1
|
Ferraboschi P, Ciceri S, Grisenti P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics (Basel) 2021; 10:1534. [PMID: 34943746 PMCID: PMC8698798 DOI: 10.3390/antibiotics10121534] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
Lysozyme is a ~14 kDa protein present in many mucosal secretions (tears, saliva, and mucus) and tissues of animals and plants, and plays an important role in the innate immunity, providing protection against bacteria, viruses, and fungi. Three main different types of lysozymes are known: the c-type (chicken or conventional type), the g-type (goose type), and the i-type (invertebrate type). It has long been the subject of several applications due to its antimicrobial properties. The problem of antibiotic resistance has stimulated the search for new molecules or new applications of known compounds. The use of lysozyme as an alternative antibiotic is the subject of this review, which covers the results published over the past two decades. This review is focused on the applications of lysozyme in medicine, (the treatment of infectious diseases, wound healing, and anti-biofilm), veterinary, feed, food preservation, and crop protection. It is available from a wide range of sources, in addition to the well-known chicken egg white, and its synergism with other compounds, endowed with antimicrobial activity, are also summarized. An overview of the modified lysozyme applications is provided in the form of tables.
Collapse
Affiliation(s)
- Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via C. Saldini 50, 20133 Milano, Italy;
| | - Samuele Ciceri
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy;
| | | |
Collapse
|
2
|
Wu Y, Liu Y, Dong K, Li Q. Effects of human β-defensin 3 fused with carbohydrate-binding domain on the function of type III secretion system in Pseudomonas aeruginosa PA14. Braz J Microbiol 2020; 51:29-35. [PMID: 31933178 DOI: 10.1007/s42770-020-00223-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides are considered to be one of the candidate antimicrobial agents for antibiotic-resistant bacterial infection in the future. The effects of antimicrobial peptide hBD3-CBD on Pseudomonas aeruginosa PA14 and PA14 ΔexsA were analyzed by the bactericidal effects, hemolysis assays, pyocyanin pigment productions, and virulence factor expressions (exoU, exoS, hcnA, and lasB). Pyocyanin production and virulence factor expressions are important features of the type III secretion system in Pseudomonas aeruginosa. HBD3-CBD killed PA14 and PA14 ΔexsA with similar efficiency; it lowered the hemolysis levels of PA14 and PA14 ΔexsA and reduced the pyocyanin production, biofilm formation, and exoU, exoS, and lasB expressions in PA14. Compared with PA14, PA14 ΔexsA showed a lower hemolysis effect, pyocyanin production, exoU, and lasB expressions. The effects of hBD3-CBD on the PA14 toxin secretion were similar to the changes in the type III secretion system mutant isolate PA14 ΔexsA. Our results demonstrated that the type III secretion system was involved in the biological functions on PA 14 from hBD3-CBD.
Collapse
Affiliation(s)
- Yunqiang Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, B06, Building 1, 280 South Chongqing Road, Shanghai, 200025, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, B06, Building 1, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ke Dong
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, B06, Building 1, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
3
|
Lin P, Ding B, Wu Y, Dong K, Li Q. Mitogen-stimulated cell proliferation and cytokine production in major depressive disorder patients. BMC Psychiatry 2018; 18:330. [PMID: 30314474 PMCID: PMC6186084 DOI: 10.1186/s12888-018-1906-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/24/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is related to human's immune status, and immunological indicators such as mitogen stimulated cell proliferation and cytokines may become candidate biomarkers for disease diagnosis. METHODS One hundred diagnosed major depressive disorder subjects and 100 health controls were enrolled in this study. Phytohaemagglutinin and lipopolysaccharide stimulated cell proliferations and cytokine concentrations were detected in peripheral blood mononuclear cells from both groups. The corresponding stimulated responses were conducted and confirmed in chronic unpredictable mild stress (CUMS) mice. RESULTS Compared to the people in control group, there were lower cell proliferations and lower TNF-α produced in lipopolysaccharide stimulated peripheral blood mononuclear cells in depression patients, lower IL-2 and IL-10 produced in phytohaemagglutinin stimulated peripheral blood mononuclear cells in depression patients, higher IL-6, IL-10 and lower IL-2 secretions were detected in peripheral plasma in depression patients. In CUMS mice we found lower splenocyte proliferations, lower IL-1α productions and higher IL-6 secretions in lipopolysaccharide stimulated splenocytes. It seems lipopolysaccharide stimulated cell proliferation activities were inhibited in depressive states. CONCLUSIONS Lower lipopolysaccharide stimulated cell proliferation and phytohaemagglutinin stimulated or plasma cytokine IL-2 decreases should be potential monitoring indices in the depressive state assessment for major depressive disorder patients.
