1
|
Janiszewska-Turak E, Witrowa-Rajchert D, Rybak K, Rolof J, Pobiega K, Woźniak Ł, Gramza-Michałowska A. The Influence of Lactic Acid Fermentation on Selected Properties of Pickled Red, Yellow, and Green Bell Peppers. Molecules 2022; 27:molecules27238637. [PMID: 36500730 PMCID: PMC9741357 DOI: 10.3390/molecules27238637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Red, yellow, and green peppers are vegetables rich in natural pigments. However, they belong to seasonal vegetables and need to be treated to prolong their shelf life. One new approach to processing vegetables is to pickle them using lactic acid bacteria. The use of such a process creates a new product with high health value, thanks to the active ingredients and lactic acid bacteria. Therefore, this study aimed to evaluate the effect of the applied strain of lactic acid bacteria (LAB) on the chemical properties, including the content of active compounds (pigments) and the physical properties of the peppers. Levilactobacillus brevis, Limosilactobacillus fermentum, and Lactoplantibacillus plantarum were used for fermentation and spontaneous fermentation. The pigments, polyphenols content, and antioxidant properties were determined in the pickled peppers, as well as sugar content, color, dry matter, texture properties, and the count of lactic acid bacteria. In all samples, similar growth of LAB was observed. Significant degradation of chlorophylls into pheophytins was observed after the fermentation process. No significant differences were observed in the parameters tested, depending on the addition of dedicated LAB strains. After the fermentation process, the vitamin C and total polyphenols content is what influenced the antioxidant activity of the samples. It can be stated that the fermentation process changed the red bell pepper samples in the smallest way and the green ones in the highest way.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
- Correspondence: (E.J.-T.); (A.G.-M.); Tel.: +48-22-593-7366 (E.J.-T.); +48-61-848-7327 (A.G.-M.)
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Joanna Rolof
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Łukasz Woźniak
- Department of Food Safety and Chemical Analysis, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
- Correspondence: (E.J.-T.); (A.G.-M.); Tel.: +48-22-593-7366 (E.J.-T.); +48-61-848-7327 (A.G.-M.)
| |
Collapse
|
2
|
Yadav N, Pranaw K, Khare SK. Screening of lactic acid bacteria stable in ionic liquids and lignocellulosic by-products for bio-based lactic acid production. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
|
4
|
A Process Study of Lactic Acid Production from Phragmites australis Straw by a Thermophilic Bacillus coagulans Strain under Non-Sterilized Conditions. Processes (Basel) 2018. [DOI: 10.3390/pr6100175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phragmites australis straw (PAS) is an abundant and renewable wetland lignocellulose. Bacillus coagulans IPE22 is a robust thermophilic strain with pentose-utilizing capability and excellent resistance to growth inhibitors. This work is focused on the process study of lactic acid (LA) production from P. australis lignocellulose which has not been attempted previously. By virtue of thermophilic feature of strain IPE22, two fermentation processes (i.e., separated process and integrated process), were developed and compared under non-sterilized conditions. The integrated process combined dilute-acid pretreatment, hemicellulosic hydrolysates fermentation, and cellulose utilization. Sugars derived from hemicellulosic hydrolysates and cellulose enzymatic hydrolysis were efficiently fermented to LA in a single vessel. Using the integrated process, 41.06 g LA was produced from 100 g dry PAS. The established integrated process results in great savings in terms of time and labor, and the fermentation process under non-sterilized conditions is easy to scale up for economical production of lactic acid from PAS.
Collapse
|
5
|
Grewal J, Khare SK. One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. BIORESOURCE TECHNOLOGY 2018; 251:268-273. [PMID: 29288954 DOI: 10.1016/j.biortech.2017.12.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
The lignocellulosic agro-wastes are an attractive renewable resource in biorefinery for production of value-added platform chemicals and biofuels. The study describes use of different agro-wastes as substrate for production of lactic acid, a C3-platform chemical and high demand industrial product by Lactobacillus brevis in a one-pot bioprocess. The simultaneous saccharification and co-fermentation (SSCF) process was achieved by L. brevis governed fermentation of sugars, derived from saccharification of ionic liquid pretreated feedstocks by nanoimmobilized cellulase, which was further recovered and used for consecutive cycle. The lactic acid yields of 0.22, 0.49, 0.52 g/g were obtained from cottonseed cake, wheat straw and sugarcane bagasse, respectively. The ionic liquid-tolerant L. brevis, cellulolytic reusable nanoimmobilized enzyme coupled with valorization of renewable feedstocks points towards a holistic approach for future biorefineries with sustainable production of bioproducts.
