1
|
Lee WH, Zygiel EM, Lee CH, Oglesby AG, Nolan EM. Calprotectin-mediated survival of Staphylococcus aureus in coculture with Pseudomonas aeruginosa occurs without nutrient metal sequestration. mBio 2025; 16:e0384624. [PMID: 40152583 PMCID: PMC12077171 DOI: 10.1128/mbio.03846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are bacterial pathogens of major clinical concern that cause polymicrobial infections in diverse patient populations. Human calprotectin (CP; S100A8/S100A9 heterooligomer, MRP8/MRP14 heterooligomer) is a host-defense protein that contributes to nutritional immunity by sequestering multiple nutrient metal ions including Mn(II), Fe(II), and Zn(II). Here, we examine the consequences of metal availability and CP treatment on cocultures of P. aeruginosa and S. aureus. We report that CP elicits Fe-starvation responses in both P. aeruginosa and S. aureus in coculture, including the upregulation of genes involved in Fe uptake by both organisms. Moreover, analyses of pseudomonal metabolites in coculture supernatants further demonstrate Fe-starvation responses, showing that CP treatment leads to increased siderophore levels and reduced phenazine levels. Consistent with prior studies, growth under conditions of Fe depletion accelerated P. aeruginosa killing of S. aureus in coculture, but treatment with CP promoted S. aureus survival. Treatment with CP site variants lacking functional transition-metal-binding sites and metalated CP also enhanced S. aureus survival in coculture with P. aeruginosa, revealing that this consequence of CP treatment is independent of its canonical metal-sequestering function. Thus, the protective effects of CP treatment during coculture appear to override the observed Fe-starvation effects that make P. aeruginosa more virulent toward S. aureus. This work highlights an unappreciated facet of how CP contributes to host-pathogen and pathogen-pathogen interactions that are relevant to human infectious disease. IMPORTANCE The current working model that describes how the innate immune protein calprotectin (CP) protects the host against bacterial pathogens focuses on its capacity to sequester multiple essential metal nutrients in a process called nutritional immunity. Our study further explores this function by focusing on the effects of metal availability and CP treatment on the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus grown in coculture. These two bacterial pathogens are of significant clinical concern and colocalize with CP at infection sites. This work reveals that CP modulates P. aeruginosa/S. aureus coculture dynamics in a manner that is independent of its ability to sequester nutrient metal ions. This surprising result is important because it demonstrates that CP has metal-independent function and thus contributes to the host-pathogen and pathogen-pathogen interactions in ways that are not accounted for in the current working model focused on metal sequestration.
Collapse
Affiliation(s)
- Wei H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Celis H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Hou L, Yang X, Wang S, Li W. New phenazines from Taibai mountain-derived Streptomyces xanthophaeus A54. Nat Prod Res 2025:1-7. [PMID: 40338702 DOI: 10.1080/14786419.2025.2502141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/07/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Four phenazineswere isolated from the Taibai mountain-derived Streptomyces xanthophaeus A54, among which Taibphenazine A (1) and Taibphenazine B (2) are new compounds. Comprehensive spectroscopic analyses, including HRESIMS, NMR, ECD calculations, and optical rotation value, were employed to elucidate the structures of these compounds. Taibphenazine B showed considerable anti-influenza A virus activity (IC50=27.07 μM), which was similar to the positive control ribavirin (IC50=24.20 μM).
Collapse
Affiliation(s)
- Lukuan Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling, Shannxi, China
| | - Xue Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling, Shannxi, China
| | - Shuyao Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling, Shannxi, China
| | - Wenli Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling, Shannxi, China
| |
Collapse
|
3
|
De Sousa T, Wang HY, Lin TW, Caniça M, Ramos MJN, Santos D, Silva C, Saraiva S, Beyrouthy R, Bonnet R, Hébraud M, Igrejas G, Poeta P. Mutational Analysis of Colistin-Resistant Pseudomonas aeruginosa Isolates: From Genomic Background to Antibiotic Resistance. Pathogens 2025; 14:387. [PMID: 40333140 PMCID: PMC12030098 DOI: 10.3390/pathogens14040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
This study analyzed eleven isolates of colistin-resistant Pseudomonas aeruginosa, originating from Portugal and Taiwan, which are associated with various pathologies. The results revealed significant genetic diversity among the isolates, with each exhibiting a distinct genetic profile. A prevalence of sequence type ST235 was observed, characterizing it as a high-risk clone, and serotyping indicated a predominance of type O11, associated with chronic respiratory infections in cystic fibrosis (CF) patients. The phylogenetic analysis demonstrated genetic diversity among the isolates, with distinct clades and complex evolutionary relationships. Additionally, transposable elements such as Tn3 and IS6 were identified in all isolates, highlighting their importance in the mobility of antibiotic resistance genes. An analysis of antimicrobial resistance profiles revealed pan-drug resistance in all isolates, with a high prevalence of genes conferring resistance to β-lactams and aminoglycosides. Furthermore, additional analyses revealed mutations in regulatory networks and specific loci previously implicated in colistin resistance, such as pmrA, cprS, phoO, and others, suggesting a possible contribution to the observed resistant phenotype. This study has a strong impact because it not only reveals the genetic diversity and resistance mechanisms in P. aeruginosa but also identifies mutations in regulatory genes associated with colistin resistance.
Collapse
Affiliation(s)
- Telma De Sousa
- MicroART—Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.D.S.); (C.S.); (S.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (H.-Y.W.); (T.-W.L.)
- School of Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ting-Wei Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (H.-Y.W.); (T.-W.L.)
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (M.C.); (M.J.N.R.); (D.S.)
- Centre for the Studies of Animal Science (CECA), Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4099-002 Porto, Portugal
| | - Miguel J. N. Ramos
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (M.C.); (M.J.N.R.); (D.S.)
| | - Daniela Santos
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (M.C.); (M.J.N.R.); (D.S.)
| | - Catarina Silva
- MicroART—Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.D.S.); (C.S.); (S.S.)
| | - Sónia Saraiva
- MicroART—Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.D.S.); (C.S.); (S.S.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Racha Beyrouthy
- Institut National de la Santé et de la Recherche Médicale, (UMR1071), Institute National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (R.B.); (R.B.)
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, 63000 Clermont-Ferrand, France
| | - Richard Bonnet
- Institut National de la Santé et de la Recherche Médicale, (UMR1071), Institute National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (R.B.); (R.B.)
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, 63000 Clermont-Ferrand, France
| | - Michel Hébraud
- INRAE, Université Clermont Auvergne, UMR Microbiologie Environnement Digestif Santé (MEDiS), 63122 Saint-Genès-Champanelle, France;
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Patrícia Poeta
- MicroART—Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.D.S.); (C.S.); (S.S.)
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Adeniji AA, Chukwuneme CF, Conceição EC, Ayangbenro AS, Wilkinson E, Maasdorp E, de Oliveira T, Babalola OO. Unveiling novel features and phylogenomic assessment of indigenous Priestia megaterium AB-S79 using comparative genomics. Microbiol Spectr 2025; 13:e0146624. [PMID: 39969228 PMCID: PMC11960082 DOI: 10.1128/spectrum.01466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/12/2024] [Indexed: 02/20/2025] Open
Abstract
Priestia megaterium strain AB-S79 isolated from active gold mine soil previously expressed in vitro heavy metal resistance and has a 5.7 Mb genome useful for biotechnological exploitation. This study used web-based bioinformatic resources to analyze P. megaterium AB-S79 genomic relatedness, decipher its secondary metabolite biosynthetic gene clusters (BGCs), and better comprehend its taxa. Genes were highly conserved across the 14 P. megaterium genomes examined here. The pangenome reflected a total of 61,397 protein-coding genes, 59,745 homolog protein family hits, and 1,652 singleton protein family hits. There were also 7,735 protein families, including 1,653 singleton families and 6,082 homolog families. OrthoVenn3 comparison of AB-S79 protein sequences with 13 other P. megaterium strains, 7 other Priestia spp., and 6 other Bacillus spp. highlighted AB-S79's unique genomic and evolutionary trait. antiSMASH identified two key transcription factor binding site regulators in AB-S79's genome: zinc-responsive repressor (Zur) and antibiotic production activator (AbrC3), plus putative enzymes for the biosynthesis of terpenes and ranthipeptides. AB-S79 also harbors BGCs for two unique siderophores (synechobactins and schizokinens), phosphonate, dienelactone hydrolase family protein, and phenazine biosynthesis protein (phzF), which is significant for this study. Phosphonate particularly showed specificity for the P. megaterium sp. validating the effect of gene family expansion and contraction. P. megaterium AB-S79 looks to be a viable source for value-added compounds. Thus, this study contributes to the theoretical framework for the systematic metabolic and genetic exploitation of the P. megaterium sp., particularly the value-yielding strains. IMPORTANCE This study explores microbial natural product discovery using genome mining, focusing on Priestia megaterium. Key findings highlight the potential of P. megaterium, particularly strain AB-S79, for biotechnological applications. The research shows a limited output of P. megaterium genome sequences from Africa, emphasizing the importance of the native strain AB-S79. Additionally, the study underlines the strain's diverse metabolic capabilities, reinforcing its suitability as a model for microbial cell factories and its foundational role in future biotechnological exploitation.
Collapse
Affiliation(s)
- Adetomiwa Ayodele Adeniji
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Chinenyenwa Fortune Chukwuneme
- Department of Natural Sciences, Faculty of Applied & Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Emilyn Costa Conceição
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology & Human Genetics, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Elizna Maasdorp
- SAMRC Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tulio de Oliveira
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Olubukola Oluranti Babalola
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, Berkshire, United Kingdom
| |
Collapse
|
5
|
Ravi A, Das S, Sebastian SK, Aravindakumar CT, Mathew J, Krishnankutty RE. Bioactive Metabolites of Serratia sp. NhPB1 Isolated from Pitcher of Nepenthes and its Application to Control Pythium aphanidermatum. Probiotics Antimicrob Proteins 2025; 17:721-736. [PMID: 37872287 DOI: 10.1007/s12602-023-10154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/25/2023]
Abstract
Plant-associated bacteria have already been considered as the store house of bioactive compounds that confer the plant growth promotion and disease protection. Hence, the unique plant parts have already been expected to harbor diverse microbial communities with multi-beneficial properties. Based on this, the current study has been designed to identify the potential of Serratia sp. NhPB1 isolated from the pitcher of Nepenthes plant for its activity against the infamous pathogen Pythium aphanidermatum. The in vitro antifungal, plant growth promoting and enzymatic activities of the isolate indicated its promises for agricultural application. The isolate NhPB1 was also demonstrated to have positive effect on Solanum lycopersicum and Capsicum annuum, due to its plant beneficial metabolites. From the results of LC-MS/MS analysis, the isolate has also been revealed to have the ability to synthesize bioactive compounds including salicylic acid, cyclodipeptides, acyl homoserine lactone, indole-3-acetic acid, and serrawettin W1. These identified compounds and their known biological properties make the isolate characterized in the study to have significant promises as an eco-friendly solution for the improvement of agricultural productivity.
