1
|
Liao Z, Song Z, Xu J, Ma Z, Bechthold A, Yu X. Identification of a gene from Streptomyces rimosus M527 negatively affecting rimocidin biosynthesis and morphological differentiation. Appl Microbiol Biotechnol 2020; 104:10191-10202. [PMID: 33057790 DOI: 10.1007/s00253-020-10955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, was found to be highly effective against a broad range of fungal plant pathogens. Current understanding of the regulatory mechanism of rimocidin biosynthesis and morphological differentiation in S. rimosus M527 is limited. NsdA is considered a negative regulator involved in morphological differentiation and biosynthesis of secondary metabolites in some Streptomyces species. In this study, nsdAsr was cloned from S. rimosus M527. The role of nsdAsr in rimocidin biosynthesis and morphological differentiation was investigated by gene deletion, complementation, and over-expression. A ΔnsdAsr mutant was obtained using CRISPR/Cas9. The mutant produced more rimocidin (46%) and accelerated morphological differentiation than the wild-type strain. Over-expression of nsdAsr led to a decrease in rimocidin production and impairment of morphological differentiation. Quantitative RT-PCR analysis revealed that transcription of rim genes responsible for rimocidin biosynthesis was upregulated in the ΔnsdAsr mutant but downregulated in the nsdAsr over-expression strain. Similar effects have been described for Streptomyces coelicolor M145 and the industrial toyocamycin-producing strain Streptomyces diastatochromogenes 1628. KEY POINTS: • A negative regulator for sporulation and rimocidin production was identified. • The CRISPR/Cas9 system was used for gene deletion in S. rimosus M527.
Collapse
Affiliation(s)
- Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Zhangqing Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China.
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
2
|
Caffrey P, De Poire E, Sheehan J, Sweeney P. Polyene macrolide biosynthesis in streptomycetes and related bacteria: recent advances from genome sequencing and experimental studies. Appl Microbiol Biotechnol 2016; 100:3893-908. [PMID: 27023916 DOI: 10.1007/s00253-016-7474-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
The polyene macrolide group includes important antifungal drugs, to which resistance does not arise readily. Chemical and biological methods have been used in attempts to make polyene antibiotics with fewer toxic side effects. Genome sequencing of producer organisms is contributing to this endeavour, by providing access to new compounds and by enabling yield improvement for polyene analogues obtained by engineered biosynthesis. This recent work is also enhancing bioinformatic methods for deducing the structures of cryptic natural products from their biosynthetic enzymes. The stereostructure of candicidin D has recently been determined by NMR spectroscopy. Genes for the corresponding polyketide synthase have been uncovered in several different genomes. Analysis of this new information strengthens the view that protein sequence motifs can be used to predict double bond geometry in many polyketides.Chemical studies have shown that improved polyenes can be obtained by modifying the mycosamine sugar that is common to most of these compounds. Glycoengineered analogues might be produced by biosynthetic methods, but polyene glycosyltransferases show little tolerance for donors other than GDP-α-D-mycosamine. Genome sequencing has revealed extending glycosyltransferases that add a second sugar to the mycosamine of some polyenes. NppY of Pseudonocardia autotrophica uses UDP-N-acetyl-α-D-glucosamine as donor whereas PegA from Actinoplanes caeruleus uses GDP-α-D-mannose. These two enzymes show 51 % sequence identity and are also closely related to mycosaminyltransferases. These findings will assist attempts to construct glycosyltransferases that transfer alternative UDP- or (d)TDP-linked sugars to polyene macrolactones.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eimear De Poire
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - James Sheehan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Sweeney
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Tao W, Yurkovich ME, Wen S, Lebe KE, Samborskyy M, Liu Y, Yang A, Liu Y, Ju Y, Deng Z, Tosin M, Sun Y, Leadlay PF. A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis. Chem Sci 2016; 7:376-385. [PMID: 28791099 PMCID: PMC5518548 DOI: 10.1039/c5sc03059e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
Thiolactomycin (TLM) is a thiotetronate antibiotic that selectively targets bacterial fatty acid biosynthesis through inhibition of the β-ketoacyl-acyl carrier protein synthases (KASI/II) that catalyse chain elongation on the type II (dissociated) fatty acid synthase. It has proved effective in in vivo infection models of Mycobacterium tuberculosis and continues to attract interest as a template for drug discovery. We have used a comparative genomics approach to uncover the (hitherto elusive) biosynthetic pathway to TLM and related thiotetronates. Analysis of the whole-genome sequence of Streptomyces olivaceus Tü 3010 producing the more ramified thiotetronate Tü 3010 provided initial evidence that such thiotetronates are assembled by a novel iterative polyketide synthase-nonribosomal peptide synthetase, and revealed the identity of other pathway enzymes, encoded by adjacent genes. Subsequent genome sequencing of three other thiotetronate-producing