Collapse
Affiliation(s)
- Jasneet Grewal
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Zhang W, Wu S, Cai L, Liu X, Wu H, Xin F, Zhang M, Jiang M. Improved Treatment and Utilization of Rice Straw by Coprinopsis cinerea. Appl Biochem Biotechnol 2017; 184:616-629. [PMID: 28831773 DOI: 10.1007/s12010-017-2579-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
Abstract
As one of the most abundant renewable resources, rice straw is an attractive lignocellulosic material for animal feeding or for the production of biochemical. An appropriate pre-treatment technique is essential for converting rice straw to rich fodder or biofuel. Based on previous work, Coprinopsis cinerea can grow on rice straw medium and therefore it is useful for the treatment of rice straw. However, little is known regarding its degradation systems and nutrition values. In this study, we firstly found that C. cinerea could grow rapidly on rice straw without any additives by the production of a series of enzymes (laccase, cellulase, and xylanase) and that the microstructure and contents of rice straw changed significantly after being treated by C. cinerea. We propose that a possible underlying mechanism exists in the degradation. Moreover, C. cinerea has a high nutrition value (23.5% crude protein and 22.2% total amino acids). Hence, fermented rice straw with mycelium could be a good animal feedstuff resource instead of expensive forage. The direct usage of C. cinerea treatment is expected to be a practical, cost-effective, and environmental-friendly approach for enhancing the nutritive value and digestibility of rice straw.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Sihua Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Liyin Cai
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruher Institut für Technologie, Karlsruher, Germany
| | - Xiaole Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
7
|
Díaz AB, Marzo C, Caro I, de Ory I, Blandino A. Valorization of exhausted sugar beet cossettes by successive hydrolysis and two fermentations for the production of bio-products. BIORESOURCE TECHNOLOGY 2017; 225:225-233. [PMID: 27894041 DOI: 10.1016/j.biortech.2016.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Exhausted sugar beet cossettes (ESBC) show an enormous potential as a source of sugars for the production of bio-products. Enzyme hydrolysis with the combined effect of mainly cellulases, xylanases and pectinases, turned out to be very efficient, obtaining almost double the concentration of sugars measured with the sole action of Celluclast® and β-glucosidase, and increasing 5 times the hydrolysis rate. As the sole pretreatment, ESBC soaked in the hydrolysis buffer were autoclaved, avoiding the application of severe conventional biomass pretreatments. Moreover, a promising alternative for the complete utilization of glucose, xylose, arabinose, mannose and maltose contained in ESBC is proposed in this paper. It consists of sequential fermentation of sugars released in the hydrolysis step to produce bioethanol and lactic acid as main bio-products. Compared to separate fermentations, with this strategy glucose and hemicellulose derived sugars were completely consumed and the 44% of pectin derived sugars.
Collapse
Affiliation(s)
- A B Díaz
- Laboratory of Microbiology, Faculty of Marine and Environmental Sciences, University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain.
| | - C Marzo
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain
| | - I Caro
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain
| | - I de Ory
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain
| | - A Blandino
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, Spain
| |
Collapse
|
8
|
Vivek N, Pandey A, Binod P. Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. BIORESOURCE TECHNOLOGY 2016; 213:222-230. [PMID: 26920628 DOI: 10.1016/j.biortech.2016.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The aim of the study was to evaluate a novel onsite enrichment approach to isolate a crude glycerol utilizing facultative anaerobic bacteria. An onsite enrichment in natural conditions resulted an isolate, Lactobacillus brevis N1E9.3.3, that can utilize glycerol and produce 1,3-propanediol with a yield of 0.89g1,3-PDO/gGlycerol and productivity of 0.78g1,3-PDO/l/h at pH-8.5 under anaerobic conditions. Batch fermentation experiments with glycerol-glucose co-fermentation strategy was carried out to evaluate the production of 1,3-propanediol and other byproducts. The effect of other carbon sources as co-substrate was also evaluated. At the optimized condition, 18.6g/l 1,3-propanediol was monitored when biodiesel industry generated crude glycerol and 2.5% glucose were used as the substrate.