Collapse
Affiliation(s)
- Aswani Ravi
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Soumya Das
- Department of Zoology, KE College, Mannanam, Kottayam, 686561, India
| | | | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | |
Collapse
|
6
|
Malik D, Kumar S, Sindhu SS. Unlocking the potential of ecofriendly guardians for biological control of plant diseases, crop protection and production in sustainable agriculture. 3 Biotech 2025; 15:82. [PMID: 40071128 PMCID: PMC11891127 DOI: 10.1007/s13205-025-04243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Several beneficial microbial strains inhibit the growth of different phytopathogens and commercialized worldwide as biocontrol agents (BCAs) for plant disease management. These BCAs employ different strategies for growth inhibition of pathogens, which includes production of antibiotics, siderophores, lytic enzymes, bacteriocins, hydrogen cyanide, volatile organic compounds, biosurfactants and induction of systemic resistance. The efficacy of antagonistic strains could be further improved through genetic engineering for better disease suppression in sustainable farming practices. Some antagonistic microbial strains also possess plant-growth-promoting activities and their inoculation improved plant growth in addition to disease suppression. This review discusses the characterization of antagonistic microbes and their antimicrobial metabolites, and the application of these BCAs for disease control. The present review also provides a comprehensive summary of the genetic organization and regulation of the biosynthesis of different antimicrobial metabolites in antagonistic strains. Use of molecular engineering to improve production of metabolites in BCAs and their efficacy in disease control is also discussed. The application of these biopesticides will reduce use of conventional pesticides in disease control and help in achieving sustainable and eco-friendly agricultural systems.
Collapse
Affiliation(s)
- Diksha Malik
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
7
|
Bellotti G, Cortimiglia C, Antinori ME, Cocconcelli PS, Puglisi E. Comprehensive genome-wide analysis for the safety assessment of microbial biostimulants in agricultural applications. Microb Genom 2025; 11:001391. [PMID: 40294085 PMCID: PMC12038027 DOI: 10.1099/mgen.0.001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Microbial biostimulants (MBs) offer a sustainable approach to agriculture by helping to reduce reliance on synthetic fertilizers. However, as MBs are intentionally released into the environment, their safety should be rigorously assessed. While taxa with qualified presumption of safety (QPS) benefit from established safety indications, non-QPS taxa lack such guidance. To address this gap, we propose a pipeline combining whole genome sequencing (WGS) and extensive literature search (ELS) data to evaluate microbial safety. We analysed public genomes of three QPS species (Rhodopseudomonas palustris, Bacillus velezensis, Priestia megaterium) and four non-QPS genera (Arthrobacter, Azotobacter, Azospirillum, Herbaspirillum), screening them for virulence factors (VFs), antimicrobial resistance (AMR) genes and mobile genetic elements (MGEs). Results confirmed the safety of QPS taxa, revealing no VFs and only a few intrinsic and non-clinically relevant AMRs. Among non-QPS taxa, VF hits were more prevalent in Azotobacter and Azospirillum spp., though they were mostly related to beneficial plant interactions rather than pathogenicity. AMR genes in non-QPS taxa were primarily associated with efflux pumps or were sporadically distributed. Notably, the only genus-wide pattern observed was that most Azospirillum and Herbaspirillum genomes harboured chromosomally encoded β-lactamases sharing similar genetic structures; however, the detected β-lactamase (bla) genes were distantly related to clinically relevant bla variants, and the absence of MGEs suggests a low risk of horizontal gene transfer, indicating the overall safety of these genera. In general, this WGS-ELS framework provides a robust tool for assessing the safety of non-QPS MBs, supporting regulatory decision-making and ensuring their safe use in sustainable agriculture while safeguarding public health.
Collapse
Affiliation(s)
- Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Claudia Cortimiglia
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Elena Antinori
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
8
|
Castillo-Novales D, Vega-Celedón P, Larach A, Seeger M, Besoain X. Native Bacteria Are Effective Biocontrol Agents at a Wide Range of Temperatures of Neofusicoccum parvum, Associated with Botryosphaeria Dieback on Grapevine. PLANTS (BASEL, SWITZERLAND) 2025; 14:1043. [PMID: 40219111 PMCID: PMC11990564 DOI: 10.3390/plants14071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and in situ biocontrol potential of Chilean native bacteria isolated from wild flora and endophytic communities of grapevine against Neofusicoccum parvum. In vitro biocontrol assays screened 15 bacterial strains at 10, 22, and 30 °C, identifying four Pseudomonas strains with >30% mycelial growth inhibition. In diffusible agar and double plate assays, plant growth-promoting bacteria AMCR2b and GcR15a, which were isolated from native flora, achieved significant inhibition of N. parvum growth, with reductions of up to ~50% (diffusible agar) and up to ~46% (double plate). In vivo experiments on grapevine cuttings revealed that strains AMCR2b and GcR15a inhibited mycelial growth (17-90%); younger grapevines (1-5 years) were more susceptible to N. parvum. In situ trials using Vitis vinifera L. cv. Cabernet Sauvignon and Sauvignon Blanc demonstrated higher fungal susceptibility in Sauvignon Blanc. These results highlight the potential of Pseudomonas sp. AMCR2b and GcR15a to be effective biocontrol agents against GTDs at a wide range of temperatures, contributing to sustainable viticulture.
Collapse
Affiliation(s)
- Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Alejandra Larach
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
9
|
Ramzan M, Ahmed A, Siddiqui AJ, Khan MN, Nisa ZU, Raza A, Musharraf SG. Understanding the pattern of resistance in multi-drug resistant clinical isolates of Acinetobacter baumannii based on metabolomics approach. Microb Pathog 2025; 200:107307. [PMID: 39826862 DOI: 10.1016/j.micpath.2025.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Antimicrobial resistance (AMR) poses significant challenges to global public health. The major cause of AMR development is previous use of antibiotics, hospitalization, and the lack of efficient methods for screening AMR pathogens. Mass spectrometry techniques offer rapid, sensitive, and early detection of AMR both on proteomics and metabolomics levels. Hence, a metabolomics analysis on clinical isolates of A. baumannii was conducted to understand the resistance patterns exhibited by these isolates. A. baumannii (ATCC strain) and its clinical isolates (n = 26) were screened against five antibiotics i.e., ciprofloxacin, colistin, cefixime, gentamicin, and co-amoxiclav to obtain their resistance profile using antibiogram and MIC methods. After that, all the samples were analyzed in both positive and negative modes of Flow Injection-High Resolution-Electrospray Ionization Mass Spectrometry (FI-HR-ESI-MS) after 6 h of incubation. Data analysis revealed the identification of a total of 43 metabolites. The metabolites were then subjected to chemometric analysis to find any significant association of the metabolites with an increase in the MIC values. The chemometric analysis resulted in a total of eleven metabolites with p-values< 0.05 to be significantly associated with the resistance of A. baumannii isolates against the drugs. The concentrations of two metabolites, pyochelin, and L-serine, increased sequentially with the increase in MIC values (increase in resistance) of ciprofloxacin and cefixime, respectively. The study showed a significant association of metabolites with the resistance in A. baumannii isolates and can play a potential role in the development of new therapeutics against the arising antimicrobial resistance of A. baumannii towards various antibiotic drugs.
Collapse
Affiliation(s)
- Muhammad Ramzan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Noman Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Zaib Un Nisa
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Ali Raza
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Syed Ghulam Musharraf
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
10
|
Jia D, Deng R, Wang W, Hu H, Zhang X. Metabolic engineering of Pseudomonas chlororaphis P3 for high-level and directed production of phenazine-1,6-dicarboxylic acid from crude glycerol. BIORESOURCE TECHNOLOGY 2025; 419:132053. [PMID: 39798811 DOI: 10.1016/j.biortech.2025.132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/01/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Phenazine-1,6-dicarboxylic acid (PDC) is a precursor of complex substituted phenazines used as pesticides and pharmaceuticals. The PDC biosynthesis exists the low production and the high proportion of by-products phenazine-1-carboxylic acid (PCA) derivatives in Pseudomonas P3△A. Herein, PDC production were improved by systematic metabolic engineering and synthetic regulation. The directed PDC biosynthesis was achieved by introducing the isozymes of PhzF', and PCA derivatives was barely detectable. Subsequently, a high-level PDC-producing strain P3FK2E-aF'EC was obtained by co-overexpression of aroE, phzE, phzC, and aphzF' in a multi-knockout strain. Through scale-up culture, the highest PDC production and proportion reached 6,447.05 mg/L and 99.68 %, with the productivity of 89.54 mg/L·h using KB. Economically, PDC production achieved 5,584.35 mg/L accounting for 99.43 % with the highest productivity of 108.32 mg/L·h from crude glycerol. This study first achieved the directed high-level production of PDC from renewable energy, and presented a potential biosynthesis platform for PDC derivatives in Pseudomonas.
Collapse
Affiliation(s)
- Dan Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruxiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Weaver AA, Shrout JD. Use of analytical strategies to understand spatial chemical variation in bacterial surface communities. J Bacteriol 2025; 207:e0040224. [PMID: 39873490 PMCID: PMC11841061 DOI: 10.1128/jb.00402-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes. We highlight the use of confocal Raman Microscopy, surface-enhanced Raman spectroscopy, matrix-assisted laser desorption/ionization, secondary ion mass spectrometry, desorption electrospray ionization, and electrochemical imaging that have been applied to assess two-dimensional chemical profiles of bacteria. We specifically discuss the use of these tools to study rhamnolipids, alkylquinolones, and phenazines of the bacterium Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
12
|
Qi Z, Liu F, Li D, Yin J, Wang D, Ahmed N, Ma Y, Zhou JJ, Chen Z. Phenazine-1-Carboxamide Regulates Pyruvate Dehydrogenase of Phytopathogenic Fungi to Control Tea Leaf Spot Caused by Didymella segeticola. PHYTOPATHOLOGY 2025; 115:139-150. [PMID: 39437361 DOI: 10.1094/phyto-07-24-0209-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Due to a lack of understanding of the disease epidemiology and comprehensive control measures, tea leaf spot caused by Didymella segeticola has a significant negative impact on tea yield and quality in the tea plantations of Southwest China. Phenazine-1-carboxamide (PCN) is a phenazine compound derived from Pseudomonas species that exhibits antimicrobial activity against various pathogens. However, its inhibitory mechanism is not yet clear. The current study evaluated the inhibitory activity of PCN against various phytopathogenic fungi and found that PCN has inhibitory activity against multiple pathogens, with a half-maximal effective concentration value for D. segeticola of 16.11 μg/ml in vitro and a maximum in-vivo curative activity of 72.28% toward tea leaf spot. Morphological changes in the hyphae after exposure to PCN were observed through microstructure and ultrastructure analysis and indicated that PCN causes abnormalities in the hyphae, such as cytoplasmic coagulation, shortened hyphal inter-septum distances, and unclear boundaries of organelles. Transcriptomic analysis revealed that PCN upregulated the expression of genes related to energy metabolism. PCN significantly reduced the ATP concentration in the hyphae and decreased mitochondrial membrane potential. Molecular docking analysis indicated that PCN binds to one of the candidate target proteins, pyruvate dehydrogenase, with lower free energy of -10.7 kcal/mol. This study indicated that PCN can interfere with energy metabolism, reducing ATP generation and ultimately affecting hyphal growth. Overall, PCN shows potential for future application in the control of tea leaf spot due to its excellent antifungal activity and unique mode of action.