actinomycetes, including the Lentzea sp. ATCC 31319 that produces TLM, confirmed that near-identical clusters were also present in these genomes. In-frame gene deletion within the cluster for Tü 3010 from Streptomyces thiolactonus NRRL 15439, or within the TLM cluster, led to loss of production of the respective thiotetronate, confirming their identity. Each cluster houses at least one gene encoding a KASI/II enzyme, suggesting plausible mechanisms for self-resistance. A separate genetic locus encodes a cysteine desulfurase and a (thiouridylase-like) sulfur transferase to supply the sulfur atom for thiotetronate ring formation. Transfer of the main Tü 3010 gene cluster (stu gene cluster) into Streptomyces avermitilis led to heterologous production of this thiotetronate, showing that an equivalent sulfur donor can be supplied by this host strain. Mutational analysis of the Tü 3010 and TLM clusters has revealed the unexpected role of a cytochrome P450 enzyme in thiotetronate ring formation. These insights have allowed us to propose a mechanism for sulfur insertion, and have opened the way to engineering of the biosynthesis of TLM and other thiotetronates to produce novel analogues.
Collapse
Affiliation(s)
- W Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - M E Yurkovich
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - S Wen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - K E Lebe
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - M Samborskyy
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - Y Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - A Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Y Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Y Ju
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - Z Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - M Tosin
- Department of Chemistry , University of Warwick , Library Road , Coventry CV4 7AL , UK
| | - Y Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University) , Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , People's Republic of China .
| | - P F Leadlay
- Department of Biochemistry , University of Cambridge , Sanger Building, 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| |
Collapse
|
4
|
Aparicio JF, Barreales EG, Payero TD, Vicente CM, de Pedro A, Santos-Aberturas J. Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl Microbiol Biotechnol 2015; 100:61-78. [PMID: 26512010 PMCID: PMC4700089 DOI: 10.1007/s00253-015-7077-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 12/27/2022]
Abstract
Pimaricin (natamycin) is a small polyene macrolide antibiotic used worldwide. This efficient antimycotic and antiprotozoal agent, produced by several soil bacterial species of the genus Streptomyces, has found application in human therapy, in the food and beverage industries and as pesticide. It displays a broad spectrum of activity, targeting ergosterol but bearing a particular mode of action different to other polyene macrolides. The biosynthesis of this only antifungal agent with a GRAS status has been thoroughly studied, which has permitted the manipulation of producers to engineer the biosynthetic gene clusters in order to generate several analogues. Regulation of its production has been largely unveiled, constituting a model for other polyenes and setting the leads for optimizing the production of these valuable compounds. This review describes and discusses the molecular genetics, uses, mode of action, analogue generation, regulation and strategies for increasing pimaricin production yields.
Collapse
Affiliation(s)
- Jesús F Aparicio
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain.
| | - Eva G Barreales
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Tamara D Payero
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Cláudia M Vicente
- Dynamique des Génomes et Adaptation Microbienne, UMR 1128, INRA, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy, France
| | - Antonio de Pedro
- Area of Microbiology, Faculty of Biology, Universidad de León, 24071, León, Spain
| | - Javier Santos-Aberturas
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
5
|
Escudero L, Al-Refai M, Nieto C, Laatsch H, Malpartida F, Seco EM. New Rimocidin/CE-108 Derivatives Obtained by a Crotonyl-CoA Carboxylase/Reductase Gene Disruption in Streptomyces diastaticus var. 108: Substrates for the Polyene Carboxamide Synthase PcsA. PLoS One 2015; 10:e0135891. [PMID: 26284936 PMCID: PMC4540446 DOI: 10.1371/journal.pone.0135891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
The rimJ gene, which codes for a crotonyl-CoA carboxylase/reductase, lies within the biosynthetic gene cluster for two polyketides belonging to the polyene macrolide group (CE-108 and rimocidin) produced by Streptomyces diastaticus var. 108. Disruption of rimJ by insertional inactivation gave rise to a recombinant strain overproducing new polyene derivatives besides the parental CE-108 (2a) and rimocidin (4a). The structure elucidation of one of them, CE-108D (3a), confirmed the incorporation of an alternative extender unit for elongation step 13. Other compounds were also overproduced in the fermentation broth of rimJ disruptant. The new compounds are in vivo substrates for the previously described polyene carboxamide synthase PcsA. The rimJ disruptant strain, constitutively expressing the pcsA gene, allowed the overproduction of CE-108E (3b), the corresponding carboxamide derivative of CE-108D (3a), with improved pharmacological properties.
