1
|
Rana AK, Thakur VK. Advances and new horizons in metabolic engineering of heterotrophic bacteria and cyanobacteria for enhanced lactic acid production. BIORESOURCE TECHNOLOGY 2025; 419:131951. [PMID: 39647717 DOI: 10.1016/j.biortech.2024.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Bacteria species such as E.Coli, Lactobacilli, and pediococci play an important role as starter strains in fermentation food or polysaccharides into lactic acid. These bacteria were metabolically engineered using multiple proven genome editing methods to enhance relevant phenotypes. The efficacy of these procedures varies depending on the editing tool used and researchers' ability to pick suitable recombinants, which significantly increased genome engineering throughput. Cyanobacteria produce oxygenic photosynthesis and play an important role in carbon dioxide fixing. The fixed carbon dioxide is then retained as polysaccharides in cells and metabolised into various low carbon molecules such as lactate, succinate, and ethanol. Lactate is used as a building ingredient in various bioplastics, food additives, and medicines. This review covers the recent advances in lactic acid production through metabolic and genetic engineering in bacteria and cyanobacteria.
Collapse
Affiliation(s)
- A K Rana
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK; Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - V K Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Sun B, Pashkova L, Pieters P, Harke A, Mohite O, Santos A, Zielinski D, Palsson B, Phaneuf P. PanKB: An interactive microbial pangenome knowledgebase for research, biotechnological innovation, and knowledge mining. Nucleic Acids Res 2025; 53:D806-D818. [PMID: 39574409 PMCID: PMC11701538 DOI: 10.1093/nar/gkae1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 01/18/2025] Open
Abstract
The exponential growth of microbial genome data presents unprecedented opportunities for unlocking the potential of microorganisms. The burgeoning field of pangenomics offers a framework for extracting insights from this big biological data. Recent advances in microbial pangenomic research have generated substantial data and literature, yielding valuable knowledge across diverse microbial species. PanKB (pankb.org), a knowledgebase designed for microbial pangenomics research and biotechnological applications, was built to capitalize on this wealth of information. PanKB currently includes 51 pangenomes from 8 industrially relevant microbial families, comprising 8402 genomes, over 500 000 genes and over 7M mutations. To describe this data, PanKB implements four main components: (1) Interactive pangenomic analytics to facilitate exploration, intuition, and potential discoveries; (2) Alleleomic analytics, a pangenomic-scale analysis of variants, providing insights into intra-species sequence variation and potential mutations for applications; (3) A global search function enabling broad and deep investigations across pangenomes to power research and bioengineering workflows; (4) A bibliome of 833 open-access pangenomic papers and an interface with an LLM that can answer in-depth questions using its knowledge. PanKB empowers researchers and bioengineers to harness the potential of microbial pangenomics and serves as a valuable resource bridging the gap between pangenomic data and practical applications.
Collapse
Affiliation(s)
- Binhuan Sun
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Liubov Pashkova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Pascal Aldo Pieters
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Archana Sanjay Harke
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Omkar Satyavan Mohite
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, United States
| | - Patrick Victor Phaneuf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
3
|
Reshma CS, Remya S, Bindu J. A review of exploring the synthesis, properties, and diverse applications of poly lactic acid with a focus on food packaging application. Int J Biol Macromol 2024; 283:137905. [PMID: 39577526 DOI: 10.1016/j.ijbiomac.2024.137905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.
Collapse
Affiliation(s)
- C S Reshma
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies Panangad, Kerala, 682506, India; Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India
| | - S Remya
- Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India.
| | - J Bindu
- Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India.
| |
Collapse
|
4
|
Zhao X, Sun Y, Chang Z, Yao B, Han Z, Wang T, Shang N, Wang R. Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation. FERMENTATION-BASEL 2024; 10:533. [DOI: 10.3390/fermentation10100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Lactic acid (LA) plays a crucial role in the silage process, which occurs through LA fermentation. Consequently, there is a strong correlation between lactic acid production and the efficiency of the silage. However, traditional methods face challenges like long fermentation times, low acid production, and unstable quality, limiting agricultural preservation. This paper aims to explore innovations in lactic acid production technologies and show how these technologies have driven the development of silage fermentation for agricultural conservation. First, the important role of LA in agricultural preservation and the limitations of traditional silage techniques are presented. Next, advancements in LA production methods are thoroughly examined, covering the selection of microbial strains and the substitution of fermentation substrates. Following this, new technologies for silage fermentation are explored, drawing from innovations in LA production. These include the selection of LA strains, optimization of fermentation conditions, and improvements in fermentation techniques. These innovations have proven effective in increasing LA production, improving feed quality, extending shelf life, and providing new solutions to enhance agricultural production and sustainability.
Collapse
Affiliation(s)
- Xiaorui Zhao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyi Chang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Boqing Yao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Han
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Tianyi Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
5
|
Peng Q, Bao W, Geng B, Yang S. Biosensor-assisted CRISPRi high-throughput screening to identify genetic targets in Zymomonas mobilis for high d-lactate production. Synth Syst Biotechnol 2024; 9:242-249. [PMID: 38390372 PMCID: PMC10883783 DOI: 10.1016/j.synbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Lactate is an important monomer for the synthesis of poly-lactate (PLA), which is a substitute for the petrochemical plastics. To achieve the goal of high lactate titer, rate, and yield for commercial production, efficient lactate production pathway is needed as well as genetic targets that affect high lactate production and tolerance. In this study, an LldR-based d-lactate biosensor with a broad dynamic range was first applied into Zymomonas mobilis to select mutant strains with strong GFP fluorescence, which could be the mutant strains with increased d-lactate production. Then, LldR-based d-lactate biosensor was combined with a genome-wide CRISPR interference (CRISPRi) library targeting the entire genome to generate thousands of mutants with gRNA targeting different genetic targets across the whole genome. Specifically, two mutant libraries were selected containing 105 and 104 mutants with different interference sites from two rounds of fluorescence-activated cell sorting (FACS), respectively. Two genetic targets of ZMO1323 and ZMO1530 were characterized and confirmed to be associated with the increased d-lactate production, further knockout of ZMO1323 and ZMO1530 resulted in a 15% and 21% increase of d-lactate production, respectively. This work thus not only established a high-throughput approach that combines genome-scale CRISPRi and biosensor-assisted screening to identify genetic targets associated with d-lactate production in Z. mobilis, but also provided a feasible high-throughput screening approach for rapid identification of genetic targets associated with strain performance for other industrial microorganisms.
Collapse
Affiliation(s)
- Qiqun Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weiwei Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
6
|
Thitiprasert S, Jaiaue P, Amornbunchai N, Thammakes J, Piluk J, Srimongkol P, Tanasupawat S, Thongchul N. Association between organic nitrogen substrates and the optical purity of D-lactic acid during the fermentation by Sporolactobacillus terrae SBT-1. Sci Rep 2024; 14:10522. [PMID: 38719898 PMCID: PMC11079031 DOI: 10.1038/s41598-024-61247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The development of biotechnological lactic acid production has attracted attention to the potential production of an optically pure isomer of lactic acid, although the relationship between fermentation and the biosynthesis of highly optically pure D-lactic acid remains poorly understood. Sporolactobacillus terrae SBT-1 is an excellent D-lactic acid producer that depends on cultivation conditions. Herein, three enzymes responsible for synthesizing optically pure D-lactic acid, including D-lactate dehydrogenase (D-LDH; encoded by ldhDs), L-lactate dehydrogenase (L-LDH; encoded by ldhLs), and lactate racemase (Lar; encoded by larA), were quantified under different organic nitrogen sources and concentration to study the relationship between fermentation conditions and synthesis pathway of optically pure lactic acid. Different organic nitrogen sources and concentrations significantly affected the quantity and quality of D-lactic acid produced by strain SBT-1 as well as the synthetic optically pure lactic acid pathway. Yeast extract is a preferred organic nitrogen source for achieving high catalytic efficiency of D-lactate dehydrogenase and increasing the transcription level of ldhA2, indicating that this enzyme plays a major role in D-lactic acid formation in S. terrae SBT-1. Furthermore, lactate racemization activity could be regulated by the presence of D-lactic acid. The results of this study suggest that specific nutrient requirements are necessary to achieve a stable and highly productive fermentation process for the D-lactic acid of an individual strain.