Collapse
Affiliation(s)
- Zeqi Qi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Fenghua Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Dongxue Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jiayu Yin
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nazeer Ahmed
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jing-Jiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, U.K
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
13
|
Ziegert Z, Dietz M, Hill M, McBride M, Painter E, Elias MH, Staley C. Targeting quorum sensing for manipulation of commensal microbiota. BMC Biotechnol 2024; 24:106. [PMID: 39696328 PMCID: PMC11653937 DOI: 10.1186/s12896-024-00937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteria communicate through the accumulation of autoinducer (AI) molecules that regulate gene expression at critical densities in a process called quorum sensing (QS). Extensive work using simple systems and single strains of bacteria have revealed a role for QS in the regulation of virulence factors and biofilm formation; however, less is known about QS dynamics among communities, especially in vivo. In this review, we summarize the diversity of QS signals as well as their ability to influence "non-target" behaviors among species that have receptors but not synthases for those signals. We highlight host-microbe interactions facilitated by QS and describe cross-talk between QS and the mammalian endocrine and immune systems, as well as host surveillance of QS. Further, we describe emerging evidence for the role of QS in non-infectious, chronic, microbially associated diseases including inflammatory bowel diseases and cancers. Finally, we describe potential therapeutic approaches that involve leveraging QS signals as well as quorum quenching approaches to block signaling in vivo to mitigate deleterious consequences to the host. Ultimately, QS offers a previously underexplored target that may be leveraged for precision modification of the microbiota without deleterious bactericidal consequences.
Collapse
Affiliation(s)
- Zachary Ziegert
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Matthew Dietz
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Max Hill
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marjais McBride
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Elizabeth Painter
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mikael H Elias
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
14
|
Kirk A, Davidson E, Stavrinides J. The expanding antimicrobial diversity of the genus Pantoea. Microbiol Res 2024; 289:127923. [PMID: 39368256 DOI: 10.1016/j.micres.2024.127923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
With the rise of antimicrobial resistance, there is high demand for novel antimicrobials to combat multi-drug resistant pathogens. The bacterial genus Pantoea produces a diversity of antimicrobial natural products effective against a wide range of bacterial and fungal targets. These antimicrobials are synthesized by specialized biosynthetic gene clusters that have unique distributions across Pantoea as well as several other genera outside of the Erwiniaceae. Phylogenetic and genomic evidence shows that these clusters can mobilize within and between species and potentially between genera. Pantoea antimicrobials belong to unique structural classes with diverse mechanisms of action, but despite their potential in antagonizing a wide variety of plant, human, and animal pathogens, little is known about many of these metabolites and how they function. This review will explore the known antimicrobials produced by Pantoea: agglomerins, andrimid, D-alanylgriseoluteic acid, dapdiamide, herbicolins, pantocins, and the various Pantoea Natural Products (PNPs). It will include information on the structure of each compound, their genetic basis, biosynthesis, mechanism of action, spectrum of activity, and distribution, highlighting the significance of Pantoea antimicrobials as potential therapeutics and for applications in biocontrol.
Collapse
Affiliation(s)
- Ashlyn Kirk
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Emma Davidson
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada.
| |
Collapse
|
15
|
Sun J, Vellappan S, Akdemir J, Steier L, Feinbloom RE, Yadavalli SS. Imaging of porphyrin-specific fluorescence in pathogenic bacteria in vitro using a wearable, hands-free system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595019. [PMID: 39553962 PMCID: PMC11565998 DOI: 10.1101/2024.05.20.595019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Fluorescence imaging is an effective method for detecting porphyrin production in bacteria, leveraging the natural fluorescence properties of porphyrins. Here we use a simple, lightweight, hands-free device for rapid, non-invasive assessments in clinical settings, microbial research, and diagnostic applications. Specifically in this study, we examined 15 bacterial and 2 fungal strains commonly associated with skin, oral, and/or multi-site infections at wound sites for their ability to autofluoresce based on their porphyrin production. We utilized Remel Porphyrin Test Agar and blood agar plates to monitor red fluorescence over several days of growth under aerobic or anaerobic conditions using the wearable REVEAL FC imaging system with a 405 nm violet excitation headlight paired with eyewear carrying 430 nm emission lenses. Fourteen of the fifteen bacteria produced red fluorescence when grown on Porphyrin Test Agar and nine of the fifteen bacteria also displayed red fluorescence on blood agar plates, consistent with their ability to synthesize porphyrins. Taken together, our results elucidate the sensitivity, effectiveness, and convenience of using wearable technology to detect pathogens that produce porphyrin-specific fluorescence. Consequently, the REVEAL system has immense potential to help diagnose wound infections, direct clinical procedures, and guide treatment options in real-time using fluorescence imaging all while minimizing the risk of contamination.
Collapse
Affiliation(s)
- Junhong Sun
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
| | - Sangeevan Vellappan
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| | - Johnathan Akdemir
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| | - Liviu Steier
- Department of Preventive and Restorative Sciences, Robert Schattner Center, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA USA
| | | | - Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| |
Collapse
|
16
|
Tse-Kang SY, Wani KA, Peterson ND, Page A, Humphries F, Pukkila-Worley R. Intestinal immunity in C. elegans is activated by pathogen effector-triggered aggregation of the guard protein TIR-1 on lysosome-related organelles. Immunity 2024; 57:2280-2295.e6. [PMID: 39299238 PMCID: PMC11464196 DOI: 10.1016/j.immuni.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Toll/interleukin-1/resistance (TIR)-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that the lone enzymatic TIR-domain protein in the nematode C. elegans (TIR-1, homolog of mammalian sterile alpha and TIR motif-containing 1 [SARM1]) was strategically expressed on the membranes of a specific intracellular compartment called lysosome-related organelles. The positioning of TIR-1 on lysosome-related organelles enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. A virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed lysosome-related organelles. This pathogen-induced morphological change in lysosome-related organelles triggered TIR-1 multimerization, which engaged its intrinsic NAD+ hydrolase (NADase) activity to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, TIR-1 is a guard protein in an effector-triggered immune response, which enables intestinal epithelial cells to survey for pathogen-induced host damage.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas D Peterson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Amanda Page
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
17
|
Guo S, Liu Y, Yin Y, Chen Y, Jia S, Wu T, Liao J, Jiang X, Kareem HA, Li X, Pan J, Wang Y, Shen X. Unveiling the multifaceted potential of Pseudomonas khavaziana strain SR9: a promising biocontrol agent for wheat crown rot. Microbiol Spectr 2024; 12:e0071224. [PMID: 39162535 PMCID: PMC11448100 DOI: 10.1128/spectrum.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Fusarium pseudograminearum, a soil-borne fungus, is the cause of the devastating wheat disease known as wheat crown rot (WCR). The persistence of this pathogen in the soil and crop residues contributes to the increased occurrence and severity of WCR. Therefore, developing effective strategies to prevent and manage WCR is of great importance. In this study, we isolated a bacterial strain, designated as SR9, from the stem of wheat, that exhibited potent antagonistic effects against F. pseudograminearum, as well as the biocontrol efficacy of SR9 on WCR was quantified at 83.99% ± 0.11%. We identified SR9 as Pseudomonas khavaziana and demonstrated its potential as a plant probiotic. SR9 displayed broad-spectrum antagonism against other fungal pathogens, including Neurospora dictyophora, Botrytis californica, and Botryosphaeria dothidea. Whole-genome sequencing analysis revealed that SR9 harbored genes encoding various cell wall-degrading enzymes, cellulases, and lipases, along with antifungal metabolites, which are responsible for its antagonistic activity. Gene knockout and quantitative PCR analyses reveal that phenazine is the essential factor for antagonism. SR9 possessed genes related to auxin synthesis, flagellar biosynthesis, biofilm adhesion, and the chemotaxis system, which play pivotal roles in plant colonization and growth promotion; we also evaluated the effects of SR9 on plant growth in wheat and Arabidopsis. Our findings strongly suggest that SR9 holds great promise as a biocontrol agent for WCR in sustainable agriculture.IMPORTANCEThe escalating prevalence of wheat crown rot, primarily attributed to Fusarium pseudograminearum, necessitates the development of cost-effective and eco-friendly biocontrol strategies. While plant endophytes are recognized for their biocontrol potential, reports on effective strains targeting wheat crown rot are sparse. This study introduces the Pseudomonas khavaziana SR9 strain as an efficacious antagonist to the wheat crown rot pathogen Fusarium pseudograminearum. Demonstrating a significant reduction in wheat crown rot incidence and notable plant growth promotion, SR9 emerges as a key contributor to plant health and agricultural sustainability. Our study outlines a biological approach to tackle wheat crown rot, establishing a groundwork for innovative sustainable agricultural practices.