Collapse
Affiliation(s)
- Ping Lin
- 0000 0004 0368 8293grid.16821.3cDepartment of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 China ,0000 0004 0368 8293grid.16821.3cDepartment of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Bingyu Ding
- 0000 0004 0368 8293grid.16821.3cDepartment of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yunqiang Wu
- 0000 0004 0368 8293grid.16821.3cDepartment of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ke Dong
- 0000 0004 0368 8293grid.16821.3cDepartment of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Lin P, Li Y, Dong K, Li Q. The Antibacterial Effects of an Antimicrobial Peptide Human β-Defensin 3 Fused with Carbohydrate-Binding Domain on Pseudomonas aeruginosa PA14. Curr Microbiol 2015; 71:170-6. [PMID: 25862466 DOI: 10.1007/s00284-015-0814-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/27/2015] [Indexed: 01/27/2023]
Abstract
Pseudomonas aeruginosa is one of the most opportunistic bacterial pathogens in human communities. Being a potential antibacterial agent, antimicrobial peptide human β-defensin 3-carbohydrate-binding domain (hBD3-CBD) was evaluated in this study by in vitro bactericidal test, special gene expressions, hBD3-CBD effects on biofilm formation assays, swimming, twitching, and swarming activities of P. aeruginosa PA14, and hBD3-CBD effects on the antibiotic 50 % minimal inhibitory concentration (MIC50) and 90 % minimal inhibitory concentration (MIC90) against clinical P. aeruginosa isolates. The MIC against P. aeruginosa PA14 was 32 μg/ml; hBD3-CBD showed significant bactericidal activities when the concentration reached 8 μg/ml, and when the concentration reached 2 μg/ml, hBD3-CBD successfully repressed the biofilm productions in P. aeruginosa PA14. hBD3-CBD could inhibit the in vitro swimming, twitching, and swarming activities of P. aeruginosa PA14. When 5 μg/ml hBD3-CBD was combined with antibiotics, it decreased the MIC50 and MIC90 of tetracycline, rifampicin, and streptomycin against clinical P. aeruginosa isolates. As new antibacterial agents, hBD3-CBD and other AMPs might be used together with antibiotics to deal with infections in the future, especially the skin and soft tissue infections of drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | | | | | | |
Collapse
|
5
|
Antibacterial efficacy of a human β-defensin-3 peptide on multispecies biofilms. J Endod 2013; 39:1625-9. [PMID: 24238461 DOI: 10.1016/j.joen.2013.07.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The aggregation of mixed bacterial flora into sessile biofilms on root canal surfaces can be one of the causes of persistent apical periodontitis. The aim of this study was to evaluate the antibacterial efficacy of human β-defensin-3 (HBD3) peptide on multispecies biofilms by using confocal laser scanning microscopy. METHODS Actinomyces naeslundii, Lactobacillus salivarius, Streptococcus mutans, and Enterococcus faecalis were cultured in a peptone-yeast-glucose broth, and their culture suspensions were combined in equal proportions. The mixed bacteria were inoculated on sterile coverslips placed into the wells of tissue culture plates to permit the formation of mixed species biofilm. After incubation for 3 weeks, the samples were treated for 24 hours with saline (control), saturated calcium hydroxide solution (CH), 2% chlorhexidine solution (CHX), and 50 μg/mL HBD3 solution. A commercial biofilm/viability assay kit was used to assess cell viability and analyze the 3-dimensional architecture of biofilms. The percentage of dead cells was determined from the ratio of biovolumes for the red subpopulation and the total biofilm. RESULTS Three medication groups showed a significant reduction of biovolume within the biofilms compared with the control group (P < .001). The HBD3-treated biofilms had a higher percentage of dead cells than the other medication groups (P < .05). The CH and CHX groups showed higher levels of bactericidal activity than saline (P < .05), and there was no significant difference between the 2 groups (P > .05). CONCLUSIONS HBD3 peptide exhibited more antibacterial activity against mature multispecies biofilms in vitro than either CH or CHX.