Collapse
Affiliation(s)
- Leticia Escudero
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Mahmoud Al-Refai
- Department of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077, Göttingen, Germany
| | - Cristina Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Hartmut Laatsch
- Department of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077, Göttingen, Germany
| | - Francisco Malpartida
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Elena M. Seco
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Cai W, Goswami A, Yang Z, Liu X, Green KD, Barnard-Britson S, Baba S, Funabashi M, Nonaka K, Sunkara M, Morris AJ, Spork AP, Ducho C, Garneau-Tsodikova S, Thorson JS, Van Lanen SG. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE. J Biol Chem 2015; 290:13710-24. [PMID: 25855790 DOI: 10.1074/jbc.m115.646414] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 11/06/2022] Open
Abstract
A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures.
Collapse
Affiliation(s)
- Wenlong Cai
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Anwesha Goswami
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Zhaoyong Yang
- the Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China
| | - Xiaodong Liu
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Keith D Green
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Sandra Barnard-Britson
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Satoshi Baba
- the New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Masanori Funabashi
- the Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | - Koichi Nonaka
- the Biologics Technology Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Manjula Sunkara
- the Division of Cardiovascular Medicine and Gill Heart Institute, College of Medicine, University of Kentucky, Lexington, Kentucky 40506, and
| | - Andrew J Morris
- the Division of Cardiovascular Medicine and Gill Heart Institute, College of Medicine, University of Kentucky, Lexington, Kentucky 40506, and
| | - Anatol P Spork
- the Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Christian Ducho
- the Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Sylvie Garneau-Tsodikova
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Jon S Thorson
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506
| | - Steven G Van Lanen
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506,
| |
Collapse
|
7
|
Santos-Aberturas J, Engel J, Dickerhoff J, Dörr M, Rudroff F, Weisz K, Bornscheuer UT. Exploration of the Substrate Promiscuity of Biosynthetic Tailoring Enzymes as a New Source of Structural Diversity for Polyene Macrolide Antifungals. ChemCatChem 2014. [DOI: 10.1002/cctc.201402773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Liu Q, Yao F, Chooi YH, Kang Q, Xu W, Li Y, Shao Y, Shi Y, Deng Z, Tang Y, You D. Elucidation of Piericidin A1 biosynthetic locus revealed a thioesterase-dependent mechanism of α-pyridone ring formation. ACTA ACUST UNITED AC 2012; 19:243-53. [PMID: 22365607 DOI: 10.1016/j.chembiol.2011.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/25/2011] [Accepted: 12/22/2011] [Indexed: 12/23/2022]
Abstract
Piericidins are a class of α-pyridone antibiotics that inhibit mitochondrial respiratory chain and exhibit antimicrobial, antifungal, and antitumor activities. Sequential analysis of Streptomyces piomogeues var. Hangzhouwanensis genome revealed six modular polyketide synthases, an amidotransferase, two methyltransferases, and a monooxygenase for piericidin A1 production. Gene functional analysis and deletion results provide overview of the biosynthesis pathway. Furthermore, in vitro characterization of the terminal polyketide synthase module with the thioesterase domain using β-ketoacyl substrates was performed. That revealed a pathway where the α-pyridone ring formation is dependent on hydrolysis of the product β, δ-diketo carboxylic acid by the C-terminal thioesterase followed by amidation and cyclization. These findings set the stage to investigate unusual enzymatic mechanisms in α-pyridone antibiotics biosynthesis, provide a foundation for genome mining of α-pyridone antibiotics, and produce analogs by molecular engineering.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Substrate specificity of benzamide synthetase involved in 4-hydroxy-3-nitrosobenzamide biosynthesis. J Antibiot (Tokyo) 2010; 64:93-6. [DOI: 10.1038/ja.2010.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|