Collapse
Affiliation(s)
- Shengzhi Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yanling Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, China
| | - Yating Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Siyu Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tong Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jun Liao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xinyan Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Hafiz Abdul Kareem
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xuejun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Xianyang, Shaanxi, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, China
| |
Collapse
|
18
|
Laffont C, Wechsler T, Kümmerli R. Interactions between Pseudomonas aeruginosa and six opportunistic pathogens cover a broad spectrum from mutualism to antagonism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70015. [PMID: 39356147 PMCID: PMC11445780 DOI: 10.1111/1758-2229.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Bacterial infections often involve more than one pathogen. While it is well established that polymicrobial infections can impact disease outcomes, we know little about how pathogens interact and affect each other's behaviour and fitness. Here, we used a microscopy approach to explore interactions between Pseudomonas aeruginosa and six human opportunistic pathogens that often co-occur in polymicrobial infections: Acinetobacter baumannii, Burkholderia cenocepacia, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, and Staphylococcus aureus. When following growing microcolonies on agarose pads over time, we observed a broad spectrum of species-specific ecological interactions, ranging from mutualism to antagonism. For example, P. aeruginosa engaged in a mutually beneficial interaction with E. faecium but suffered from antagonism by E. coli. While we found little evidence for active directional growth towards or away from cohabitants, we observed that some pathogens increased growth in double layers in response to competition and that physical forces due to fast colony expansion had a major impact on fitness. Overall, our work provides an atlas of pathogen interactions, highlighting the diversity of potential species dynamics that may occur in polymicrobial infections. We discuss possible mechanisms driving pathogen interactions and offer predictions of how the different ecological interactions could affect virulence.
Collapse
Affiliation(s)
- Clémentine Laffont
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| |
Collapse
|
19
|
Chi SI, Akuma M, Xu R, Plante V, Hadinezhad M, Tambong JT. Phenazines are involved in the antagonism of a novel subspecies of Pseudomonas chlororaphis strain S1Bt23 against Pythium ultimum. Sci Rep 2024; 14:20517. [PMID: 39227476 PMCID: PMC11372166 DOI: 10.1038/s41598-024-71418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Long-term use of chemical fungicides to control plant diseases caused by fungi and oomycetes has led to pathogen resistance and negative impacts on public health and environment. There is a global search for eco-friendly methods and antagonistic bacteria are emerging as alternatives. We isolated a potent antagonistic bacterial strain (S1Bt23) from woodland soil in Québec, Canada. Taxonomic characterization by 16S rRNA, multi-locus sequence analysis, pairwise whole-genome comparisons, phylogenomics and phenotypic data identified strain S1Bt23 as a novel subspecies within Pseudomonas chlororaphis. In dual culture studies, strain S1Bt23 exhibited potent mycelial growth inhibition (60.2-66.7%) against Pythium ultimum. Furthermore, strain S1Bt23 was able to significantly bioprotect potato tuber slices from the development of necrosis inducible by P. ultimum. Annotations of the whole genome sequence of S1Bt23 revealed the presence of an arsenal of secondary metabolites including the complete phenazine biosynthetic cluster (phzABCDEFG). Thin-layer (TLC) and high-performance liquid (HPLC) chromatographic analyses of S1Bt23 extracts confirmed the production of phenazines, potent antifungal compounds. CRISPR/Cas9-mediated deletion of phzB (S1Bt23ΔphzB) or phzF (S1Bt23ΔphzF) gene abrogated phenazine production based on TLC and HPLC analyses. Also, S1Bt23ΔphzB and S1Bt23ΔphzF mutants lost antagonistic activity and bioprotection ability of potato tubers against P. ultimum. This demonstrated that phenazines are involved in the antagonistic activity of S1Bt23 against P. ultimum. Finally, based on genotypic and phenotypic data, we taxonomically conclude that S1Bt23 represents a novel subspecies for which the name Pseudomonas chlororaphis subsp. phenazini is proposed.
Collapse
Affiliation(s)
- Sylvia I Chi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
- Canadian Blood Service, Ottawa, ON, K1G 4J5, Canada
| | - Mercy Akuma
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
- University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Véronique Plante
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Mehri Hadinezhad
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada.
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
20
|
Gao LL, Gao YQ, Liu WY, Stadler M, Zhu YT, Qi JZ, Han WB, Gao JM. Evaluation of Phenazine Derivatives from the Lichen-Associated Streptomyces flavidovirens as Potent Antineuroinflammatory Agents In Vitro and In Vivo. JOURNAL OF NATURAL PRODUCTS 2024; 87:1930-1940. [PMID: 39140432 DOI: 10.1021/acs.jnatprod.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Eighteen nitrogen-containing compounds (1-18) were isolated from cultures of the lichen-associated Streptomyces flavidovirens collected from the Qinghai-Tibet Plateau, including seven phenazine derivatives with three new ones, named subphenazines A-C (2-4), two new furan pyrrolidones (8-9), and nine known alkaloids. The structures were elucidated by spectroscopic data analysis, and absolute configurations were determined by single-crystal X-ray diffraction and ECD calculations. The phenazine-type derivatives, in particular compound 3, exhibited significantly better antineuroinflammatory activity than other isolated compounds (8-18). Compound 3 inhibited the release of proinflammatory cytokines including IL-6, TNF-α, and PGE2, and the nuclear translocation of NF-κB; it also reduced the oxidative stress and activated the Nrf2 signaling pathway in LPS-induced BV2 microglia cells. In vivo anti-inflammatory activity in zebrafish indicated that 3 inhibited LPS-stimulated ROS generation. These findings suggested that compound 3 might be a potent antineuroinflammatory agent through the regulation of the NF-κB/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Wu-Yang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Yue-Tong Zhu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Jian-Zhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| |
Collapse
|
21
|
Leinweber A, Laffont C, Lardi M, Eberl L, Pessi G, Kümmerli R. RNA-Seq reveals that Pseudomonas aeruginosa mounts growth medium-dependent competitive responses when sensing diffusible cues from Burkholderia cenocepacia. Commun Biol 2024; 7:995. [PMID: 39143311 PMCID: PMC11324955 DOI: 10.1038/s42003-024-06618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Most habitats host diverse bacterial communities, offering opportunities for inter-species interactions. While competition might often dominate such interactions, little is known about whether bacteria can sense competitors and mount adequate responses. The competition sensing hypothesis proposes that bacteria can use cues such as nutrient stress and cell damage to prepare for battle. Here, we tested this hypothesis by measuring transcriptome changes in Pseudomonas aeruginosa exposed to the supernatant of its competitor Burkholderia cenocepacia. We found that P. aeruginosa exhibited significant growth-medium-dependent transcriptome changes in response to competition. In an iron-rich medium, P. aeruginosa upregulated genes encoding the type-VI secretion system and the siderophore pyoverdine, whereas genes encoding phenazine toxins and hydrogen cyanide were upregulated under iron-limited conditions. Moreover, general stress response and quorum sensing regulators were upregulated upon supernatant exposure. Altogether, our results reveal nuanced competitive responses of P. aeruginosa when confronted with B. cenocepacia supernatant, integrating both environmental and social cues.
Collapse
Affiliation(s)
- Anne Leinweber
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Clémentine Laffont
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
22
|
Truong-Bolduc QC, Wang Y, Lawton BG, Brown Harding H, Yonker LM, Vyas JM, Hooper DC. Phenazine-1 carboxylic acid of Pseudomonas aeruginosa induces the expression of Staphylococcus aureus Tet38 MDR efflux pump and mediates resistance to phenazines and antibiotics. Antimicrob Agents Chemother 2024; 68:e0063624. [PMID: 39028191 PMCID: PMC11304736 DOI: 10.1128/aac.00636-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
In this study, we showed that phenazine-1 carboxylic acid (PCA) of Pseudomonas aeruginosa induced the expression of Tet38 efflux pump triggering Staphylococcus aureus resistance to tetracycline and phenazines. Exposure of S. aureus RN6390 to supernatants of P. aeruginosa PA14 and its pyocyanin (PYO)-deficient mutants showed that P. aeruginosa non-PYO phenazines could induce the expression of Tet38 efflux pump. Direct exposure of RN6390 to PCA compound at 0.25× MIC led to a five-fold increase in tet38 transcripts. Expression of Tet38 protein was identified through confocal microscopy using RN6390(pRN-tet38p-yfp) that expressed YFP under control of the tet38 promoter by PCA at 0.25× MIC. The MICs of PCA of a Tet38-overexpressor and a Δtet38 mutant showed a three-fold increase and a two-fold decrease, respectively, compared with that of wild-type. Pre-exposure of RN6390 to PCA (0.25× MIC) for 1 hour prior to addition of tetracycline (1× or 10× MIC) improved bacteria viability of 1.5-fold and 2.6-fold, respectively, but addition of NaCl 7% together with tetracycline at 10× MIC reduced the number of viable PCA-exposed RN6390 of a 2.0-log10 CFU/mL. The transcript levels of tetR21, a repressor of tet38, decreased and increased two-fold in the presence of PCA and NaCl, respectively, suggesting that the effects of PCA and NaCl on tet38 production occurred through TetR21 expression. These data suggest that PCA-induced Tet38 protects S. aureus against tetracycline during coinfection with P. aeruginosa; however, induced tet38-mediated S. aureus resistance to tetracycline is reversed by NaCl 7%, a nebulized treatment used to enhance sputum mobilization in CF patients.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - B. G. Lawton
- Department of Pediatrics, Cystic Fibrosis Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - H. Brown Harding
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - L. M. Yonker
- Department of Pediatrics, Cystic Fibrosis Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J. M. Vyas
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - D. C. Hooper
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Barazetti AR, Dealis ML, Basso KR, Silva MCD, Alves LDC, Parra MEA, Simionato AS, Cely MVT, Macedo AL, Silva DB, Andrade G. Evaluation of Resistance Induction Promoted by Bioactive Compounds of Pseudomonas aeruginosa LV Strain against Asian Soybean Rust. Microorganisms 2024; 12:1576. [PMID: 39203418 PMCID: PMC11355946 DOI: 10.3390/microorganisms12081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Pseudomonas are known as higher producers of secondary metabolites with antimicrobial properties and plant growth promoters, including resistance induction. These mechanisms should be an alternative to pesticide use in crop production. Phakopsora pachyrhizi causes Asian soybean rust, representing a high loss of yield around the world. The objective of this paper was to evaluate the application of secondary metabolites produced by Pseudomonas aeruginosa LV strain from the semi-purified fraction F4A in soybean plants to induce plant resistance against P. pachyrhizi in field conditions. The experimental design was performed in randomized blocks with three replicates using two F4A doses (1 and 10 μg mL-1) combined or not with fungicides (Unizeb Gold® or Sphere Max®). The control treatment, with Uni + Sph, saponins, flavonoids, and sphingolipids, showed higher intensities in the plants. In contrast, plants treated with the F4A fraction mainly exhibited fatty acid derivatives and some non-identified compounds with nitrogen. Plants treated with Sphere Max®, with or without F4A10, showed higher intensities of glycosylated flavonoids, such as kaempferol, luteolin, narigenin, and apigenin. Plants treated with F4A showed higher intensities of genistein and fatty acid derivatives. These increases in flavonoid compound biosynthesis and antioxidant properties probably contribute to the protection against reactive oxygen species (ROS).