Collapse
Affiliation(s)
- Narisetty Vivek
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695019, Kerala, India
| | - Ashok Pandey
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Parameswaran Binod
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
9
|
Engineered biosynthesis of biodegradable polymers. ACTA ACUST UNITED AC 2016; 43:1037-58. [DOI: 10.1007/s10295-016-1785-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Abstract
Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.
Collapse
|
10
|
Berlowska J, Binczarski M, Dudkiewicz M, Kalinowska H, Witonska IA, Stanishevsky AV. A low-cost method for obtaining high-value bio-based propylene glycol from sugar beet pulp. RSC Adv 2015. [DOI: 10.1039/c4ra12839g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new low-cost pathway for the production of high-value propylene glycol (PG) is proposed.
Collapse
Affiliation(s)
- J. Berlowska
- Institute of Fermentation Technology and Microbiology
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - M. Binczarski
- Institute of General and Ecological Chemistry
- Lodz University of Technology
- 90-924, Lodz
- Poland
| | - M. Dudkiewicz
- Institute of Fermentation Technology and Microbiology
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - H. Kalinowska
- Institute of Technical Biochemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - I. A. Witonska
- Institute of General and Ecological Chemistry
- Lodz University of Technology
- 90-924, Lodz
- Poland
| | | |
Collapse
|
11
|
Guo W, He R, Ma L, Jia W, Li D, Chen S. Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 2014; 98:6641-50. [DOI: 10.1007/s00253-014-5703-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
12
|
Zhang Y, Chen X, Luo J, Qi B, Wan Y. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. BIORESOURCE TECHNOLOGY 2014; 158:396-9. [PMID: 24679663 DOI: 10.1016/j.biortech.2014.02.128] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 05/26/2023]
Abstract
A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strain's promising features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid-liquid separation and detoxification were avoided. Using this process, 46.12 g LA could be produced from 100g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose.
Collapse
Affiliation(s)
- Yuming Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianquan Luo
- Department of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs. Lyngby, Denmark
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
13
|
Optimization of Two-Step Acid-Catalyzed Hydrolysis of Oil Palm Empty Fruit Bunch for High Sugar Concentration in Hydrolysate. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2014. [DOI: 10.1155/2014/954632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Getting high sugar concentrations in lignocellulosic biomass hydrolysate with reasonable yields of sugars is commercially attractive but very challenging. Two-step acid-catalyzed hydrolysis of oil palm empty fruit bunch (EFB) was conducted to get high sugar concentrations in the hydrolysate. The biphasic kinetic model was used to guide the optimization of the first step dilute acid-catalyzed hydrolysis of EFB. A total sugar concentration of 83.0 g/L with a xylose concentration of 69.5 g/L and a xylose yield of 84.0% was experimentally achieved, which is in well agreement with the model predictions under optimal conditions (3% H2SO4and 1.2% H3PO4, w/v, liquid to solid ratio 3 mL/g, 130°C, and 36 min). To further increase total sugar and xylose concentrations in hydrolysate, a second step hydrolysis was performed by adding fresh EFB to the hydrolysate at 130°C for 30 min, giving a total sugar concentration of 114.4 g/L with a xylose concentration of 93.5 g/L and a xylose yield of 56.5%. To the best of our knowledge, the total sugar and xylose concentrations are the highest among those ever reported for acid-catalyzed hydrolysis of lignocellulose.