Collapse
Affiliation(s)
- Sitanan Thitiprasert
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| | - Phetcharat Jaiaue
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Nichakorn Amornbunchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jesnipit Thammakes
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jirabhorn Piluk
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Somboon Tanasupawat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Nuttha Thongchul
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 2024; 10:e28615. [PMID: 38628756 PMCID: PMC11019186 DOI: 10.1016/j.heliyon.2024.e28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The recent growing interest in sustainable and alternative sources of energy and bio-based products has driven the paradigm shift to an integrated model termed "biorefinery." Biorefinery framework implements the concepts of novel eco-technologies and eco-efficient processes for the sustainable production of energy and value-added biomolecules. The utilization of microbial resources for the production of various value-added products has been documented in the literatures. However, the appointment of these microbial resources in integrated resource management requires a better understanding of their status. The main of aim of this review is to provide an overview on the defined positioning and overall contribution of the microbial resources, i.e., algae, fungi and bacteria, for various bioprocesses and generation of multiple products from a single biorefinery. By utilizing waste material as a feedstock, biofuels can be generated by microalgae while sequestering environmental carbon and producing value added compounds as by-products. In parallel, fungal biorefineries are prolific producers of lignocellulose degrading enzymes along with pharmaceutically important novel products. Conversely, bacterial biorefineries emerge as a preferred platform for the transformation of standard cells into proficient bio-factories, developing chassis and turbo cells for enhanced target compound production. This comprehensive review is poised to offer an intricate exploration of the current trends, obstacles, and prospective pathways of microbial biorefineries, for the development of future biorefineries.
Collapse
Affiliation(s)
- Suchitra Gaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Eldon R. Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| |
Collapse
|
8
|
Erdas A, Marti ME. Eco-Friendly Approach for the Recovery of Lactic Acid by Complex Extraction. ACS OMEGA 2024; 9:16959-16968. [PMID: 38645318 PMCID: PMC11025082 DOI: 10.1021/acsomega.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
To meet the growing demand for high-purity lactic acid (LA) for biocompatible and biodegradable polymers, LA recovery by green techniques has been attracting the attention. This study focuses on the evaluation of vegetable oils as organic phase diluents in complex extraction of LA with an aliphatic tertiary amine extractant, trioctylamine (TOA). Eight vegetable oils were tested, and their performances were evaluated individually and compared with those obtained using 1-octanol. Extraction yields with these oils were similar; however, efficiencies with safflower oil (SFO) were slightly higher than those obtained with other oils tested. Efficiency with SFO + TOA varied inversely with temperature and pH; however, it increased with higher LA and TOA concentrations. Within the ranges of parameters investigated, the highest yield in SFO was 66% and was achieved at the highest TOA (1.0 M) and LA (1.5 M) concentrations. The efficiency obtained in 1-octanol under the identical conditions was 76%. Thus, the yields obtained with SFO + TOA and 1-octanol + TOA were comparable under most of the conditions tested, especially at the higher LA concentrations, which is preferred for commercial production. Following that, >99% of the LA was transferred from the organic phase to the (second) aqueous phase using NaOH (1.0 M) as a stripping agent. The organic phase was tested in subsequent extractions, and yields comparable to those obtained in the first uses were achieved. This study demonstrated that vegetable oils have the potential to be used as organic phase diluents during complex extraction of LA.
Collapse
Affiliation(s)
- Aybikenur Erdas
- Department
of Chemical Engineering, Konya Technical
University, 42075 Konya, Turkey
| | - Mustafa Esen Marti
- Department
of Chemical Engineering, Konya Technical
University, 42075 Konya, Turkey
| |
Collapse
|
9
|
Aulitto M, Alfano A, Maresca E, Avolio R, Errico ME, Gentile G, Cozzolino F, Monti M, Pirozzi A, Donsì F, Cimini D, Schiraldi C, Contursi P. Thermophilic biocatalysts for one-step conversion of citrus waste into lactic acid. Appl Microbiol Biotechnol 2024; 108:155. [PMID: 38244047 PMCID: PMC10799777 DOI: 10.1007/s00253-023-12904-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/22/2024]
Abstract
Agri-food residues offer significant potential as a raw material for the production of L-lactic acid through microbial fermentation. Weizmannia coagulans, previously known as Bacillus coagulans, is a spore-forming, lactic acid-producing, gram-positive, with known probiotic and prebiotic properties. This study aimed to evaluate the feasibility of utilizing untreated citrus waste as a sustainable feedstock for the production of L-lactic acid in a one-step process, by using the strain W. coagulans MA-13. By employing a thermophilic enzymatic cocktail (Cellic CTec2) in conjunction with the hydrolytic capabilities of MA-13, biomass degradation was enhanced by up to 62%. Moreover, batch and fed-batch fermentation experiments demonstrated the complete fermentation of glucose into L-lactic acid, achieving a concentration of up to 44.8 g/L. These results point to MA-13 as a microbial cell factory for one-step production of L-lactic acid, by combining cost-effective saccharification with MA-13 fermentative performance, on agri-food wastes. Moreover, the potential of this approach for sustainable valorization of agricultural waste streams is successfully proven. KEY POINTS: • Valorization of citrus waste, an abundant residue in Mediterranean countries. • Sustainable production of the L-( +)-lactic acid in one-step process. • Enzymatic pretreatment is a valuable alternative to the use of chemical.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples "Federico II,", Naples, Italy
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy
| | - Emanuela Maresca
- Department of Biology, University of Naples "Federico II,", Naples, Italy
| | - Roberto Avolio
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Maria Emanuela Errico
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Annachiara Pirozzi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples "Federico II,", Naples, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
10
|
Yue S, Zhang M. Global trends and future prospects of lactic acid production from lignocellulosic biomass. RSC Adv 2023; 13:32699-32712. [PMID: 37942446 PMCID: PMC10628742 DOI: 10.1039/d3ra06577d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Lignocellulosic biomass (LCB) stands as a substantial and sustainable resource capable of addressing energy and environmental challenges. This study employs bibliometric analysis to investigate research trends in lactic acid (LA) production from LCB spanning the years 1991 to 2022. The analysis reveals a consistent growth trajectory with minor fluctuations in LA production from LCB. Notably, there's a significant upswing in publications since 2009. Bioresource Technology and Applied Microbiology and Biotechnology emerge as the top two journals with extensive contributions in the realm of LA production from LCB. China takes a prominent position in this research domain, boasting the highest total publication count (736), betweenness centrality value (0.30), and the number of collaborating countries (42), surpassing the USA and Japan by a considerable margin. The author keywords analysis provides valuable insights into the core themes in LA production from LCB. Furthermore, co-citation reference analysis delineates four principal domains related to LA production from LCB, with three associated with microbial conversion and one focused on chemical catalytic conversion. Additionally, this study examines commonly used LCB, microbial LA producers, and compares microbial fermentation to chemical catalytic conversion for LCB-based LA production, providing comprehensive insights into the current state of this field and suggesting future research directions.
Collapse
Affiliation(s)
- Siyuan Yue
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University Fukuoka 819-0395 Japan
- Institute of Microbiology, Jiangxi Academy of Sciences Nanchang Jiangxi Province 330096 China
| | - Min Zhang
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University Fukuoka 819-0395 Japan
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation Nanchang Jiangxi Province 330096 China
| |
Collapse
|
11
|
Wefelmeier K, Schmitz S, Haut AM, Otten J, Jülich T, Blank LM. Engineering the methylotrophic yeast Ogataea polymorpha for lactate production from methanol. Front Bioeng Biotechnol 2023; 11:1223726. [PMID: 37456718 PMCID: PMC10347679 DOI: 10.3389/fbioe.2023.1223726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Lactate has gained increasing attention as a platform chemical, particularly for the production of the bioplastic poly-lactic acid (PLA). While current microbial lactate production processes primarily rely on the use of sugars as carbon sources, it is possible to envision a future where lactate can be produced from sustainable, non-food substrates. Methanol could be such a potential substrate, as it can be produced by (electro)chemical hydrogenation from CO2. Methods: In this study, the use of the methylotrophic yeast Ogataea polymorpha as a host organism for lactate production from methanol was explored. To enable lactate production in Ogataea polymorpha, four different lactate dehydrogenases were expressed under the control of the methanol-inducible MOX promoter. The L-lactate dehydrogenase of Lactobacillus helveticus performed well in the yeast, and the lactate production of this engineered strain could additionally be improved by conducting methanol fed-batch experiments in shake flasks. Further, the impact of different nitrogen sources and the resulting pH levels on production was examined more closely. In order to increase methanol assimilation of the lactate-producing strain, an adaptive laboratory evolution experiment was performed. Results and Discussion: The growth rate of the lactate-producing strain on methanol was increased by 55%, while at the same time lactate production was preserved. The highest lactate titer of 3.8 g/L in this study was obtained by cultivating this evolved strain in a methanol fed-batch experiment in shake flasks with urea as nitrogen source. This study provides a proof of principle that Ogataea polymorpha is a suitable host organism for the production of lactate using methanol as carbon source. In addition, it offers guidance for the engineering of methylotrophic organisms that produce platform chemicals from CO2-derived substrates. With reduced land use, this technology will promote the development of a sustainable industrial biotechnology in the future.