Collapse
Affiliation(s)
- André Riedi Barazetti
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Mickely Liuti Dealis
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Maria Clara Davis Silva
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Leonardo da Cruz Alves
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Maria Eugênia Alcântara Parra
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Ane Stéfano Simionato
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| | - Martha Viviana Torres Cely
- Agricultural and Environmental Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Arthur Ladeira Macedo
- Natural Products and Mass Spectrometry Laboratory (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (A.L.M.); (D.B.S.)
| | - Denise Brentan Silva
- Natural Products and Mass Spectrometry Laboratory (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil; (A.L.M.); (D.B.S.)
| | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.R.B.); (M.L.D.); (K.R.B.); (M.C.D.S.); (L.d.C.A.); (M.E.A.P.); (A.S.S.)
| |
Collapse
|
24
|
Taechowisan T, Chuen-Im T, Phutdhawong WS. Antibacterial and Anticancer Properties of Endophenazines from Streptomyces prasinus ZO16, an Endophyte in Zingiber officinale Rosc. Pak J Biol Sci 2024; 27:469-478. [PMID: 39415555 DOI: 10.3923/pjbs.2024.469.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
<b>Background and Objective:</b> This study investigated a bacterial strain, ZO16, isolated from ginger (<i>Zingiber officinale</i>) roots. Analysis of its 16S ribosomal DNA (rDNA), along with chemical and physical properties, revealed it to be <i>Streptomyces prasinus</i>. This study aimed to isolate and characterize the main bioactive compounds from ZO16, evaluating their antibacterial and anticancer properties. <b>Materials and Methods:</b> Techniques like column chromatography and thin-layer chromatography (TLC) were used to purify the key compounds from ZO16's culture extract. Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry were utilized to confirm the identities of the purified compounds as endophenazine A (compound 1) and endophenazine B (compound 2). The antibacterial and anticancer properties of these compounds were then evaluated. <b>Results:</b> The isolated compounds displayed antibacterial activity against <i>Staphylococcus aureus</i> ATCC 25923 and Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). The minimum inhibitory concentration (MIC) of the isolated compounds against bacteria ranged from 8 to 32 μg/mL, while the minimum bactericidal concentration (MBC) was between 32 and 128 μg/mL. These compounds exhibited effectiveness against tested cancer cells with IC<sub>50</sub> values ranging from 30.40 to 32.51 μg/mL for cervical cancer (HeLa), 78.32 to 86.45 μg/mL for liver cancer (HepG2) and 23.41 to 28.26 μg/mL for breast cancer (MDA-MB-231) cells. However, these compounds also showed moderate toxicity towards non-cancerous Vero cells (IC<sub>50</sub> = 317.44-328.63 μg/mL). <b>Conclusion:</b> The findings of this study suggest that <i>Streptomyces prasinus</i> strain ZO16 produces compounds with antibacterial and anticancer properties. Further investigation of these compounds has the potential to contribute to the development of improved methods for controlling and treating bacterial infections and some cancers.
Collapse
|
25
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
26
|
Franco A, Chukwubuikem A, Meiners C, Rosenbaum MA. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa. Bioelectrochemistry 2024; 157:108636. [PMID: 38181591 DOI: 10.1016/j.bioelechem.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
Pseudomonas aeruginosa phenazines contribute to survival under microaerobic and anaerobic conditions by extracellular electron discharge to regulate cellular redox balances. This electron discharge is also attractive to be used for bioelectrochemical applications. However, elements of the respiratory pathways that interact with phenazines are not well understood. Five terminal oxidases are involved in the aerobic electron transport chain (ETC) of Pseudomonas putida and P. aeruginosa. The latter bacterium also includes four reductases that allow for denitrification. Here, we explored if phenazine-1-carboxylic acid interacts with those elements to enhance anodic electron discharge and drive bacterial growth in oxygen-limited conditions. Bioelectrochemical evaluations of terminal oxidase-deficient mutants of both Pseudomonas strains and P. aeruginosa with stimulated denitrification pathways indicated no direct beneficial interaction of phenazines with ETC elements for extracellular electron discharge. However, the single usage of the Cbb3-2 oxidase increased phenazine production, electron discharge, and cell growth. Assays with purified periplasmic cytochromes NirM and NirS indicated that pyocyanin acts as their electron donor. We conclude that phenazines play an important role in electron transfer to, between, and from terminal oxidases under oxygen-limiting conditions and their modulation might enhance EET. However, the phenazine-anode interaction cannot replace oxygen respiration to deliver energy for biomass formation.
Collapse
Affiliation(s)
- Angel Franco
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Anthony Chukwubuikem
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), Fürstengraben 1, 07743 Jena, Germany
| | - Carina Meiners
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), Fürstengraben 1, 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), Fürstengraben 1, 07743 Jena, Germany.
| |
Collapse
|
27
|
Chakarwarti J, Anand V, Nayaka S, Srivastava S. In vitro Antibacterial Activity and Secondary Metabolite Profiling of Endolichenic Fungi Isolated from Genus Parmotrema. Curr Microbiol 2024; 81:195. [PMID: 38809483 DOI: 10.1007/s00284-024-03719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
The endolichenic fungi are an unexplored group of organisms for the production of bioactive secondary metabolites. The aim of the present study is to determine the antibacterial potential of endolichenic fungi isolated from genus Parmotrema. The study is continuation of our previous work, wherein a total of 73 endolichenic fungi were isolated from the lichenized fungi, which resulted in 47 species under 23 genera. All the isolated endolichenic fungi were screened for preliminary antibacterial activity. Five endolichenic fungi-Daldinia eschscholtzii, Nemania diffusa, Preussia sp., Trichoderma sp. and Xylaria feejeensis, were selected for further antibacterial activity by disc diffusion method. The zone of inhibition ranged from 14.3 ± 0.1 to 23.2 ± 0.1. The chemical composition of the selected endolichenic fungi was analysed through GC-MS, which yielded a total of 108 compounds from all the selected five endolichenic fungi. Diethyl phthalate, 1-hexadecanol, dibutyl phthalate, n-tetracosanol-1, 1-nonadecene, pyrrol[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methyl) and tetratetracontane were found to be common compounds among one or the other endolichenic fungi, which possibly were responsible for antibacterial activity. GC-MS data were further analysed through Principal Component Analysis which showed D. eschscholtzii to be with unique pattern of expression of metabolites. Compound confirmation test revealed coumaric acid to be responsible for antibacterial activity in D. eschscholtzii. So, the study proves that endolichenic fungi that inhabit lichenized fungal thalli could be a source of potential antibacterial compounds.
Collapse
Affiliation(s)
- Jyotsna Chakarwarti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Lichenology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Vandana Anand
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, IFTM University, Moradabad, 244102, India
| | - Sanjeeva Nayaka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Lichenology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - Suchi Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| |
Collapse
|
28
|
Sfera A, Imran H, Sfera DO, Anton JJ, Kozlakidis Z, Hazan S. Novel Insights into Psychosis and Antipsychotic Interventions: From Managing Symptoms to Improving Outcomes. Int J Mol Sci 2024; 25:5904. [PMID: 38892092 PMCID: PMC11173215 DOI: 10.3390/ijms25115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
For the past 70 years, the dopamine hypothesis has been the key working model in schizophrenia. This has contributed to the development of numerous inhibitors of dopaminergic signaling and antipsychotic drugs, which led to rapid symptom resolution but only marginal outcome improvement. Over the past decades, there has been limited research on the quantifiable pathological changes in schizophrenia, including premature cellular/neuronal senescence, brain volume loss, the attenuation of gamma oscillations in electroencephalograms, and the oxidation of lipids in the plasma and mitochondrial membranes. We surmise that the aberrant activation of the aryl hydrocarbon receptor by toxins derived from gut microbes or the environment drives premature cellular and neuronal senescence, a hallmark of schizophrenia. Early brain aging promotes secondary changes, including the impairment and loss of mitochondria, gray matter depletion, decreased gamma oscillations, and a compensatory metabolic shift to lactate and lactylation. The aim of this narrative review is twofold: (1) to summarize what is known about premature cellular/neuronal senescence in schizophrenia or schizophrenia-like disorders, and (2) to discuss novel strategies for improving long-term outcomes in severe mental illness with natural senotherapeutics, membrane lipid replacement, mitochondrial transplantation, microbial phenazines, novel antioxidant phenothiazines, inhibitors of glycogen synthase kinase-3 beta, and aryl hydrocarbon receptor antagonists.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Hassan Imran
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Dan O. Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69372 Lyon, France;
| | | |
Collapse
|
29
|
Xu C, Ni L, Du C, Shi J, Ma Y, Li S, Li Y. Decoding Microcystis aeruginosa quorum sensing through AHL-mediated transcriptomic molecular regulation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172101. [PMID: 38556017 DOI: 10.1016/j.scitotenv.2024.172101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Acyl-homoserine lactone (AHL) serves as a key signaling molecule for quorum sensing (QS) in bacteria. QS-related genes and physiological processes in Microcystis aeruginosa remain elusive. In this study, we elucidated the regulatory role of AHL-mediated QS in M. aeruginosa. Using AHL activity extract and transcriptomic analysis, we revealed significant effects of the AHL on growth and photosynthesis. AHL significantly increased chlorophyll a (Chl-a) content and accelerated photosynthetic rate thereby promoting growth. Transcriptome analysis revealed that AHL stimulated the up-regulation of photosynthesis-related genes (apcABF, petE, psaBFK, psbUV, etc.) as well as nitrogen metabolism and ribosomal metabolism. In addition, AHL-regulated pathways are associated with lipopolysaccharide and phenazine synthesis. Our findings deepen the understanding of the QS system in M. aeruginosa and are important for gaining insights into the role of QS in Microcystis bloom formation. It also provides new insights into the prevalence of M. aeruginosa in water blooms.
Collapse
Affiliation(s)
- Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jiahui Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yushen Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Shiyin Li
- College of Environment, Nanjing Normal University, Nanjing, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
30
|
Bhairamkar S, Kadam P, Anjulal H, Joshi A, Chaudhari R, Bagul D, Javdekar V, Zinjarde S. Comprehensive updates on the biological features and metabolic potential of the versatile extremophilic actinomycete Nocardiopsis dassonvillei. Res Microbiol 2024; 175:104171. [PMID: 37995890 DOI: 10.1016/j.resmic.2023.104171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Nocardiopsis dassonvillei prevails under harsh environmental conditions and the purpose of this review is to highlight its biological features and recent biotechnological applications. The organism prevails in salt-rich soils/marine systems and some strains endure extreme temperatures and pH. A few isolates are associated with marine organisms and others cause human diseases. Comparative genomic analysis indicates its versatility in producing biotechnologically relevant metabolites. Antimicrobial, cytotoxic, anticancer and growth promoting biomolecules are obtained from this organism. It also synthesizes biotechnologically important enzymes. Bioactive compounds and enzymes obtained from this actinomycete provide evidence regarding its metabolic competence and its potential economic value.