Collapse
|
14
|
Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl Environ Microbiol 2013; 79:6747-54. [PMID: 23995921 DOI: 10.1128/aem.02130-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to their potential prebiotic properties, arabinoxylan-derived oligosaccharides [(A)XOS] are of great interest as functional food and feed ingredients. While the (A)XOS metabolism of Bifidobacteriaceae has been extensively studied, information regarding lactic acid bacteria (LAB) is still limited in this context. The aim of the present study was to fill this important gap by characterizing candidate (A)XOS hydrolyzing glycoside hydrolases (GHs) identified in the genome of Lactobacillus brevis DSM 20054. Two putative GH family 43 xylosidases (XynB1 and XynB2) and a GH family 43 arabinofuranosidase (Abf3) were heterologously expressed and characterized. While the function of XynB1 remains unclear, XynB2 could efficiently hydrolyze xylooligosaccharides. Abf3 displayed high specific activity for arabinobiose but could not release arabinose from an (A)XOS preparation. However, two previously reported GH 51 arabinofuranosidases from Lb. brevis were able to specifically remove α-1,3-linked arabinofuranosyl residues from arabino-xylooligosaccharides (AXHm3 specificity). These results imply that Lb. brevis is at least genetically equipped with functional enzymes in order to hydrolyze the depolymerization products of (arabino)xylans and arabinans. The distribution of related genes in Lactobacillales genomes indicates that GH 43 and, especially, GH 51 glycosidase genes are rare among LAB and mainly occur in obligately heterofermentative Lactobacillus spp., Pediococcus spp., members of the Leuconostoc/Weissella branch, and Enterococcus spp. Apart from the prebiotic viewpoint, this information also adds new perspectives on the carbohydrate (i.e., pentose-oligomer) metabolism of LAB species involved in the fermentation of hemicellulose-containing substrates.
Collapse
|
15
|
Tan L, Yu Y, Li X, Zhao J, Qu Y, Choo YM, Loh SK. Pretreatment of empty fruit bunch from oil palm for fuel ethanol production and proposed biorefinery process. BIORESOURCE TECHNOLOGY 2013. [PMID: 23186670 DOI: 10.1016/j.biortech.2012.10.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study evaluates the effects of some pretreatment processes to improve the enzymatic hydrolysis of oil palm empty fruit bunch (EFB) for ethanol production. The experimental results show that the bisulfite pretreatment was practical for EFB pretreatment. Moreover, the optimum pretreatment conditions of the bisulfite pretreatment (180 °C, 30 min, 8% NaHSO3, 1% H2SO4) were identified. In the experiments, a biorefinery process of EFB was proposed to produce ethanol, xylose products, and lignosulfonates.
Collapse
Affiliation(s)
- Liping Tan
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City 250100, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Agyei D, Danquah MK. Carbohydrate utilization affects Lactobacillus delbrueckii subsp. lactis 313 cell-enveloped-associated proteinase production. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0106-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol 2012; 94:1619-27. [DOI: 10.1007/s00253-012-3868-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 11/30/2022]
|
18
|
Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 2011; 156:286-301. [PMID: 21729724 DOI: 10.1016/j.jbiotec.2011.06.017] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/31/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the "conventional" processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria.
Collapse
Affiliation(s)
- Mohamed Ali Abdel-Rahman
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
19
|
New trends and challenges in lactic acid production on renewable biomass. HEMIJSKA INDUSTRIJA 2011. [DOI: 10.2298/hemind110114022d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lactic acid is a relatively cheap chemical with a wide range of applications:
as a preservative and acidifying agent in food and dairy industry, a monomer
for biodegradable poly-lactide polymers (PLA) in pharmaceutical industry,
precursor and chemical feedstock for chemical, textile and leather
industries. Traditional raw materials for fermentative production of lactic
acid, refined sugars, are now being replaced with starch from corn, rice and
other crops for industrial production, with a tendency for utilization of
agro industrial wastes. Processes based on renewable waste sources have
ecological (zero CO2 emission, eco-friendly by-products) and economical
(cheap raw materials, reduction of storage costs) advantages. An intensive
research interest has been recently devoted to develop and improve the lactic
acid production on more complex industrial by-products, like thin stillage
from bioethanol production, corncobs, paper waste, straw etc. Complex and
variable chemical composition and purity of these raw materials and high
nutritional requirements of Lare the main obstacles in these production
processes. Media supplementation to improve the fermentation is an important
factor, especially from an economic point of view. Today, a particular
challenge is to increase the productivity of lactic acid production on
complex renewable biomass. Several strategies are currently being explored
for this purpose such as process integration, use of Lwith amylolytic
activity, employment of mixed cultures of Land/or utilization of
genetically engineered microorganisms. Modern techniques of genetic
engineering enable construction of microorganisms with desired
characteristics and implementation of single step processes without or with
minimal pre-treatment. In addition, new bioreactor constructions (such as
membrane bioreactors), utilization of immobilized systems are also being
explored. Electrodialysis, bipolar membrane separation process, enhanced
filtration techniques etc. can provide some progress in purification
technologies, although it is still remaining the most expensive phase in the
lactic acid production. A new approach of parallel production of lactic
bacteria biomass with probiotic activity and lactic acid could provide
additional benefit and profit rise in the production process.