Collapse
|
12
|
Chatterjee S, Gatreddi S, Gupta S, Nevarez JL, Rankin JA, Turmo A, Hu J, Hausinger RP. Unveiling the mechanisms and biosynthesis of a novel nickel-pincer enzyme. Biochem Soc Trans 2022; 50:1187-1196. [PMID: 35960008 PMCID: PMC9880988 DOI: 10.1042/bst20220490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/31/2023]
Abstract
The nickel-pincer nucleotide (NPN) coenzyme, a substituted pyridinium mononucleotide that tri-coordinates nickel, was first identified covalently attached to a lysine residue in the LarA protein of lactate racemase. Starting from nicotinic acid adenine dinucleotide, LarB carboxylates C5 of the pyridinium ring and hydrolyzes the phosphoanhydride, LarE converts the C3 and C5 carboxylates to thiocarboxylates, and LarC incorporates nickel to form a C-Ni and two S-Ni bonds, during the biosynthesis of this cofactor. LarB uses a novel carboxylation mechanism involving the transient formation of a cysteinyl-pyridinium adduct. Depending on the source of the enzyme, LarEs either catalyze a sacrificial sulfur transfer from a cysteinyl side chain resulting in the formation of dehydroalanine or they utilize a [4Fe-4S] cluster bound by three cysteine residues to accept and transfer a non-core sulfide atom. LarC is a CTP-dependent enzyme that cytidinylylates its substrate, adds nickel, then hydrolyzes the product to release NPN and CMP. Homologs of the four lar genes are widely distributed in microorganisms, with some species containing multiple copies of larA whereas others lack this gene, consistent with the cofactor serving other functions. Several LarA-like proteins were shown to catalyze racemase or epimerase activities using 2-hydroxyacid substrates other than lactic acid. Thus, lactate racemase is the founding member of a large family of NPN-containing enzymes.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Santhosh Gatreddi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Swati Gupta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jorge L. Nevarez
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Joel A. Rankin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Aiko Turmo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P. Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:58. [PMID: 35614459 PMCID: PMC9134653 DOI: 10.1186/s13068-022-02157-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/15/2022] [Indexed: 11/26/2022]
Abstract
Background Owing to increasing concerns about climate change and the depletion of fossil fuels, the development of efficient microbial processes for biochemical production from lignocellulosic biomass has been a key issue. Because process efficiency is greatly affected by the inherent metabolic activities of host microorganisms, it is essential to utilize a microorganism that can rapidly convert biomass-derived sugars. Here, we report a novel Vibrio-based microbial platform that can rapidly and simultaneously consume three major lignocellulosic sugars (i.e., glucose, xylose, and arabinose) faster than any previously reported microorganisms. Results The xylose isomerase pathway was constructed in Vibrio sp. dhg, which naturally displays high metabolic activities on glucose and arabinose but lacks xylose catabolism. Subsequent adaptive laboratory evolution significantly improved xylose catabolism of initial strain and led to unprecedently high growth and sugar uptake rate (0.67 h−1 and 2.15 g gdry cell weight−1 h−1, respectively). Furthermore, we achieved co-consumption of the three sugars by deletion of PtsG and introduction of GalP. We validated its superior performance and applicability by demonstrating efficient lactate production with high productivity (1.15 g/L/h) and titer (83 g/L). Conclusions In this study, we developed a Vibrio-based microbial platform with rapid and simultaneous utilization of the three major sugars from lignocellulosic biomass by applying an integrated approach of rational and evolutionary engineering. We believe that the developed strain can be broadly utilized to accelerate the production of diverse biochemicals from lignocellulosic biomass. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02157-3.
Collapse
|
14
|
Biryukova EN, Arinbasarova AY, Medentsev AG. L-Lactate Oxidase Systems of Microorganisms. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several organic acids have been indicated among the top value chemicals from biomass. Lignocellulose is among the most attractive feedstocks for biorefining processes owing to its high abundance and low cost. However, its highly complex nature and recalcitrance to biodegradation hinder development of cost-competitive fermentation processes. Here, current progress in development of single-pot fermentation (i.e., consolidated bioprocessing, CBP) of lignocellulosic biomass to high value organic acids will be examined, based on the potential of this approach to dramatically reduce process costs. Different strategies for CBP development will be considered such as: (i) design of microbial consortia consisting of (hemi)cellulolytic and valuable-compound producing strains; (ii) engineering of microorganisms that combine biomass-degrading and high-value compound-producing properties in a single strain. The present review will mainly focus on production of organic acids with application as building block chemicals (e.g., adipic, cis,cis-muconic, fumaric, itaconic, lactic, malic, and succinic acid) since polymer synthesis constitutes the largest sector in the chemical industry. Current research advances will be illustrated together with challenges and perspectives for future investigations. In addition, attention will be dedicated to development of acid tolerant microorganisms, an essential feature for improving titer and productivity of fermentative production of acids.
Collapse
|
16
|
Recent Advances in Lactic Acid Production by Lactic Acid Bacteria. Appl Biochem Biotechnol 2021; 193:4151-4171. [PMID: 34519919 DOI: 10.1007/s12010-021-03672-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Lactic acid can synthesize high value-added chemicals such as poly lactic acid. In order to further minimize the cost of lactic acid production, some effective strategies (e.g., effective mutagenesis and metabolic engineering) have been applied to increase productive capacity of lactic acid bacteria. In addition, low-cost cheap raw materials (e.g., cheap carbon source and cheap nitrogen source) are also used to reduce the cost of lactic acid production. In this review, we summarized the recent developments in lactic acid production, including efficient strain modification technology (high-efficiency mutagenesis means, adaptive laboratory evolution, and metabolic engineering), the use of low-cost cheap raw materials, and also discussed the future prospects of this field, which could promote the development of lactic acid industry.
Collapse
|
17
|
Jia Y, Niu CT, Xu X, Zheng FY, Liu CF, Wang JJ, Lu ZM, Xu ZH, Li Q. Metabolic potential of microbial community and distribution mechanism of Staphylococcus species during broad bean paste fermentation. Food Res Int 2021; 148:110533. [PMID: 34507779 DOI: 10.1016/j.foodres.2021.110533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/08/2023]
Abstract
Although the microbial diversity and structure in bean-based fermented foods have been widely studied, systematic studies on functional microbiota and mechanism of community forms in multi-microbial fermentation systems were still lacking. In this work, the metabolic pathway and functional potential of microbial community in broad bean paste (BBP) were investigated by metagenomics approach, and Staphylococcus, Bacillus, Weissella, Aspergillus and Zygosaccharomyces were found to be the potential predominant populations responsible for substrate alteration and flavor biosynthesis. Among them, Staphylococcus was the most abundant and widespread functional microbe, and closely related Staphylococcus species were diverse and ubiquitously distributed, with the opportunistic pathogen S. gallinarum being the most abundant Staphylococcus specie isolated from BBP. To explain the dominance status of S. gallinarum and species distributions of Staphylococcus genus, we tested the effects of abiotic and biotic factors on three Staphylococcus species using a tractable BBP model, demonstrating that adaptation to environmental conditions (environmental parameters and other functional microbes) led to the dominant position and species coexistence of Staphylococcus, and congeneric competition among Staphylococcus species further shaped ecological distributions of closely related Staphylococcus species. In general, this work revealed the metabolic potential of microbial community and distribution mechanism of Staphylococcus species during BBP fermentation, which could help traditional factories to more precisely control the safety and quality of bean-based fermented foods.
