1
|
Liu N, Odinot E, David H, Vita N, Otalvaro FM, Parsiegla G, Denis Y, Faulds C, Fierobe HP, Perret S. Intracellular removal of acetyl, feruloyl and p-coumaroyl decorations on arabinoxylo-oligosaccharides imported from lignocellulosic biomass degradation by Ruminiclostridium cellulolyticum. Microb Cell Fact 2024; 23:151. [PMID: 38789996 PMCID: PMC11127375 DOI: 10.1186/s12934-024-02423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Xylans are polysaccharides that are naturally abundant in agricultural by-products, such as cereal brans and straws. Microbial degradation of arabinoxylan is facilitated by extracellular esterases that remove acetyl, feruloyl, and p-coumaroyl decorations. The bacterium Ruminiclostridium cellulolyticum possesses the Xua (xylan utilization associated) system, which is responsible for importing and intracellularly degrading arabinoxylodextrins. This system includes an arabinoxylodextrins importer, four intracellular glycosyl hydrolases, and two intracellular esterases, XuaH and XuaJ which are encoded at the end of the gene cluster. RESULTS Genetic studies demonstrate that the genes xuaH and xuaJ are part of the xua operon, which covers xuaABCDD'EFGHIJ. This operon forms a functional unit regulated by the two-component system XuaSR. The esterases encoded at the end of the cluster have been further characterized: XuaJ is an acetyl esterase active on model substrates, while XuaH is a xylan feruloyl- and p-coumaryl-esterase. This latter is active on oligosaccharides derived from wheat bran and wheat straw. Modelling studies indicate that XuaH has the potential to interact with arabinoxylobiose acylated with mono- or diferulate. The intracellular esterases XuaH and XuaJ are believed to allow the cell to fully utilize the complex acylated arabinoxylo-dextrins imported into the cytoplasm during growth on wheat bran or straw. CONCLUSIONS This study reports for the first time that a cytosolic feruloyl esterase is part of an intracellular arabinoxylo-dextrin import and degradation system, completing its cytosolic enzymatic arsenal. This system represents a new pathway for processing highly-decorated arabinoxylo-dextrins, which could provide a competitive advantage to the cell and may have interesting biotechnological applications.
Collapse
Affiliation(s)
- Nian Liu
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Elise Odinot
- OléoInnov, 19 rue du Musée, Marseille, 13001, France
| | - Hélène David
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Nicolas Vita
- Aix-Marseille Université, CNRS, LCB-UMR7283, Marseille, France
| | - Felipe Mejia Otalvaro
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, Konges Lyngby, 2800, Denmark
| | - Goetz Parsiegla
- Aix-Marseille Université, CNRS, BIP-UMR7281, Marseille, France
| | - Yann Denis
- Aix-Marseille Université, CNRS, IMM, Marseille, France
| | - Craig Faulds
- Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, UMR1163, 13009, France
| | | | | |
Collapse
|
2
|
Tamburino R, Marcolongo L, Sannino L, Ionata E, Scotti N. Plastid Transformation: New Challenges in the Circular Economy Era. Int J Mol Sci 2022; 23:ijms232315254. [PMID: 36499577 PMCID: PMC9736159 DOI: 10.3390/ijms232315254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In a circular economy era the transition towards renewable and sustainable materials is very urgent. The development of bio-based solutions, that can ensure technological circularity in many priority areas (e.g., agriculture, biotechnology, ecology, green industry, etc.), is very strategic. The agricultural and fishing industry wastes represent important feedstocks that require the development of sustainable and environmentally-friendly industrial processes to produce and recover biofuels, chemicals and bioactive molecules. In this context, the replacement, in industrial processes, of chemicals with enzyme-based catalysts assures great benefits to humans and the environment. In this review, we describe the potentiality of the plastid transformation technology as a sustainable and cheap platform for the production of recombinant industrial enzymes, summarize the current knowledge on the technology, and display examples of cellulolytic enzymes already produced. Further, we illustrate several types of bacterial auxiliary and chitinases/chitin deacetylases enzymes with high biotechnological value that could be manufactured by plastid transformation.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | | | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | - Elena Ionata
- CNR-IRET, Research Institute on Terrestrial Ecosystems, 80131 Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
- Correspondence:
| |
Collapse
|
3
|
The feruloyl esterase from Thermobacillus xylanilyticus shows broad specificity for processing pre-biotic feruloylated xylooligosaccharides at high temperatures. Food Chem 2022; 405:134939. [DOI: 10.1016/j.foodchem.2022.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
4
|
Liu X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress and biotechnological applications of feruloyl esterases. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xuejun Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| |