Collapse
|
20
|
Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol 2010; 89:1039-49. [DOI: 10.1007/s00253-010-2986-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 11/25/2022]
|
21
|
Kim JH, Block DE, Shoemaker SP, Mills DA. Atypical ethanol production by carbon catabolite derepressed lactobacilli. BIORESOURCE TECHNOLOGY 2010; 101:8790-8797. [PMID: 20663662 DOI: 10.1016/j.biortech.2010.06.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/10/2010] [Accepted: 06/20/2010] [Indexed: 05/29/2023]
Abstract
Cost effective use of lignocellulosic biomass for bio-based chemical production requires the discovery of novel strains and processes. Lactobacillus pentosus JH5XP5 is a carbon catabolite repression negative mutant which utilizes glucose and pentoses derived from lignocellulosic biomass in the media simultaneously. With a broad range of carbon substrates, L. pentosus JH5XP5 produced a significant amount of ethanol without acetate formation. The yields of ethanol were 2.0- to 2.5-fold higher than those of lactate when glucose, galactose or maltose was used either as a single carbon source or simultaneously with glucose. L. pentosus JH5XP5 was successfully used in an integrated process of simultaneous saccharification and mixed sugar fermentation of rice straw hydrolysate. During the fermentation, the enzyme activities for the saccharification of cellulose were not diminished. Moreover glucose, xylose, and arabinose sugars derived from rice straw hyrolysate were consumed concurrently as if a single carbon source existed and no sugars or cellulosic fiber remained after the fermentation.
Collapse
Affiliation(s)
- Jae-Han Kim
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
22
|
Wang Z, Feng H. Fractal kinetic analysis of the enzymatic saccharification of cellulose under different conditions. BIORESOURCE TECHNOLOGY 2010; 101:7995-8000. [PMID: 20542686 DOI: 10.1016/j.biortech.2010.05.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 05/29/2023]
Abstract
Fractal kinetic analysis has been applied for the kinetics of enzymatic saccharification of cellulose. Based on the first order cellulose degradation kinetic, a fractal kinetic model with two parameters (rate coefficient and fractal exponent) has been developed. The model fits very well with the experimental data of enzymatic saccharification of cellulose under different conditions, including cellulase loading, nature of substrate, hydrolysis temperature, and addition of nonionic surfactant or polymer in the reaction medium. It indicates that the complex kinetics of enzymatic saccharification of cellulose can be described with the fractal kinetic model. The model exhibits that an addition of nonionic surfactant or polymer increases the rate coefficient and decreases the fractal exponent at the same time. A nonionic surfactant or polymer aqueous solution may be a potential medium engineering method for enzymatic saccharification of cellulose in biofuel industry.
Collapse
Affiliation(s)
- Zhilong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | | |
Collapse
|
23
|
Kim JH, Block DE, Mills DA. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 2010; 88:1077-85. [PMID: 20838789 PMCID: PMC2956055 DOI: 10.1007/s00253-010-2839-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy.
Collapse
Affiliation(s)
- Jae-Han Kim
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - David E. Block
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - David A. Mills
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|