Collapse
Affiliation(s)
- Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng-Tuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fei-Yun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chun-Feng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jin-Jing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Jiangsu Modern Industrial Fermentation, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
19
|
Deng YP, Gan QH, Gao X, Jiang XQ, Wang SF. A green and efficient method for one-step synthesis of novel oxazolo[3,2-c]pyrimidine derivatives in lactic acid. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
de Albuquerque TL, Marques Júnior JE, de Queiroz LP, Ricardo ADS, Rocha MVP. Polylactic acid production from biotechnological routes: A review. Int J Biol Macromol 2021; 186:933-951. [PMID: 34273343 DOI: 10.1016/j.ijbiomac.2021.07.074] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022]
Abstract
Polylactic acid (PLA) has been highlighted as an important polymer due to its high potential for applicability in various areas, such as in the chemical, medical, pharmaceutical or biotechnology field. Very recently, studies have reported its use as a basic component for the production of personal protective equipment (PPE) required for the prevention of Sars-Cov-2 contamination, responsible for the cause of coronavirus disease, which is currently a major worldwide sanitary and social problem. PLA is considered a non-toxic, biodegradable and compostable plastic with interesting characteristics from the industrial point of view, and it emerges as a promising product under the concept of "green plastic", since most of the polymers produced currently are petroleum-based, a non-renewable raw material. Biotechnology routes have been mentioned as potential methodologies for the production of this polymer, especially by enzymatic routes, in particular by use of lipases enzymes. The availability of pure lactic acid isomers is a fundamental aspect of the manufacture of PLA with more interesting mechanical and thermal properties. Due to the technological importance that PLA-based polymers are acquiring, as well as their characteristics and applicability in several fields, especially medical, pharmaceutical and biotechnology, this review article sought to gather very recent information regarding the development of research in this area. The main highlight of this study is that it was carried out from a biotechnological point of view, aiming at a totally green bioplastic production, since the obtaining of lactic acid, which will be used as raw material for the PLA synthesis, until the degradation of the polymer obtained by biological routes.
Collapse
Affiliation(s)
- Tiago Lima de Albuquerque
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil
| | - José Edvan Marques Júnior
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil
| | - Lívia Pinheiro de Queiroz
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil
| | - Anderson Diógenes Souza Ricardo
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil
| | - Maria Valderez Ponte Rocha
- Universidade Federal do Ceará, Campus do Pici, Departament of Chemical Engineering, Bloco 709, 60455-760 Fortaleza, Ceará, Brazil.
| |
Collapse
|
21
|
Li J, Shi S, Wang Y, Jiang Z. Integrated production of optically pure l-lactic acid from paper mill sludge by simultaneous saccharification and co-fermentation (SSCF). WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 129:35-46. [PMID: 34023801 DOI: 10.1016/j.wasman.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Paper mill sludge (PMS) raises critical environmental issues due to its disposal problem, but its high sugar content and well-dispersed structure make it a great feedstock for biochemical production. The technical feasibility of integrating cellulase enzyme production into lactic acid (LA) fermentation from PMS was investigated in this study. The low ash content of PMS suggests a great potential for cellulase production. The enzyme produced using PMS without any treatment gave an activity of 7.8 FPU/ml, a performance comparable to the commercial enzyme, Cellic CTec 2. The LA yield from PMS with in-house enzyme was 64.7% and 73.7% at the enzyme loading of 10 and 15 FPU/g-glucan, respectively. The LA obtained was optically pure L- isomer with over 99% purity. The optimal condition of LA production by Bacillus coagulans was found to be 50 °C and pH 5.3 (with 50 g/L CaCO3). The nutrient effect of yeast extract (YE) and corn steep liquor (CSL) was substrate dependent, and CSL could substitute YE as an inexpensive nutrient when using PMS as a substrate.
Collapse
Affiliation(s)
- Jing Li
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States
| | - Suan Shi
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Zhihua Jiang
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
22
|
Ion-Exchange Technology for Lactic Acid Recovery in Downstream Processing: Equilibrium and Kinetic Parameters. WATER 2021. [DOI: 10.3390/w13111572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The downstream processing for the separation and purification of lactic acid is a hot research area in the bio-refinery field due to its continuous growing market in different sectors, such as the food, cosmetic and pharmaceutical sectors. In this work, the use of ion-exchange technology for lactic acid recovery is proposed. For that, four anion exchange resins with different polymer structures and functional groups were tested (A100, MN100, A200E and MP64). The sorption process was optimized by the Box–Behnken factorial design, and the experimental data obtained in the sorption process were analyzed by using the response surface methodology and fitted at different isotherms and kinetics models. Moreover, regenerant type, contact time and solid/liquid ratio were evaluated in the desorption process. Results showed that the best resin for lactic acid removal was A100, at pH = 4, with a resin/lactic acid solution ratio of 0.15 g/mL during a maximum of 1 h, achieving 85% of lactic acid removal. Moreover, equilibrium data sorption of lactic acid onto A100 resin was fitted by a Langmuir isotherm and by a kinetic model of a pseudo-second order. In addition, in the desorption process, it was stablished that a resin/regenerant ratio of 0.15 g/mL during 30 min with 0.1 M of NaOH solution provided the best results (4.45 ± 0.08 mg/g).
Collapse
|
23
|
Bang J, Ahn JH, Lee JA, Hwang CH, Kim GB, Lee J, Lee SY. Synthetic Formatotrophs for One-Carbon Biorefinery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100199. [PMID: 34194943 PMCID: PMC8224422 DOI: 10.1002/advs.202100199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Indexed: 06/13/2023]
Abstract
The use of CO2 as a carbon source in biorefinery is of great interest, but the low solubility of CO2 in water and the lack of efficient CO2 assimilation pathways are challenges to overcome. Formic acid (FA), which can be easily produced from CO2 and more conveniently stored and transported than CO2, is an attractive CO2-equivalent carbon source as it can be assimilated more efficiently than CO2 by microorganisms and also provides reducing power. Although there are native formatotrophs, they grow slowly and are difficult to metabolically engineer due to the lack of genetic manipulation tools. Thus, much effort is exerted to develop efficient FA assimilation pathways and synthetic microorganisms capable of growing solely on FA (and CO2). Several innovative strategies are suggested to develop synthetic formatotrophs through rational metabolic engineering involving new enzymes and reconstructed FA assimilation pathways, and/or adaptive laboratory evolution (ALE). In this paper, recent advances in development of synthetic formatotrophs are reviewed, focusing on biological FA and CO2 utilization pathways, enzymes involved and newly developed, and metabolic engineering and ALE strategies employed. Also, future challenges in cultivating formatotrophs to higher cell densities and producing chemicals from FA and CO2 are discussed.
Collapse
Affiliation(s)
- Junho Bang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jong An Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Chang Hun Hwang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107Republic of Korea
- C1 Gas Refinery R&D CenterSogang UniversitySeoul04107Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
- BioInformatics Research Center and BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
| |
Collapse
|
24
|
Boonluksiri Y, Prapagdee B, Sombatsompop N. Promotion of polylactic acid biodegradation by a combined addition of PLA-degrading bacterium and nitrogen source under submerged and soil burial conditions. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Yamada R, Kumata Y, Mitsui R, Matsumoto T, Ogino H. Improvement of lactic acid tolerance by cocktail δ-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae. World J Microbiol Biotechnol 2021; 37:19. [PMID: 33428004 DOI: 10.1007/s11274-020-02977-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Although, yeast Saccharomyces cerevisiae is expected to be used as a host for lactic acid production, improvement of yeast lactic acid tolerance is required for efficient non-neutralizing fermentation. In this study, we optimized the expression levels of various transcription factors to improve the lactic acid tolerance of yeast by a previously developed cocktail δ-integration strategy. By optimizing the expression levels of various transcription factors, the maximum D-lactic acid production and yield under non-neutralizing conditions were improved by 1.2. and 1.6 times, respectively. Furthermore, overexpression of PDR3, which is known as a transcription factor involved in multi-drug resistance, effectively improved lactic acid tolerance in yeast. In addition, we clarified for the first time that high expression of PDR3 contributes to the improvement of lactic acid tolerance. PDR3 is considered to be an excellent target gene for studies on yeast stress tolerance and further researches are desired in the future.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Yuki Kumata
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Mitsui
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
26
|
Catalytic Formation of Lactic and Levulinic Acids from Biomass Derived Monosaccarides through Sn-Beta Formed by Impregnation. Catalysts 2020. [DOI: 10.3390/catal10101219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, the use of Sn-Beta zeolite to facilitate the conversion of lignocellulosic biomass-derived glucose and xylose into lactic and levulinic acid was explored. The reactions were carried out in a batch reactor using water as the solvent. Water is the preferred solvent over methanol as it reduces downstream product acid recovery and purification complexity. Optimization experiments were performed for reaction temperature and residence time. Under optimized reaction conditions, the Sn-Beta facilitated reaction of a pure sugar solution resulted in lactic acid yields of 13 and 19 wt% of inlet carbon of glucose and xylose, respectively, plus levulinic acid yields of 18 and 0.8 wt%, respectively. When actual biomass-derived sugar solutions were tested, the yields of lactic acid were significantly higher than those from the optimized model solution experiments with lactic acid yields of 34 wt%. These biomass-derived sugar solutions contained residual levels of CaSO4 from the neutralization step of the hydrolysis process. Further experiments were performed to examine the potential effects from CaSO4 contributing to this increase. It was found that the sulfate ions increased the Brønsted basicity and the calcium increased the Lewis acidity of the reaction solution, and that the combination of both effects increased the conversion of the original sugars into lactic acid. These effects were verified by testing other organic bases to isolate the Brønsted acid neutralization effect and the Lewis acid enhancement effect. The addition of CaSO4 resulted in attractive lactic acid yields, 68 wt% and 50 wt% of inlet carbon from pure glucose and xylose solutions, respectively. Increasing the actual corn stover and forage sorghum derived sugars concentration (in water) allowed lactic acids yields of greater than 60 wt% to be achieved. When the optimized Sn-Beta reaction system was applied to corn stover and forage sorghum mixtures, it was found that the ratio of lactic-to-levulinic acid generated was inversely dependent upon the glucose-to-xylose ratio in the recovered sugar mixture.