Collapse
|
6
|
Sawyer AJ, Wesolowski D, Gandotra N, Stojadinovic A, Izadjoo M, Altman S, Kyriakides TR. A peptide-morpholino oligomer conjugate targeting Staphylococcus aureus gyrA mRNA improves healing in an infected mouse cutaneous wound model. Int J Pharm 2013; 453:651-5. [PMID: 23727592 DOI: 10.1016/j.ijpharm.2013.05.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/24/2013] [Accepted: 05/14/2013] [Indexed: 11/26/2022]
Abstract
Management of skin wound infections presents a serious problem in the clinic, in the community, and in both civilian and military clinical treatment centers. Staphylococcus aureus is one of the most common microbial pathogens in cutaneous wounds. Peptide-morpholino oligomer (PMO) conjugates targeted to S. aureus gyrase A mRNA have shown the ability to reduce bacterial viability by direct site-specific mRNA cleavage via RNase P. As a treatment, these conjugates have the added advantages of not being susceptible to resistance due to genetic mutations and are effective against drug resistant strains. While this strategy has proven effective in liquid culture, it has yet to be evaluated in an animal model of infected surface wounds. In the present study, we combined PMO conjugates with a thermoresponsive gel delivery system to treat full-thickness mouse cutaneous wounds infected with S. aureus. Wounds treated with a single dose of PMO conjugate displayed improved healing that was associated with increased epithelialization, reduced bacterial load, and increased matrix deposition. Taken together, our findings demonstrate the efficacy and flexibility of the PMO conjugate drug delivery system and make it an attractive and novel topical antimicrobial agent.
Collapse
Affiliation(s)
- Andrew J Sawyer
- Department of Pathology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhu C, Tan H, Cheng T, Shen H, Shao J, Guo Y, Shi S, Zhang X. Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. J Surg Res 2012; 183:204-13. [PMID: 23273885 DOI: 10.1016/j.jss.2012.11.048] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Implantation-associated infections have increased significantly with the recent widespread use of medical implants. Treatments for these infections are not always successful because these infections are sometimes caused by multiantibiotic-resistant organisms. It is therefore particularly urgent to provide doctors with more effective antimicrobial agents against these antibiotic-resistant organisms. Human β-defensin 3 (hBD-3) has been shown to have strong broad-spectrum antibacterial activity. However, its effect on methicillin-resistant Staphylococcus epidermidis (MRSE) and methicillin-resistant Staphylococcus aureus (MRSA) in medical implant biofilm formation has not been reported. METHODS In this study, we evaluated the effects of hBD-3 on S epidermidis ATCC 35984 (methicillin-resistant strain), MRSE287, and MRSA (ATCC43300) by evaluating bacterial adhesion, biofilm formation, and maturation. In addition, we used the spread plate method, confocal laser scanning microscopy, scanning electron microscopy, and real-time polymerase chain reaction to evaluate the effect of hBD-3. RESULTS After evaluating biofilm adhesion and formation, we found that the number of each strain on the titanium surface was decreased in those groups exposed to 1MIC (minimum inhibitory concentration) of hBD-3 and was significantly lower than the number of colonies of the control. In the initial maturation of the biofilm, the numbers of each strain on the titanium surface from the 2MIC to 6MIC groups were significantly lower than the control. When the concentrations were further increased, hBD-3 was significantly effective against drug-resistant bacteria from the biofilms. CONCLUSIONS HBD-3 has the potential to eliminate the biofilm formation of Staphylococcus, especially antibiotic-resistant strains, effectively.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Korting H, Schöllmann C, Stauss-Grabo M, Schäfer-Korting M. Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine. Skin Pharmacol Physiol 2012; 25:323-34. [DOI: 10.1159/000341990] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 07/19/2012] [Indexed: 12/11/2022]
|
9
|
Fitzgerald-Hughes D, Devocelle M, Humphreys H. Beyond conventional antibiotics for the future treatment of methicillin-resistantStaphylococcus aureusinfections: two novel alternatives. ACTA ACUST UNITED AC 2012; 65:399-412. [DOI: 10.1111/j.1574-695x.2012.00954.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/31/2022]
|
10
|
Li Q, Huang J, Guo H, Guo X, Zhu Y, Dong K. Bactericidal activity against meticillin-resistant Staphylococcus aureus of a novel eukaryotic therapeutic recombinant antimicrobial peptide. Int J Antimicrob Agents 2012; 39:496-9. [PMID: 22521524 DOI: 10.1016/j.ijantimicag.2012.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/04/2012] [Accepted: 03/06/2012] [Indexed: 11/30/2022]
Abstract
Antimicrobial peptides (AMPs) are one of several potential antibacterial agents in the current era of antibiotics facing severe challenges. In this study, the bactericidal activity and stability of two eukaryotic AMPs were determined. Both AMPs showed specific antibacterial activity in a HEK293T cell model infected with meticillin-resistant Staphylococcus aureus. The recombinant eukaryotic AMP pVAX1/hBD3-CBD showed better bactericidal activity and stability than the eukaryotic AMP pVAX1/hBD3. These results illustrate that this peptide, designed and used with eukaryotic expression and recombinant methods, should be studied and applied in further AMP research and trials.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|