Collapse
|
5
|
Romain B, Delvigne F, Rémond C, Rakotoarivonina H. Control of phenotypic diversification based on serial cultivations on different carbon sources leads to improved bacterial xylanase production. Bioprocess Biosyst Eng 2022; 45:1359-1370. [PMID: 35881245 DOI: 10.1007/s00449-022-02751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium of interest for the production of thermostable hemicellulases. Enzymes' production by this bacterium is challenging, because the proliferation of a cheating subpopulation of cells during exponential growth impairs the production of xylanase after serial cultivations. Accordingly, a strategy of successive cultivations with cells transfers in stationary phase and the use of wheat bran and wheat straw as carbon sources were tested. The ratio between subpopulations and their corresponding metabolic activities were studied by flow cytometry and the resulting hemicellulases production (xylanase, acetyl esterase and β-xylosidase) followed. During serial cultivations, the results pointed out an increase of the enzymatic activities. On xylan, compared to the first cultivation, the xylanase activity increases by 7.15-fold after only four cultivations. On the other hand, the debranching activities were increased by 5.88-fold and 57.2-fold on wheat straw and by 2.77-fold and 3.34-fold on wheat bran for β-xylosidase and acetyl esterase, respectively. The different enzymatic activities then stabilized, reached a plateau and further decreased. Study of the stability and reversibility of the enzyme production revealed cell-to-cell heterogeneities in metabolic activities which could be linked to the reversibility of enzymatic activity changes. Thus, the strategy of successive transfers during the stationary phase of growth, combined with the use of complex lignocellulosic substrates as carbon sources, is an efficient strategy to optimize the hemicellulases production by T. xylanilyticus, by preventing the selection of cheaters.
Collapse
Affiliation(s)
- Bouchat Romain
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France.,Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Caroline Rémond
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
| | | |
Collapse
|
6
|
Bouchat R, Vélard F, Audonnet S, Rioult D, Delvigne F, Rémond C, Rakotoarivonina H. Xylanase production by Thermobacillus xylanilyticus is impaired by population diversification but can be mitigated based on the management of cheating behavior. Microb Cell Fact 2022; 21:39. [PMID: 35292016 PMCID: PMC8922903 DOI: 10.1186/s12934-022-01762-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background The microbial production of hemicellulasic cocktails is still a challenge for the biorefineries sector and agro-waste valorization. In this work, the production of hemicellulolytic enzymes by Thermobacillus xylanilyticus has been considered. This microorganism is of interest since it is able to produce an original set of thermostable hemicellulolytic enzymes, notably a xylanase GH11, Tx-xyn11. However, cell-to-cell heterogeneity impairs the production capability of the whole microbial population. Results Sequential cultivations of the strain on xylan as a carbon source has been considered in order to highlight and better understand this cell-to-cell heterogeneity. Successive cultivations pointed out a fast decrease of xylanase activity (loss of ~ 75%) and Tx-xyn11 gene expression after 23.5 generations. During serial cultivations on xylan, flow cytometry analyses pointed out that two subpopulations, differing at their light-scattering properties, were present. An increase of the recurrence of the subpopulation exhibiting low forward scatter (FSC) signal was correlated with a progressive loss of xylanase activity over several generations. Cell sorting and direct observation of the sorted subpopulations revealed that the low-FSC subpopulation was not sporulating, whereas the high-FSC subpopulation contained cells at the onset of the sporulation stage. The subpopulation differences (growth and xylanase activity) were assessed during independent growth. The low-FSC subpopulation exhibited a lag phase of 10 h of cultivation (and xylanase activities from 0.15 ± 0.21 to 3.89 ± 0.14 IU/mL along the cultivation) and the high-FSC subpopulation exhibited a lag phase of 5 h (and xylanase activities from 0.52 ± 0.00 to 4.43 ± 0.61 over subcultivations). Serial cultivations on glucose, followed by a switch to xylan led to a ~ 1.5-fold to ~ 15-fold improvement of xylanase activity, suggesting that alternating cultivation conditions could lead to an efficient population management strategy for the production of xylanase. Conclusions Taken altogether, the data from this study point out that a cheating behavior is responsible for the progressive reduction in xylanase activity during serial cultivations of T. xylanilyticus. Alternating cultivation conditions between glucose and xylan could be used as an efficient strategy for promoting population stability and higher enzymatic productivity from this bacterium. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01762-z.