Collapse
|
27
|
Mazzoli R, Olson DG, Lynd LR. Construction of lactic acid overproducing Clostridium thermocellum through enhancement of lactate dehydrogenase expression. Enzyme Microb Technol 2020; 141:109645. [PMID: 33051021 DOI: 10.1016/j.enzmictec.2020.109645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
Rapid expansion of global market of lactic acid (LA) has prompted research towards cheaper and more eco-friendly strategies for its production. Nowadays, LA is produced mainly through fermentation of simple sugars or starchy biomass (e.g. corn) and its price is relatively high. Lignocellulose could be an advantageous alternative feedstock for LA production owing to its high abundance and low cost. However, the most effective natural producers of LA cannot directly ferment lignocellulose. So far, metabolic engineering aimed at developing microorganisms combining efficient LA production and cellulose hydrolysis has been generally based on introducing designer cellulase systems in natural LA producers. In the present study, the approach consisted in improving LA production in the natural cellulolytic bacterium Clostridium thermocellum DSM1313. The expression of the native lactate dehydrogenase was enhanced by functional replacement of its original promoter with stronger ones resulting in a 10-fold increase in specific activity, which resulted in a 2-fold increase of LA yield. It is known that eliminating allosteric regulation can also increase lactic acid production in C. thermocellum, however we were unable to insert strong promoters upstream of the de-regulated ldh gene. A strategy combining these regulations and inactivation of parasitic pathways appears essential for developing a homolactic C. thermocellum.
Collapse
Affiliation(s)
- R Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy; Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
| | - D G Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - L R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
28
|
Sierra-Ibarra E, Leal-Reyes LJ, Huerta-Beristain G, Hernández-Orihuela AL, Gosset G, Martínez-Antonio A, Martinez A. Limited oxygen conditions as an approach to scale-up and improve D and L-lactic acid production in mineral media and avocado seed hydrolysates with metabolically engineered Escherichia coli. Bioprocess Biosyst Eng 2020; 44:379-389. [PMID: 33029675 DOI: 10.1007/s00449-020-02450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
The effectiveness of micro-aeration on lactate (LA) production by metabolically engineered Escherichia coli was evaluated in 1 L bioreactors containing mineral media and glucose (70 g/L). Volumetric oxygen transfer coefficients (kLa) between 12.6 and 28.7 h-1 increased the specific growth rate (µ) and volumetric productivity (QLA) by 300 and 400%, respectively, without a significant decrease in lactate yield (YLA), when compared with non-aerated fermentations. A kLa of 12.6 h-1 was successfully used as a criterion to scale-up the production of L and D-lactate from 1 to 11 and 130 L. Approximately constant QLA and YLA values were obtained throughout the fermentation scale-up process. Furthermore, a D-lactogenic fermentation was carried out in 1 L bioreactors using avocado seed hydrolysate as a culture medium under the same kLa value, displaying high QLA and YLA.
Collapse
Affiliation(s)
- Estefanía Sierra-Ibarra
- Departamento de Ingeniería Celular Y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Laura J Leal-Reyes
- Departamento de Ingeniería Celular Y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Gerardo Huerta-Beristain
- Departamento de Ingeniería Celular Y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México.,Facultad de Ciencias Quıímico Biológicas, Universidad Autónoma de Guerrero, Av. Lazaro Cardenas S/N. Cd. Universitaria, 39070, Chilpancingo, Guerrero, Mexico
| | - Ana L Hernández-Orihuela
- Departamento de Ingeniería Genética. Centro de Investigación Y de Estudios Avanzados del, Instituto Politécnico Nacional. Unidad Irapuato. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, C.P. 36821, Guanajuato, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular Y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Agustino Martínez-Antonio
- Departamento de Ingeniería Genética. Centro de Investigación Y de Estudios Avanzados del, Instituto Politécnico Nacional. Unidad Irapuato. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, C.P. 36821, Guanajuato, México
| | - Alfredo Martinez
- Departamento de Ingeniería Celular Y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México.
| |
Collapse
|
29
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
30
|
Gubelt A, Blaschke L, Hahn T, Rupp S, Hirth T, Zibek S. Comparison of Different Lactobacilli Regarding Substrate Utilization and Their Tolerance Towards Lignocellulose Degradation Products. Curr Microbiol 2020; 77:3136-3146. [PMID: 32728792 PMCID: PMC7452873 DOI: 10.1007/s00284-020-02131-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/14/2020] [Indexed: 11/29/2022]
Abstract
Fermentative lactic acid production is currently impeded by low pH tolerance of the production organisms, the successive substrate consumption of the strains and/or the requirement to apply purified substrate streams. We identified Lactobacillus brevis IGB 1.29 in compost, which is capable of producing lactic acid at low pH values from lignocellulose hydrolysates, simultaneously consuming glucose and xylose. In this study, we compared Lactobacillus brevis IGB 1.29 with the reference strains Lactobacillus brevis ATCC 367, Lactobacillus plantarum NCIMB 8826 and Lactococcus lactis JCM 7638 with regard to the consumption of C5- and C6-sugars. Simultaneous conversion of C5- and C6-monosaccharides was confirmed for L. brevis IGB 1.29 with consumption rates of 1.6 g/(L h) for glucose and 1.0 g/(L h) for xylose. Consumption rates were lower for L. brevis ATCC 367 with 0.6 g/(L h) for glucose and 0.2 g/(L h) for xylose. Further trials were carried out to determine the sensitivity towards common toxic degradation products in lignocellulose hydrolysates: acetate, hydroxymethylfurfural, furfural, formate, levulinic acid and phenolic compounds from hemicellulose fraction. L. lactis was the least tolerant strain towards the inhibitors, whereas L. brevis IGB 1.29 showed the highest tolerance. L. brevis IGB 1.29 exhibited only 10% growth reduction at concentrations of 26.0 g/L acetate, 1.2 g/L furfural, 5.0 g/L formate, 6.6 g/L hydroxymethylfurfural, 9.2 g/L levulinic acid or 2.2 g/L phenolic compounds. This study describes a new strain L. brevis IGB 1.29, that enables efficient lactic acid production with a lignocellulose-derived C5- and C6-sugar fraction.
