 kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84 °C and an activity half-life at 75 °C of 112 min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis.
Collapse
Affiliation(s)
- Remko T. Winter
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dominic P. H. M. Heuts
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Egon M. A. Rijpkema
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Edwin van Bloois
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J. Wijma
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
17
|
Winter RT, van den Berg TE, Colpa DI, van Bloois E, Fraaije MW. Functionalization of oxidases with peroxidase activity creates oxiperoxidases: a new breed of hybrid enzyme capable of cascade chemistry. Chembiochem 2011; 13:252-8. [PMID: 22213198 DOI: 10.1002/cbic.201100639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 11/09/2022]
Abstract
The covalent flavoprotein alditol oxidase (AldO) from Streptomyces coelicolor A3(2) was endowed with an extra catalytic functionality by fusing it to a microperoxidase. Purification of the construct resulted in the isolation of a synthetic bifunctional enzyme that was both fully covalently flavinylated and heminylated: an oxiperoxidase. Characterization revealed that both oxidase and peroxidase functionalities were active, with the construct functioning as a single-component xylitol biosensor. In an attempt to reduce the size of the oxidase-peroxidase fusion, we replaced portions of the native AldO sequence with the bacterial cytochrome c CXXCH heme-binding motif. By mutating only three residues of the AldO protein we were able to create a functional oxidase-peroxidase hybrid.
Collapse
Affiliation(s)
- Remko T Winter
- Laboratory of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol 2011; 29:79-86. [DOI: 10.1016/j.tibtech.2010.11.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/05/2010] [Accepted: 11/12/2010] [Indexed: 11/22/2022]
|
19
|
van Bloois E, Torres Pazmiño DE, Winter RT, Fraaije MW. A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 2009; 86:1419-30. [PMID: 19967355 PMCID: PMC2854361 DOI: 10.1007/s00253-009-2369-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/15/2009] [Accepted: 11/15/2009] [Indexed: 11/26/2022]
Abstract
DyP-type peroxidases comprise a novel superfamily of heme-containing peroxidases which is unrelated to the superfamilies of known peroxidases and of which only a few members have been characterized in some detail. Here, we report the identification and characterization of a DyP-type peroxidase (TfuDyP) from the thermophilic actinomycete Thermobifida fusca. Biochemical characterization of the recombinant enzyme showed that it is a monomeric, heme-containing, thermostable, and Tat-dependently exported peroxidase. TfuDyP is not only active as dye-decolorizing peroxidase as it also accepts phenolic compounds and aromatic sulfides. In fact, it is able to catalyze enantioselective sulfoxidations, a type of reaction that has not been reported before for DyP-type peroxidases. Site-directed mutagenesis was used to determine the role of two conserved residues. D242 is crucial for catalysis while H338 represents the proximal heme ligand and is essential for heme incorporation. A genome database analysis revealed that DyP-type peroxidases are frequently found in bacterial genomes while they are extremely rare in other organisms. Most of the bacterial homologs are potential cytosolic enzymes, suggesting metabolic roles different from dye degradation. In conclusion, the detailed biochemical characterization reported here contributes significantly to our understanding of these enzymes and further emphasizes their biotechnological potential.
Collapse
Affiliation(s)
- Edwin van Bloois
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Daniel E. Torres Pazmiño
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Remko T. Winter
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|