Collapse
Affiliation(s)
- Shivani Bhairamkar
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Pratik Kadam
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - H Anjulal
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Avani Joshi
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Riddhi Chaudhari
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Dimpal Bagul
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Vaishali Javdekar
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
31
|
Mahdally NH, ElShiekh RA, Thissera B, Eltaher A, Osama A, Mokhtar M, Elhosseiny NM, Kashef MT, Magdeldin S, El Halawany AM, Rateb ME, Attia AS. Dihydrophenazine: a multifunctional new weapon that kills multidrug-resistant Acinetobacter baumannii and restores carbapenem and oxidative stress susceptibilities. J Appl Microbiol 2024; 135:lxae100. [PMID: 38627251 DOI: 10.1093/jambio/lxae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
AIMS The current work aims to fully characterize a new antimicrobial agent against Acinetobacter baumannii, which continues to represent a growing threat to healthcare settings worldwide. With minimal treatment options due to the extensive spread of resistance to almost all the available antimicrobials, the hunt for new antimicrobial agents is a high priority. METHODS AND RESULTS An Egyptian soil-derived bacterium strain NHM-077B proved to be a promising source for a new antimicrobial agent. Bio-guided fractionation of the culture supernatants of NHM-077B followed by chemical structure elucidation identified the active antimicrobial agent as 1-hydroxy phenazine. Chemical synthesis yielded more derivatives, including dihydrophenazine (DHP), which proved to be the most potent against A. baumannii, yet it exhibited a marginally safe cytotoxicity profile against human skin fibroblasts. Proteomics analysis of the cells treated with DHP revealed multiple proteins with altered expression that could be correlated to the observed phenotypes and potential mechanism of the antimicrobial action of DHP. DHP is a multipronged agent that affects membrane integrity, increases susceptibility to oxidative stress, interferes with amino acids/protein synthesis, and modulates virulence-related proteins. Interestingly, DHP in subinhibitory concentrations re-sensitizes the highly virulent carbapenem-resistant A. baumannii strain AB5075 to carbapenems providing great hope in regaining some of the benefits of this important class of antibiotics. CONCLUSIONS This work underscores the potential of DHP as a promising new agent with multifunctional roles as both a classical and nonconventional antimicrobial agent that is urgently needed.
Collapse
Affiliation(s)
- Norhan H Mahdally
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Riham A ElShiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Ashraf Eltaher
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Maha Mokhtar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ali M El Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- School of Pharmacy, Newgiza University, Giza 12585, Egypt
| |
Collapse
|
32
|
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
33
|
Serrage HJ, O’ Neill CA, Uzunbajakava NE. Illuminating microflora: shedding light on the potential of blue light to modulate the cutaneous microbiome. Front Cell Infect Microbiol 2024; 14:1307374. [PMID: 38660491 PMCID: PMC11039841 DOI: 10.3389/fcimb.2024.1307374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Cutaneous diseases (such as atopic dermatitis, acne, psoriasis, alopecia and chronic wounds) rank as the fourth most prevalent human disease, affecting nearly one-third of the world's population. Skin diseases contribute to significant non-fatal disability globally, impacting individuals, partners, and society at large. Recent evidence suggests that specific microbes colonising our skin and its appendages are often overrepresented in disease. Therefore, manipulating interactions of the microbiome in a non-invasive and safe way presents an attractive approach for management of skin and hair follicle conditions. Due to its proven anti-microbial and anti-inflammatory effects, blue light (380 - 495nm) has received considerable attention as a possible 'magic bullet' for management of skin dysbiosis. As humans, we have evolved under the influence of sun exposure, which comprise a significant portion of blue light. A growing body of evidence indicates that our resident skin microbiome possesses the ability to detect and respond to blue light through expression of chromophores. This can modulate physiological responses, ranging from cytotoxicity to proliferation. In this review we first present evidence of the diverse blue light-sensitive chromophores expressed by members of the skin microbiome. Subsequently, we discuss how blue light may impact the dialog between the host and its skin microbiome in prevalent skin and hair follicle conditions. Finally, we examine the constraints of this non-invasive treatment strategy and outline prospective avenues for further research. Collectively, these findings present a comprehensive body of evidence regarding the potential utility of blue light as a restorative tool for managing prevalent skin conditions. Furthermore, they underscore the critical unmet need for a whole systems approach to comprehend the ramifications of blue light on both host and microbial behaviour.
Collapse
Affiliation(s)
- Hannah J. Serrage
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Catherine A. O’ Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
34
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
35
|
Mondol SM, Islam MR, Rakhi NN, Shakil SK, Islam I, Mustary JF, Amiruzzaman, Shahjalal HM, Gomes DJ, Rahaman MM. Unveiling a high-risk epidemic clone (ST 357) of 'Difficult to Treat Extensively Drug-Resistant' (DT-XDR) Pseudomonas aeruginosa from a burn patient in Bangladesh: A resilient beast revealing coexistence of four classes of beta lactamases. J Glob Antimicrob Resist 2024; 36:83-95. [PMID: 38122983 DOI: 10.1016/j.jgar.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) stands out as a key culprit in the colonization of burn wounds, instigating grave infections of heightened severity. In this study, we have performed comparative whole genome analysis of a difficult to treat extensively drug resistant P. aeruginosa isolated from a burn patient in order to elucidate genomic diversity, molecular patterns, mechanisms and genes responsible for conferring antimicrobial resistance and virulence. METHOD P. aeruginosa SHNIBPS206 was isolated from an infected burn wound of a critically injured burn patient. Whole genome sequencing was carried out and annotated with Prokka. Sequence type, serotype, antimicrobial resistance genes and mechanisms, virulence genes, metal resistance genes and CRISPR/Cas systems were investigated. Later, pangenome analysis was carried out to find out genomic diversity. RESULT P. aeruginosa SHNIBPS206 (MLST 357, Serotype O11) was resistant to 14 antibiotics including carbapenems and harboured all four classes of beta lactamase producing genes: Class A (blaPME-1, blaVEB-9), Class B (blaNDM-1), Class C (blaPDC-11) and Class D (blaOXA-846). Mutational analysis of Porin D gave valuable insights. Several efflux pump, virulence and metal resistance genes were also detected. Pangenome analysis revealed high genomic diversity among different strains of P. aeruginosa. CONCLUSION To our knowledge, this is the first report of an extensively drug resistant ST 357 P. aeruginosa from Bangladesh, which is an epidemic high-risk P. aeruginosa clone. Further research and in-depth comprehensive studies are required to investigate the prevalence of such high-risk clone of P. aeruginosa in Bangladesh.
Collapse
Affiliation(s)
| | - Md Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Shahriar Kabir Shakil
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Israt Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Jannatul Ferdous Mustary
- Microbiology Department, Sheikh Hasina National Institute of Burn and Plastic Surgery, Dhaka, Bangladesh
| | - Amiruzzaman
- Department of Medicine, Sir Salimullah Medical College, Dhaka, Bangladesh
| | - Hussain Md Shahjalal
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | | |
Collapse
|
36
|
Sweeney D, Chase AB, Bogdanov A, Jensen PR. MAR4 Streptomyces: A Unique Resource for Natural Product Discovery. JOURNAL OF NATURAL PRODUCTS 2024; 87:439-452. [PMID: 38353658 PMCID: PMC10897937 DOI: 10.1021/acs.jnatprod.3c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Marine-derived Streptomyces have long been recognized as a source of novel, pharmaceutically relevant natural products. Among these bacteria, the MAR4 clade within the genus Streptomyces has been identified as metabolically rich, yielding over 93 different compounds to date. MAR4 strains are particularly noteworthy for the production of halogenated hybrid isoprenoid natural products, a relatively rare class of bacterial metabolites that possess a wide range of biological activities. MAR4 genomes are enriched in vanadium haloperoxidase and prenyltransferase genes, thus accounting for the production of these compounds. Functional characterization of the enzymes encoded in MAR4 genomes has advanced our understanding of halogenated, hybrid isoprenoid biosynthesis. Despite the exceptional biosynthetic capabilities of MAR4 bacteria, the large body of research they have stimulated has yet to be compiled. Here we review 35 years of natural product research on MAR4 strains and update the molecular diversity of this unique group of bacteria.
Collapse
Affiliation(s)
- Douglas Sweeney
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexander B. Chase
- Department
of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States
| | - Alexander Bogdanov
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Paul R. Jensen
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
37
|
Tse-Kang S, Wani KA, Peterson ND, Page A, Pukkila-Worley R. Activation of intestinal immunity by pathogen effector-triggered aggregation of lysosomal TIR-1/SARM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569946. [PMID: 38106043 PMCID: PMC10723332 DOI: 10.1101/2023.12.04.569946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
TIR-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that a TIR-domain protein (TIR-1/SARM1) is strategically expressed on the membranes of a lysosomal sub-compartment, which enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. We showed that a redox active virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed a specific subset of lysosomes by inducing intracellular oxidative stress. Concentration of TIR-1/SARM1 on the surface of these organelles triggered its multimerization, which engages its intrinsic NADase activity, to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, lysosomal TIR-1/SARM1 is a sensor for oxidative stress induced by pathogenic bacteria to activate metazoan intestinal immunity.
Collapse
|
38
|
Moradi M, Gao Y, Narenkumar J, Fan Y, Gu T, Carmona-Martinez AA, Xu D, Wang F. Filamentous marine Gram-positive Nocardiopsis dassonvillei biofilm as biocathode and its electron transfer mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168347. [PMID: 37935264 DOI: 10.1016/j.scitotenv.2023.168347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
This study investigated electrochemical characteristics of Gram-positive, Nocardiopsis dassonvillei B17 facultative bacterium in bioelectrochemical systems. The results demonstrated that anodic and cathodic reaction rates were catalyzed by this bacterium, especially by utilization of aluminium alloy as a substrate. Cyclic voltammogram results depicted an increase of peak current and surface area through biofilm development, confirming its importance on catalysis of redox reactions. Phenazine derivatives were detected and their electron mediating behavior was evaluated exogenously. A symmetrical redox peak in the range of -59 to -159 mV/SHE was observed in cyclic voltammogram of bacterial solution supplemented with 12 μM phenazine, a result consistent with cyclic voltammogram of a 5-d biofilm, confirming its importance as an electron mediator in extracellular electron transfer. Furthermore, the dependency of bacterial catalysis and polarization potential were studied. These results suggested that B17 biofilm behaved as a biocathode and transferred electrons to bacterial cells through a mechanism associated with electron mediators.