Collapse
Affiliation(s)
- Angela Gubelt
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Institute for Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Lisa Blaschke
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Thomas Hahn
- Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany
| | - Steffen Rupp
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany
| | - Thomas Hirth
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany. .,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany.
| |
Collapse
|
31
|
Liang S, Jiang W, Song Y, Zhou SF. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by Lactobacillus delbrueckii Submitted to Adaptive Laboratory Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7660-7669. [PMID: 32603099 DOI: 10.1021/acs.jafc.0c00259] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To decrease d-lactic acid production cost, sugarcane molasses and soybean meal, low-cost agro-industrial wastes, were selected as feedstock. First, sugarcane molasses was used directly by Lactobacillus delbrueckii S-NL31, and the nutrients were released from soybean meal by protease hydrolysis. Subsequently, to ensure intensive substrate utilization and enhanced d-lactic acid production from sugarcane molasses and soybean meal, adaptation of L. delbrueckii S-NL31 to substrates was performed through adaptive laboratory evolution. After two-phase adaptive laboratory evolution, the evolved strain L. delbrueckii S-NL31-CM3-SBM with improved cell growth and d-lactic acid production on sugarcane molasses and soybean meal was obtained. To decipher the potential reasons for improved fermentation performance, a metabolomics-based approach was developed to profile the differences of intracellular metabolism between initial and evolved strain. The in-depth analysis elucidated how the key factors exerted influence on d-lactic acid biosynthesis. The results revealed that the enhancement of glycolysis pathway and cofactor supply was directly associated with increased lactic acid production, and the reinforcement of pentose phosphate pathway, amino acid metabolism, and oleic acid uptake improved cell survival and growth. These might be the main reasons for significantly improved d-lactic acid production by adaptive laboratory evolution. Finally, fed-batch simultaneous enzymatic hydrolysis of soybean meal and fermentation process by evolved strain resulted in d-lactic acid levels of 112.3 g/L, with an average production efficiency of 2.4 g/(L × h), a yield of 0.98 g/g sugar, and optical purity of 99.6%. The results show the applicability of d-lactic acid production in L. delbrueckii fed on agro-industrial wastes through adaptive laboratory evolution.
Collapse
Affiliation(s)
- Shaoxiong Liang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Yibo Song
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
32
|
Iglesias J, Martínez-Salazar I, Maireles-Torres P, Martin Alonso D, Mariscal R, López Granados M. Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chem Soc Rev 2020; 49:5704-5771. [PMID: 32658221 DOI: 10.1039/d0cs00177e] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Polymers are ubiquitously present in our daily life because they can meet a wide range of needs and fields of applications. This success, based on an irresponsible linear consumption of plastics and the access to cheap oil, is creating serious environmental problems. Two lines of actions are needed to cope with them: to adopt a circular consumption of plastics and to produce renewable carbon-neutral monomers. This review analyses the recent advances in the chemocatalytic processes for producing biomass-derived carboxylic acids. These renewable carboxylic acids are involved in the synthesis of relevant general purpose and specialty polyesters and polyamides; some of them are currently derived from oil, while others can become surrogates of petrochemical polymers due to their excellent performance properties. Polyesters and polyamides are very suitable to be depolymerised to other valuable chemicals or to their constituent monomers, what facilitates the circular reutilisation of these monomers. Different types of carboxylic acids have been included in this review: monocarboxylic acids (like glycolic, lactic, hydroxypropanoic, methyl vinyl glycolic, methyl-4-methoxy-2-hydroxybutanoic, 2,5-dihydroxypent-3-enoic, 2,5,6-trihydroxyhex-3-enoic acids, diphenolic, acrylic and δ-amino levulinic acids), dicarboxylic acids (2,5-furandicarboxylic, maleic, succinic, adipic and terephthalic acids) and sugar acids (like gluconic and glucaric acids). The review evaluates the technology status and the advantages and drawbacks of each route in terms of feedstock, reaction pathways, catalysts and economic and environmental evaluation. The prospects and the new research that should be undertaken to overcome the main problems threatening their economic viability or the weaknesses that prevent their commercial implementation have also been underlined.
Collapse
Affiliation(s)
- J Iglesias
- Chemical & Environmental Engineering Group, Universidad Rey Juan Carlos, C/Tulipan, s/n, Mostoles, Madrid 28933, Spain
| | - I Martínez-Salazar
- EQS Group (Sustainable Energy and Chemistry Group), Institute of Catalysis and Petrochemistry (CSIC), C/Marie Curie, 2, 28049 Madrid, Spain.
| | - P Maireles-Torres
- Universidad de Málaga, Departamento de Química Inorgánica, Cristalografia y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, 29071 Málaga, Spain
| | - D Martin Alonso
- Glucan Biorenewables LLC, Madison, WI 53719, USA and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - R Mariscal
- EQS Group (Sustainable Energy and Chemistry Group), Institute of Catalysis and Petrochemistry (CSIC), C/Marie Curie, 2, 28049 Madrid, Spain.
| | - M López Granados
- EQS Group (Sustainable Energy and Chemistry Group), Institute of Catalysis and Petrochemistry (CSIC), C/Marie Curie, 2, 28049 Madrid, Spain.
| |
Collapse
|
33
|
Chai LJ, Shen MN, Sun J, Deng YJ, Lu ZM, Zhang XJ, Shi JS, Xu ZH. Deciphering the d-/l-lactate-producing microbiota and manipulating their accumulation during solid-state fermentation of cereal vinegar. Food Microbiol 2020; 92:103559. [PMID: 32950153 DOI: 10.1016/j.fm.2020.103559] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/30/2023]
Abstract
Symphony orchestra of multi-microorganisms characterizes the solid-state acetic acid fermentation process of Chinese cereal vinegars. Lactate is the predominant non-volatile acid and plays indispensable roles in flavor formation. This study investigated the microbial consortia driving the metabolism of D-/l-lactate during fermentation. Sequencing analysis based on D-/l-lactate dehydrogenase genes demonstrated that Lactobacillus (relative abundance: > 95%) dominated the production of both d-lactate and l-lactate, showing species-specific features between the two types. Lactobacillus helveticus (>65%) and L. reuteri (~80%) respectively dominated l- and d-lactate-producing communities. D-/l-lactate production and utilization capabilities of eight predominant Lactobacillus strains were determined by culture-dependent approach. Subsequently, D-/l-lactate producer L. plantarum M10-1 (d:l ≈ 1:1), l-lactate producer L. casei 21M3-1 (D:L ≈ 0.2:9.8) and D-/l-lactate utilizer Acetobacter pasteurianus G3-2 were selected to modulate the metabolic flux of D-/l-lactate of microbial consortia. The production ratio of D-/l-lactate was correspondingly shifted coupling with microbial consortia changes. Bioaugmentation with L.casei 21M3-1 merely enhanced l-lactate production, displaying ~4-fold elevation at the end of fermentation. Addition of L.plantarum M10-1 twice increased both D- and l-lactate production, while A. pasteurianus G3-2 decreased the content of D-/l-isomer. Our results provided an alternative strategy to specifically manipulate the metabolic flux within microbial consortia of certain ecological niches.
Collapse
Affiliation(s)
- Li-Juan Chai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Mi-Na Shen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jia Sun
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yong-Jian Deng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, PR China.
| |
Collapse
|
34
|
Flores AD, Choi HG, Martinez R, Onyeabor M, Ayla EZ, Godar A, Machas M, Nielsen DR, Wang X. Catabolic Division of Labor Enhances Production of D-Lactate and Succinate From Glucose-Xylose Mixtures in Engineered Escherichia coli Co-culture Systems. Front Bioeng Biotechnol 2020; 8:329. [PMID: 32432089 PMCID: PMC7214542 DOI: 10.3389/fbioe.2020.00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Although biological upgrading of lignocellulosic sugars represents a promising and sustainable route to bioplastics, diverse and variable feedstock compositions (e.g., glucose from the cellulose fraction and xylose from the hemicellulose fraction) present several complex challenges. Specifically, sugar mixtures are often incompletely metabolized due to carbon catabolite repression while composition variability further complicates the optimization of co-utilization rates. Benefiting from several unique features including division of labor, increased metabolic diversity, and modularity, synthetic microbial communities represent a promising platform with the potential to address persistent bioconversion challenges. In this work, two unique and catabolically orthogonal Escherichia coli co-cultures systems were developed and used to enhance the production of D-lactate and succinate (two bioplastic monomers) from glucose-xylose mixtures (100 g L-1 total sugars, 2:1 by mass). In both cases, glucose specialist strains were engineered by deleting xylR (encoding the xylose-specific transcriptional activator, XylR) to disable xylose catabolism, whereas xylose specialist strains were engineered by deleting several key components involved with glucose transport and phosphorylation systems (i.e., ptsI, ptsG, galP, glk) while also increasing xylose utilization by introducing specific xylR mutations. Optimization of initial population ratios between complementary sugar specialists proved a key design variable for each pair of strains. In both cases, ∼91% utilization of total sugars was achieved in mineral salt media by simple batch fermentation. High product titer (88 g L-1 D-lactate, 84 g L-1 succinate) and maximum productivity (2.5 g L-1 h-1 D-lactate, 1.3 g L-1 h-1 succinate) and product yield (0.97 g g-total sugar-1 for D-lactate, 0.95 g g-total sugar-1 for succinate) were also achieved.
Collapse
Affiliation(s)
- Andrew D. Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Hyun G. Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rodrigo Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - E. Zeynep Ayla
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Amanda Godar
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Michael Machas
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
35
|
Balakrishnan R, Tadi SRR, Pavan ASS, Sivaprakasam S, Rajaram S. Effect of nitrogen sources and neutralizing agents on D-lactic acid production from Kodo millet bran hydrolysate: comparative study and kinetic analysis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:915-926. [PMID: 32123412 PMCID: PMC7026326 DOI: 10.1007/s13197-019-04124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/13/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
D-lactic acid (DLA) serves as a key monomer enhancing both the mechanical and thermal properties of Poly(lactic) acid films and coatings, extensively used in the food packaging industry. Economically viable production of optically pure DLA by Lactobacillus delbrueckii NBRC3202 was achieved using a low-cost carbon source, Kodo millet bran residue hydrolysate (KMBRH) and nitrogen source (casein enzyme hydrolysate (CEH) resulting in a high DLA yield of 0.99 g g-1 and KMBRH conversion to final product (95.3%). The optimum values for kinetic parameters viz., specific growth rate (0.11 h-1), yield coefficient of biomass on KMBRH (0.10 g g-1) and DLA productivity (0.45 g L-1 h-1) were achieved at 5 g L-1 of CEH dosage under controlled pH environment. A comparative study and kinetic analysis of different neutralizing agents (NaOH, NH3, CaCO3 and NaHCO3) under pH controlled environment for KMBRH based DLA production was addressed effectively through bioreactor scale experiments. Maximum cell concentration (1.29 g L-1) and DLA titer (45.08 g L-1) were observed with NH3 as a neutralizing agent. Kinetic analysis of DLA production under different neutralization agents demonstrated that the logistic derived model predicted biomass growth, KMBRH consumption and DLA production efficiently (R 2 > 0.92).
Collapse
Affiliation(s)
- Rengesh Balakrishnan
- 1Department of Biotechnology, Kamaraj College of Engineering and Technology, K.Vellakulam, Madurai District, 625701 Tamilnadu India
| | - Subbi Rami Reddy Tadi
- 2BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam India
| | - Allampalli Satya Sai Pavan
- 2BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam India
| | - Senthilkumar Sivaprakasam
- 2BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam India
| | - Shyamkumar Rajaram
- 1Department of Biotechnology, Kamaraj College of Engineering and Technology, K.Vellakulam, Madurai District, 625701 Tamilnadu India
| |
Collapse
|
36
|
Mazzoli R. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass. Biotechnol Appl Biochem 2020; 67:61-72. [DOI: 10.1002/bab.1869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional BiochemistryLaboratory of Proteomics and Metabolic Engineering of ProkaryotesDepartment of Life Sciences and Systems BiologyUniversity of Torino Torino Italy
| |
Collapse
|
37
|
Cai C, Zhu C, Wang H, Xin H, Xiu Z, Wang C, Zhang Q, Liu Q, Ma L. Catalytic Hydrogenolysis of Biomass-derived Polyhydric Compounds to C2–C3 Small- Molecule Polyols: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190913185618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biomass energy has attracted much attention because of its clean and renewable
characteristics. At present, C2–C3 polyols such as glycerol, 1,2-propanediol, and ethylene
glycol, widely used as platforms for downstream chemicals or directly used as chemicals
in diversified industries, mainly depend on the petrochemical industry. In terms of the
feedstock for C2–C3 polyol production, the C3-derived glycerol is a side product during
biodiesel synthesis, whereas the C5-derived xylitol and C6-derived sorbitol can be mainly
obtained by hydrolysis–hydrogenation of hemicellulose and cellulose from lignocellulosic
biomass, respectively. In this review, we summarize the catalysts and catalysis for selective
hydrogenolysis of these polyhydric compounds to C2–C3 polyols and introduce the
reaction pathways for the target polyol formation based on the C3, C5, and C6 polyhydric
alcohol hydrogenolysis. Finally, state-of-the-art technologies are described and the remaining challenges and
further prospects are presented in view of the technical aspects.
Collapse
Affiliation(s)
- Chiliu Cai
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Changhui Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Haosheng Xin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Zhongxun Xiu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Qi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| |
Collapse
|
38
|
Leszczewicz M, Walczak P. Selection of Thermotolerant Corynebacterium glutamicum Strains for Organic Acid Biosynthesis. Food Technol Biotechnol 2019; 57:249-259. [PMID: 31537974 PMCID: PMC6718964 DOI: 10.17113/ftb.57.02.19.5980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, Corynebacterium glutamicum has been considered as producer of many valuable chemical compounds. Among them, organic acids such as l-lactic and succinic acids are the most important ones. It is known that the wild-type C. glutamicum grows well in the temperature range between 25 and 37 °C. Above 40 °C, the biomass growth usually abruptly stops; however, the bacteria remain metabolically active. High temperature affects the metabolic activity of C. glutamicum cells and can lead to changes in the composition and quantity of the fermentation products. Therefore, in a series of subsequent selection steps, we tried to obtain prototrophic strains capable of growing at 44 °C from the culture of homoserine auxotroph C. glutamicum ATCC 13287. During selection, we used complex and mineral media containing succinic and citric acids. As a result, we obtained 47 clones able to grow at elevated temperature. Moreover, the estimated optimal growth temperature for several of them was about 40 °C or higher. Under oxygen limitation conditions, C. glutamicum strains produce organic acids. Regardless of the tested clone, l-lactic acid was the main product. However, its concentration was the highest in the cultures performed at 44 °C. The elevated temperature also affected the biosynthesis of other organic acids. Compared to the parental strain, the concentration of acetic acid increased, and of succinic acid decreased in the cultures of thermotolerant strains. Strain RCG44.3 exhibited interesting properties; it was able to synthesise 27.1 g/L l-lactic acid, with production yield of 0.57 g/g, during 24 h of fermentation at 44 °C.
Collapse
Affiliation(s)
- Martyna Leszczewicz
- Industrial Biotechnology Laboratory, "Bionanopark" Ltd., Dubois 114/116, 93-465 Łódź, Poland.,Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| | - Piotr Walczak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| |
Collapse
|
39
|
Tarraran L, Mazzoli R. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives. FEMS Microbiol Lett 2019; 365:4995910. [PMID: 30007320 DOI: 10.1093/femsle/fny126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria (LAB) have a long history in industrial processes as food starters and biocontrol agents, and also as producers of high-value compounds. Lactic acid, their main product, is among the most requested chemicals because of its multiple applications, including the synthesis of biodegradable plastic polymers. Moreover, LAB are attractive candidates for the production of ethanol, polyhydroalkanoates, sweeteners and exopolysaccharides. LAB generally have complex nutritional requirements. Furthermore, they cannot directly ferment inexpensive feedstocks such as lignocellulose. This significantly increases the cost of LAB fermentation and hinders its application in the production of high volumes of low-cost chemicals. Different strategies have been explored to extend LAB fermentation to lignocellulosic biomass. Fermentation of lignocellulose hydrolysates by LAB has been frequently reported and is the most mature technology. However, current economic constraints of this strategy have driven research for alternative approaches. Co-cultivation of LAB with native cellulolytic microorganisms may reduce the high cost of exogenous cellulase supplementation. Special attention is given in this review to the construction of recombinant cellulolytic LAB by metabolic engineering, which may generate strains able to directly ferment plant biomass. The state of the art of these strategies is illustrated along with perspectives of their applications to industrial second generation biorefinery processes.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
40
|
Pleissner D, Dietz D, van Duuren JBJH, Wittmann C, Yang X, Lin CSK, Venus J. Biotechnological Production of Organic Acids from Renewable Resources. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 166:373-410. [PMID: 28265703 DOI: 10.1007/10_2016_73] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.