Collapse
Affiliation(s)
- Masoumeh Moradi
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Yu Gao
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Jayaraman Narenkumar
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Yongqiang Fan
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China; Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, 45701, USA
| | | | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China.
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
39
|
Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial Pigments: Major Groups and Industrial Applications. Microorganisms 2023; 11:2920. [PMID: 38138065 PMCID: PMC10745774 DOI: 10.3390/microorganisms11122920] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial pigments have many structures and functions with excellent characteristics, such as being biodegradable, non-toxic, and ecologically friendly, constituting an important source of pigments. Industrial production presents a bottleneck in production cost that restricts large-scale commercialization. However, microbial pigments are progressively gaining popularity because of their health advantages. The development of metabolic engineering and cost reduction of the bioprocess using industry by-products opened possibilities for cost and quality improvements in all production phases. We are thus addressing several points related to microbial pigments, including the major classes and structures found, the advantages of use, the biotechnological applications in different industrial sectors, their characteristics, and their impacts on the environment and society.
Collapse
Affiliation(s)
| | | | | | | | - Alane Beatriz Vermelho
- Bioinovar Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.V.d.O.B.); (L.M.C.); (A.N.J.); (M.C.P.P.R.-M.)
| |
Collapse
|
40
|
Scribani Rossi C, Eckartt K, Scarchilli E, Angeli S, Price-Whelan A, Di Matteo A, Chevreuil M, Raynal B, Arcovito A, Giacon N, Fiorentino F, Rotili D, Mai A, Espinosa-Urgel M, Cutruzzolà F, Dietrich LEP, Paone A, Paiardini A, Rinaldo S. Molecular insights into RmcA-mediated c-di-GMP consumption: Linking redox potential to biofilm morphogenesis in Pseudomonas aeruginosa. Microbiol Res 2023; 277:127498. [PMID: 37776579 DOI: 10.1016/j.micres.2023.127498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.
Collapse
Affiliation(s)
- Chiara Scribani Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Kelly Eckartt
- Department of Biological Sciences, Columbia University, New York, USA
| | - Elisabetta Scarchilli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Simone Angeli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, I-00185 Rome, Italy
| | - Maelenn Chevreuil
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection. Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, USA
| | - Alessio Paone
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
41
|
Pantelic L, Bogojevic SS, Vojnovic S, Oliveira R, Lazic J, Ilic-Tomic T, Milivojevic D, Nikodinovic-Runic J. Upcycling of food waste streams to valuable biopigments pyocyanin and 1-hydroxyphenazine. Enzyme Microb Technol 2023; 171:110322. [PMID: 37722241 DOI: 10.1016/j.enzmictec.2023.110322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Phenazines, including pyocyanin (PYO) and 1-hydroxyphenazine (1-HP) are extracellular secondary metabolites and multifunctional pigments of Pseudomonas aeruginosa responsible for its blue-green color. These versatile molecules are electrochemically active, involved in significant biological activities giving fitness to the host, but also recognized as antimicrobial and anticancer agents. Their wider application is still limited partly due to the cost of carbon substrate for production, which can be solved by the utilization of carbon from food waste within the biorefinery concept. In this study, a variety of food waste streams (banana peel, potato peel, potato washing, stale bread, yoghurt, processed meat, boiled eggs and mixed canteen waste) was used as sole nutrient source in submerged cultures of P. aeruginosa BK25H. Stale bread was identified as the most suitable substrate to support phenazine biopigments production and bacterial growth. This was further increased in 5-liter fermenter when on average 5.2 mg L-1 of PYO and 4.4 mg L-1 of 1-HP were purified after 24 h batch cultivations from the fermentation medium consisting of homogenized stale bread in tap water. Purified biopigments showed moderate antimicrobial activity, and showed different toxicity profiles, with PYO not being toxic against Caenorhabditis elegans, a free-living soil nematode up to 300 µg mL-1 and 1-HP showing lethal effects at 75 µg mL-1. Therefore, stale bread waste stream with minimal pretreatment should be considered as suitable biorefinery feedstock, as it can support the production of valuable biopigments such as phenazines.
Collapse
Affiliation(s)
- Lena Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Rui Oliveira
- LAQV-REQUIMTE, NOVA School of Science and Technology, NOVA University Lisbon, Largo da Torre, 2829-516 Caparica, Portugal
| | - Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| |
Collapse
|
42
|
Madonia A, Minervini G, Terracina A, Pramanik A, Martorana V, Sciortino A, Carbonaro CM, Olla C, Sibillano T, Giannini C, Fanizza E, Curri ML, Panniello A, Messina F, Striccoli M. Dye-Derived Red-Emitting Carbon Dots for Lasing and Solid-State Lighting. ACS NANO 2023; 17:21274-21286. [PMID: 37870465 PMCID: PMC10655242 DOI: 10.1021/acsnano.3c05566] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Carbon dots are carbon-based nanoparticles renowned for their intense light-emitting capabilities covering the whole visible light range. Achieving carbon dots emitting in the red region with high efficiency is extremely relevant due to their huge potential in biological applications and in optoelectronics. Currently, photoluminescence in such an energy interval is often associated with polyheterocyclic molecular domains forming during the synthesis that, however, present low emission efficiency and issues in controlling the optical features. Here, we overcome these problems by solvothermally synthesizing carbon dots starting from Neutral Red, a common red-emitting dye, as a molecular precursor. As a result of the synthesis, such molecular fluorophore is incorporated into a carbonaceous core while retaining its original optical properties. The obtained nanoparticles are highly luminescent in the red region, with a quantum yield comparable to that of the starting dye. Most importantly, the nanoparticle carbogenic matrix protects the Neutral Red molecules from photobleaching under ultraviolet excitation while preventing aggregation-induced quenching, thus allowing solid-state emission. These advantages have been exploited to develop a fluorescence-based color conversion layer by fabricating polymer-based highly concentrated solid-state carbon dot nanocomposites. Finally, the dye-based carbon dots demonstrate both stable Fabry-Perot lasing and efficient random lasing emission in the red region.
Collapse
Affiliation(s)
- Antonino Madonia
- CNR-IPCF
Bari Division, Italian National Research
Council, Bari, 70126, Italy
| | - Gianluca Minervini
- CNR-IPCF
Bari Division, Italian National Research
Council, Bari, 70126, Italy
- Department
of Electrical and Information Engineering, Polytechnic of Bari, Bari, 70126, Italy
| | - Angela Terracina
- Dipartimento
di Fisica e Chimica “Emilio Segrè”, Università degli Studi di Palermo, Palermo 90123, Italy
| | - Ashim Pramanik
- Dipartimento
di Fisica e Chimica “Emilio Segrè”, Università degli Studi di Palermo, Palermo 90123, Italy
| | - Vincenzo Martorana
- Institute
of Biophysics Palermo Division, Italian
National Research Council, Palermo 90146, Italy
| | - Alice Sciortino
- Dipartimento
di Fisica e Chimica “Emilio Segrè”, Università degli Studi di Palermo, Palermo 90123, Italy
- ATeN
Center, Università degli Studi di
Palermo, Palermo 90123, Italy
| | | | - Chiara Olla
- Department
of Physics, University of Cagliari, Monserrato 09042, Italy
| | - Teresa Sibillano
- CNR-IC
Institute of Crystallography, Italian National
Research Council, Bari 70122, Italy
| | - Cinzia Giannini
- CNR-IC
Institute of Crystallography, Italian National
Research Council, Bari 70122, Italy
| | - Elisabetta Fanizza
- CNR-IPCF
Bari Division, Italian National Research
Council, Bari, 70126, Italy
- Chemistry
Department, University of Bari “Aldo
Moro”, Bari 70126, Italy
| | - Maria L. Curri
- CNR-IPCF
Bari Division, Italian National Research
Council, Bari, 70126, Italy
- Chemistry
Department, University of Bari “Aldo
Moro”, Bari 70126, Italy
| | - Annamaria Panniello
- CNR-IPCF
Bari Division, Italian National Research
Council, Bari, 70126, Italy
| | - Fabrizio Messina
- Dipartimento
di Fisica e Chimica “Emilio Segrè”, Università degli Studi di Palermo, Palermo 90123, Italy
- ATeN
Center, Università degli Studi di
Palermo, Palermo 90123, Italy
| | - Marinella Striccoli
- CNR-IPCF
Bari Division, Italian National Research
Council, Bari, 70126, Italy
| |
Collapse
|
43
|
Cumsille A, Serna-Cardona N, González V, Claverías F, Undabarrena A, Molina V, Salvà-Serra F, Moore ERB, Cámara B. Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution. BMC Genomics 2023; 24:622. [PMID: 37858045 PMCID: PMC10588199 DOI: 10.1186/s12864-023-09694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.
Collapse
Affiliation(s)
- Andrés Cumsille
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Néstor Serna-Cardona
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina González
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda Claverías
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Agustina Undabarrena
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Vania Molina
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Beatriz Cámara
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| |
Collapse
|
44
|
Downes SG, Doyle S, Jones GW, Owens RA. Gliotoxin and related metabolites as zinc chelators: implications and exploitation to overcome antimicrobial resistance. Essays Biochem 2023; 67:769-780. [PMID: 36876884 PMCID: PMC10500201 DOI: 10.1042/ebc20220222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
Antimicrobial resistance (AMR) is a major global problem and threat to humanity. The search for new antibiotics is directed towards targeting of novel microbial systems and enzymes, as well as augmenting the activity of pre-existing antimicrobials. Sulphur-containing metabolites (e.g., auranofin and bacterial dithiolopyrrolones [e.g., holomycin]) and Zn2+-chelating ionophores (PBT2) have emerged as important antimicrobial classes. The sulphur-containing, non-ribosomal peptide gliotoxin, biosynthesised by Aspergillus fumigatus and other fungi exhibits potent antimicrobial activity, especially in the dithiol form (dithiol gliotoxin; DTG). Specifically, it has been revealed that deletion of the enzymes gliotoxin oxidoreductase GliT, bis-thiomethyltransferase GtmA or the transporter GliA dramatically sensitise A. fumigatus to gliotoxin presence. Indeed, the double deletion strain A. fumigatus ΔgliTΔgtmA is especially sensitive to gliotoxin-mediated growth inhibition, which can be reversed by Zn2+ presence. Moreover, DTG is a Zn2+ chelator which can eject zinc from enzymes and inhibit activity. Although multiple studies have demonstrated the potent antibacterial effect of gliotoxin, no mechanistic details are available. Interestingly, reduced holomycin can inhibit metallo-β-lactamases. Since holomycin and gliotoxin can chelate Zn2+, resulting in metalloenzyme inhibition, we propose that this metal-chelating characteristic of these metabolites requires immediate investigation to identify new antibacterial drug targets or to augment the activity of existing antimicrobials. Given that (i) gliotoxin has been shown in vitro to significantly enhance vancomycin activity against Staphylococcus aureus, and (ii) that it has been independently proposed as an ideal probe to dissect the central 'Integrator' role of Zn2+ in bacteria - we contend such studies are immediately undertaken to help address AMR.