Collapse
Affiliation(s)
- Daniel Pleissner
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Donna Dietz
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Xiaofeng Yang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Joachim Venus
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
41
|
On the use of resting L. delbrueckii spp. delbrueckii cells for D-lactic acid production from orange peel wastes hydrolysates. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Alves De Oliveira R, Alexandri M, Komesu A, Venus J, Vaz Rossell CE, Maciel Filho R. Current Advances in Separation and Purification of Second-Generation Lactic Acid. SEPARATION AND PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1590412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Regiane Alves De Oliveira
- Laboratory of Optimization, Department of Process and Product Development, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alexandri
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | - Andrea Komesu
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Joachim Venus
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | | | - Rubens Maciel Filho
- Laboratory of Optimization, Department of Process and Product Development, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
44
|
A Process Study of Lactic Acid Production from Phragmites australis Straw by a Thermophilic Bacillus coagulans Strain under Non-Sterilized Conditions. Processes (Basel) 2018. [DOI: 10.3390/pr6100175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phragmites australis straw (PAS) is an abundant and renewable wetland lignocellulose. Bacillus coagulans IPE22 is a robust thermophilic strain with pentose-utilizing capability and excellent resistance to growth inhibitors. This work is focused on the process study of lactic acid (LA) production from P. australis lignocellulose which has not been attempted previously. By virtue of thermophilic feature of strain IPE22, two fermentation processes (i.e., separated process and integrated process), were developed and compared under non-sterilized conditions. The integrated process combined dilute-acid pretreatment, hemicellulosic hydrolysates fermentation, and cellulose utilization. Sugars derived from hemicellulosic hydrolysates and cellulose enzymatic hydrolysis were efficiently fermented to LA in a single vessel. Using the integrated process, 41.06 g LA was produced from 100 g dry PAS. The established integrated process results in great savings in terms of time and labor, and the fermentation process under non-sterilized conditions is easy to scale up for economical production of lactic acid from PAS.
Collapse
|
45
|
Li P, Tian W, Jiang Z, Liang Z, Wu X, Du B. Genomic Characterization and Probiotic Potency of Bacillus sp. DU-106, a Highly Effective Producer of L-Lactic Acid Isolated From Fermented Yogurt. Front Microbiol 2018; 9:2216. [PMID: 30294310 PMCID: PMC6158304 DOI: 10.3389/fmicb.2018.02216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/30/2018] [Indexed: 01/23/2023] Open
Abstract
Bacillus sp. DU-106, a newly isolated member of Bacillus cereus group, exhibits the predominant ability to produce L-lactic acid. The probiotic potency of test strain revealed its survivability at acidic pH, bile salts and viability in simulated gastric juice in vitro. The acute oral toxicity test indicated its no toxicity to laboratory mice in vivo. We further determined the complete genome of strain DU-106 to understand genetic basis as a potential probiotic. It has a circular chromosome and three plasmids for a total genome 5,758,208 bp in size with a G + C content of 35.10%. Genes associated with lactate synthesis were found in the DU-106 genome. We also annotated various stress-related, bile salt resistance, and adhesion-related domains in this strain, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival under gastrointestinal tract. Moreover, strain DU-106 genome lacks the virulence genes encodes cereulide synthetase, enterotoxin FM, and cytotoxin K. These phenotypic and genomic probiotic potencies facilitate its potential candidate as probiotic starter in food industry.
Collapse
Affiliation(s)
- Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhuo Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zuanhao Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xueyin Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1461-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Pejin J, Radosavljević M, Pribić M, Kocić-Tanackov S, Mladenović D, Djukić-Vuković A, Mojović L. Possibility of L-(+)-lactic acid fermentation using malting, brewing, and oil production by-products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:153-163. [PMID: 30343741 DOI: 10.1016/j.wasman.2018.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Industrial by-products such as brewer's spent grain (BSG) hydrolysate, malt rootlets extract (MRE) and soybean meal extract (SME) were used for L-(+) lactic acid (LA) production by a pure L. rhamnosus ATCC 7469 strain. The effect of the addition of MRE (10-50%) or SME (10-50%) in BSG hydrolysate on batch and fed-batch LA fermentation was evaluated. The addition of MRE and SME increased the concentration of free amino nitrogen (FAN) and essential minerals (Fe, Mg, Mn, and Zn), which had a positive effect on the fermentation. Also, the MRE addition significantly lowered C/N ration to a more favorable level for the efficient LA fermentation. In batch fermentation, the highest LA concentration (25.73 g/L), yield (86.31%), and volumetric productivity (0.95 g/L h-1), were obtained with the addition of 50% MRE. Further increase in LA concentration to 58.01 g/L, yield to 88.54%, and volumetric productivity to 1.19 g/L h-1 was achieved in fed-batch fermentation with addition of 50% MRE. A high optical purity of LA with 99.7% of L-(+)-isomer was obtained on the substrate based on industrial by-products. In addition, solid remains after BSG hydrolysis and MRE and SME preparation, together with the biomass of L. rhamnosus separated after the fermentation could be a good base for feed preparation.
Collapse
Affiliation(s)
- Jelena Pejin
- University of Novi Sad, Faculty of Technology, 21 000 Novi Sad, Bulevar cara Lazara 1, Serbia
| | - Miloš Radosavljević
- University of Novi Sad, Faculty of Technology, 21 000 Novi Sad, Bulevar cara Lazara 1, Serbia.
| | - Milana Pribić
- University of Novi Sad, Faculty of Technology, 21 000 Novi Sad, Bulevar cara Lazara 1, Serbia
| | - Sunčica Kocić-Tanackov
- University of Novi Sad, Faculty of Technology, 21 000 Novi Sad, Bulevar cara Lazara 1, Serbia
| | - Dragana Mladenović
- University of Belgrade, Faculty of Technology and Metallurgy, 11 000 Belgrade, Karnegijeva 4, Serbia
| | - Aleksandra Djukić-Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, 11 000 Belgrade, Karnegijeva 4, Serbia
| | - Ljiljana Mojović
- University of Belgrade, Faculty of Technology and Metallurgy, 11 000 Belgrade, Karnegijeva 4, Serbia
| |
Collapse
|
48
|
Okano K, Honda K, Taniguchi H, Kondo A. De novo design of biosynthetic pathways for bacterial production of bulk chemicals and biofuels. FEMS Microbiol Lett 2018; 365:5087733. [DOI: 10.1093/femsle/fny215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kenji Okano
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Kohsuke Honda
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Hironori Taniguchi
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657–8501, Japan
| |
Collapse
|
49
|
Wang Y, Cao W, Luo J, Wan Y. Exploring the potential of lactic acid production from lignocellulosic hydrolysates with various ratios of hexose versus pentose by Bacillus coagulans IPE22. BIORESOURCE TECHNOLOGY 2018; 261:342-349. [PMID: 29677662 DOI: 10.1016/j.biortech.2018.03.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate the feasibility of utilizing different lignocellulosic hydrolysates with various hexose versus pentose (H:P) ratios to produce lactic acid (LA) from Bacillus coagulans IPE22 by fermentations with single and mixed sugar. In single sugar utilization, glucose tended to promote LA production, and xylose preferred to enhance cell growth. In mixed sugar utilization, glucose and pentose were consumed simultaneously when glucose concentration was lower than 20 g/L, and almost the same concentration of LA (50 g/L) was obtained regardless of the differences of H:P values. Finally, LA production from corn cob hydrolysates (CCH) contained 60 g/L mixed sugar verified the mechanisms found in the fermentations with simulated sugar mixture. Comparing with single glucose utilization, CCH utilization was faster and the yield of LA was not significantly affected. Therefore, the great potential of producing LA with lignocellulosic materials by B. coagulans was proved.
Collapse
Affiliation(s)
- Yujue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
50
|
Park HJ, Bae J, Ko H, Lee S, Sung BH, Han J, Sohn J. Low‐pH production of
d
‐lactic acid using newly isolated acid tolerant yeast
Pichia kudriavzevii
NG7. Biotechnol Bioeng 2018; 115:2232-2242. [DOI: 10.1002/bit.26745] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/03/2018] [Accepted: 06/08/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Hyun Joo Park
- Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Cell Factory Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Jung‐Hoon Bae
- Cell Factory Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Hyeok‐Jin Ko
- Cell Factory Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Sun‐Hee Lee
- Cell Factory Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Bong Hyun Sung
- Cell Factory Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Jong‐In Han
- Department of Civil and Environmental EngineeringKorea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Jung‐Hoon Sohn
- Cell Factory Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| |
Collapse
|