Collapse
Affiliation(s)
- Shane G Downes
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds LS1 3HE, U.K
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
45
|
Eliani-Russak E, Tik Z, Uzi-Gavrilov S, Meijler MM, Sivan O. The reduction of environmentally abundant iron oxides by the methanogen Methanosarcina barkeri. Front Microbiol 2023; 14:1197299. [PMID: 37547683 PMCID: PMC10399698 DOI: 10.3389/fmicb.2023.1197299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Microbial dissimilatory iron reduction is a fundamental respiratory process that began early in evolution and is performed in diverse habitats including aquatic anoxic sediments. In many of these sediments microbial iron reduction is not only observed in its classical upper zone, but also in the methane production zone, where low-reactive iron oxide minerals are present. Previous studies in aquatic sediments have shown the potential role of the archaeal methanogen Methanosarcinales in this reduction process, and their use of methanophenazines was suggested as an advantage in reducing iron over other iron-reducing bacteria. Here we tested the capability of the methanogenic archaeon Methanosarcina barkeri to reduce three naturally abundant iron oxides in the methanogenic zone: the low-reactive iron minerals hematite and magnetite, and the high-reactive amorphous iron oxide. We also examined the potential role of their methanophenazines in promoting the reduction. Pure cultures were grown close to natural conditions existing in the methanogenic zone (under nitrogen atmosphere, N2:CO2, 80:20), in the presence of these iron oxides and different electron shuttles. Iron reduction by M. barkeri was observed in all iron oxide types within 10 days. The reduction during that time was most notable for amorphous iron, then magnetite, and finally hematite. Importantly, the reduction of iron inhibited archaeal methane production. When hematite was added inside cryogenic vials, thereby preventing direct contact with M. barkeri, no iron reduction was observed, and methanogenesis was not inhibited. This suggests a potential role of methanophenazines, which are strongly associated with the membrane, in transferring electrons from the cell to the minerals. Indeed, adding dissolved phenazines as electron shuttles to the media with iron oxides increased iron reduction and inhibited methanogenesis almost completely. When M. barkeri was incubated with hematite and the phenazines together, there was a change in the amounts (but not the type) of specific metabolites, indicating a difference in the ratio of metabolic pathways. Taken together, the results show the potential role of methanogens in reducing naturally abundant iron minerals in methanogenic sediments under natural energy and substrate limitations and shed new insights into the coupling of microbial iron reduction and the important greenhouse gas methane.
Collapse
Affiliation(s)
- Efrat Eliani-Russak
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Zohar Tik
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shaked Uzi-Gavrilov
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michael M. Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
46
|
Zhu Q, Bai X, Li Q, Zhang M, Hu G, Pan K, Liu H, Ke Z, Hong Q, Qiu J. PcaR, a GntR/FadR Family Transcriptional Repressor Controls the Transcription of Phenazine-1-Carboxylic Acid 1,2-Dioxygenase Gene Cluster in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2023; 89:e0212122. [PMID: 37191535 PMCID: PMC10304782 DOI: 10.1128/aem.02121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
In our previous study, the phenazine-1-carboxylic acid (PCA) 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster) in Sphingomonas histidinilytica DS-9 was identified to be responsible for the conversion of PCA to 1,2-dihydroxyphenazine (Ren Y, Zhang M, Gao S, Zhu Q, et al. 2022. Appl Environ Microbiol 88:e00543-22). However, the regulatory mechanism of the pcaA1A2A3A4 cluster has not been elucidated yet. In this study, the pcaA1A2A3A4 cluster was found to be transcribed as two divergent operons: pcaA3-ORF5205 (named A3-5205 operon) and pcaA1A2-ORF5208-pcaA4-ORF5210 (named A1-5210 operon). The promoter regions of the two operons were overlapped. PcaR acts as a transcriptional repressor of the pcaA1A2A3A4 cluster, and it belongs to GntR/FadR family transcriptional regulator. Gene disruption of pcaR can shorten the lag phase of PCA degradation. The results of electrophoretic mobility shift assay and DNase I footprinting showed that PcaR binds to a 25-bp motif in the ORF5205-pcaA1 intergenic promoter region to regulate the expression of two operons. The 25-bp motif covers the -10 region of the promoter of A3-5205 operon and the -35 region and -10 region of the promoter of A1-5210 operon. The TNGT/ANCNA box within the motif was essential for PcaR binding to the two promoters. PCA acted as an effector of PcaR, preventing it from binding to the promoter region and repressing the transcription of the pcaA1A2A3A4 cluster. In addition, PcaR represses its own transcription, and this repression can be relieved by PCA. This study reveals the regulatory mechanism of PCA degradation in strain DS-9, and the identification of PcaR increases the variety of regulatory model of the GntR/FadR-type regulator. IMPORTANCE Sphingomonas histidinilytica DS-9 is a phenazine-1-carboxylic acid (PCA)-degrading strain. The 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster, encoding dioxygenase PcaA1A2, reductase PcaA3, and ferredoxin PcaA4) is responsible for the initial degradation step of PCA and widely distributed in Sphingomonads, but its regulatory mechanism has not been investigated yet. In this study, a GntR/FadR-type transcriptional regulator PcaR repressing the transcription of pcaA1A2A3A4 cluster and pcaR gene was identified and characterized. The binding site of PcaR in ORF5205-pcaA1 intergenic promoter region contains a TNGT/ANCNA box, which is important for the binding. These findings enhance our understanding of the molecular mechanism of PCA degradation.
Collapse
Affiliation(s)
- Qian Zhu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xuekun Bai
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Qian Li
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Gang Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Kaihua Pan
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongfei Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, People’s Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
47
|
Hou M, Huang J, Jia T, Guan Y, Yang F, Zhou H, Huang P, Wang J, Yang L, Dai L. Deep Profiling of the Proteome Dynamics of Pseudomonas aeruginosa Reference Strain PAO1 under Different Growth Conditions. J Proteome Res 2023; 22:1747-1761. [PMID: 37212837 DOI: 10.1021/acs.jproteome.2c00785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As one of the most common bacterial pathogens causing nosocomial infections, Pseudomonas aeruginosa is highly adaptable to survive under various conditions. Here, we profiled the abundance dynamics of 3489 proteins across different growth stages in the P. aeruginosa reference strain PAO1 using data-independent acquisition-based quantitative proteomics. The proteins differentially expressed during the planktonic growth exhibit several distinct patterns of expression profiles and are relevant to various biological processes, highlighting the continuous adaptation of the PAO1 proteome during the transition from the acceleration phase to the stationary phase. By contrasting the protein expressions in a biofilm to planktonic cells, the known roles of T6SS, phenazine biosynthesis, quorum sensing, and c-di-GMP signaling in the biofilm formation process were confirmed. Additionally, we also discovered several new functional proteins that may play roles in the biofilm formation process. Lastly, we demonstrated the general concordance of protein expressions within operons across various growth states, which permits the study of coexpression protein units, and reversely, the study of regulatory components in the operon structure. Taken together, we present a high-quality and valuable resource on the proteomic dynamics of the P. aeruginosa reference strain PAO1, with the potential of advancing our understanding of the overall physiology of Pseudomonas bacteria.
Collapse
Affiliation(s)
- Mengyun Hou
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jingnan Huang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Tianyuan Jia
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yudong Guan
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Fan Yang
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Hongchao Zhou
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Piying Huang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jigang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Lingyun Dai
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
48
|
Peterson ND, Tse SY, Huang QJ, Wani KA, Schiffer CA, Pukkila-Worley R. Non-canonical pattern recognition of a pathogen-derived metabolite by a nuclear hormone receptor identifies virulent bacteria in C. elegans. Immunity 2023; 56:768-782.e9. [PMID: 36804958 PMCID: PMC10101930 DOI: 10.1016/j.immuni.2023.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/27/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samantha Y Tse
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Qiuyu Judy Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
49
|
Alatawneh N, Meijler MM. Unraveling the Antibacterial and Iron Chelating Activity of
N
‐Oxide Hydroxy‐Phenazine natural Products and Synthetic Analogs against
Staphylococcus Aureus. Isr J Chem 2023. [DOI: 10.1002/ijch.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Nadeem Alatawneh
- Department of Chemistry and The National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev Be'er Sheva 84105 Israel
| | - Michael M. Meijler
- Department of Chemistry and The National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev Be'er Sheva 84105 Israel
| |
Collapse
|
50
|
Antimicrobial and Antibiofilm Photodynamic Action of Photosensitizing Nanoassemblies Based on Sulfobutylether-β-Cyclodextrin. Molecules 2023; 28:molecules28062493. [PMID: 36985465 PMCID: PMC10051317 DOI: 10.3390/molecules28062493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Developing new broad-spectrum antimicrobial strategies, as alternatives to antibiotics and being able to efficiently inactivate pathogens without inducing resistance, is one of the main objectives in public health. Antimicrobial photodynamic therapy (aPDT), based on the light-induced production of reactive oxygen species from photosensitizers (PS), is attracting growing interest in the context of infection treatment, also including biofilm destruction. Due to the limited photostability of free PS, delivery systems are increasingly needed in order to decrease PS photodegradation, thus improving the therapeutic efficacy, as well as to reduce collateral effects on unaffected tissues. In this study, we propose a photosensitizing nanosystem based on the cationic porphyrin 5,10,15,20-tetrakis (N-methyl- 4-pyridyl)-21H,23H-porphyrin (TMPyP), complexed with the commerical sulfobutylether-beta-cyclodextrin (CAPTISOL®), at a 1:50 molar ratio (CAPTISOL®/TMPyP)50_1. Nanoassemblies based on (CAPTISOL®/TMPyP)50_1 with photodynamic features exhibited photo-antimicrobial activity against Gram-negative and Gram-positive bacteria. Moreover, results from P. aeruginosa reveal that CAPTISOL® alone inhibits pyocyanin (PYO) production, also affecting bacterial biofilm formation. Finally, we obtained a synergistic effect of inhibition and destruction of P. aeruginosa biofilm by using the combination of CAPTISOL® and TMPyP.
Collapse
|