Collapse
Affiliation(s)
- Romain Bouchat
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097, Reims, France.,Laboratory of Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, B140, 5030, Gembloux, Belgium
| | - Frédéric Vélard
- BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", Université de Reims Champagne Ardenne, 51097, Reims, France
| | - Sandra Audonnet
- URCACyt, Flow Cytometry Technical Platform, Université de Reims Champagne-Ardenne, 51096, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de Reims Champagne-Ardenne, 51097, Reims, France
| | - Frank Delvigne
- Laboratory of Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, B140, 5030, Gembloux, Belgium
| | - Caroline Rémond
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097, Reims, France
| | - Harivony Rakotoarivonina
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097, Reims, France.
| |
Collapse
|
7
|
Draft Genome Sequence of the Lignocellulolytic and Thermophilic Bacterium Thermobacillus xylanilyticus XE. Microbiol Resour Announc 2022; 11:e0093421. [PMID: 35258325 PMCID: PMC9022518 DOI: 10.1128/mra.00934-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium able to use several lignocelluloses as its main carbon source. This draft genome sequence gives insight into the genomic potential of this bacterium and provides new resources to understand the enzymatic mechanisms used by the bacterium during lignocellulose degradation and will allow the identification of robust lignocellulolytic enzymes.
Collapse
|
8
|
Lin S, Agger JW, Wilkens C, Meyer AS. Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification. Annu Rev Food Sci Technol 2021; 12:331-354. [PMID: 33472016 DOI: 10.1146/annurev-food-032818-121443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan. Moreover, the xylopyranosyl residues can be acetylated or substituted by 4-O-methyl-d-glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients. There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans.
Collapse
Affiliation(s)
- Shang Lin
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Jane W Agger
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Casper Wilkens
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
9
|
Xu Z, Kong J, Zhang S, Wang T, Liu X. Comparison of Enzyme Secretion and Ferulic Acid Production by Escherichia coli Expressing Different Lactobacillus Feruloyl Esterases. Front Microbiol 2020; 11:568716. [PMID: 33329424 PMCID: PMC7732493 DOI: 10.3389/fmicb.2020.568716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Construction of recombinant Escherichia coli strains carrying feruloyl esterase genes for secretory expression offers an attractive way to facilitate enzyme purification and one-step production of ferulic acid from agricultural waste. A total of 10 feruloyl esterases derived from nine Lactobacillus species were expressed in E. coli BL21 (DE3) to investigate their secretion and ferulic acid production. Extracellular activity determination showed all these Lactobacillus feruloyl esterases could be secreted out of E. coli cells. However, protein analysis indicated that they could be classified as three types. The first type presented a low secretion level, including feruloyl esterases derived from Lactobacillus acidophilus and Lactobacillus johnsonii. The second type showed a high secretion level, including feruloyl esterases derived from Lactobacillus amylovorus, Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus helveticus. The third type also behaved a high secretion level but easy degradation, including feruloyl esterases derived from Lactobacillus farciminis, Lactobacillus fermentum, and Lactobacillus reuteri. Moreover, these recombinant E. coli strains could directly release ferulic acid from agricultural waste. The highest yield was 140 μg on the basis of 0.1 g de-starched wheat bran by using E. coli expressed L. amylovorus feruloyl esterase. These results provided a solid basis for the production of feruloyl esterase and ferulic acid.
Collapse
Affiliation(s)
- Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Susu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
10
|
Kohli I, Joshi NC, Mohapatra S, Varma A. Extremophile - An Adaptive Strategy for Extreme Conditions and Applications. Curr Genomics 2020; 21:96-110. [PMID: 32655304 PMCID: PMC7324872 DOI: 10.2174/1389202921666200401105908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 11/22/2022] Open
Abstract
The concurrence of microorganisms in niches that are hostile like extremes of temperature, pH, salt concentration and high pressure depends upon novel molecular mechanisms to enhance the stability of their proteins, nucleic acids, lipids and cell membranes. The structural, physiological and genomic features of extremophiles that make them capable of withstanding extremely selective environmental conditions are particularly fascinating. Highly stable enzymes exhibiting several industrial and biotechnological properties are being isolated and purified from these extremophiles. Successful gene cloning of the purified extremozymes in the mesophilic hosts has already been done. Various extremozymes such as amylase, lipase, xylanase, cellulase and protease from thermophiles, halothermophiles and psychrophiles are of industrial interests due to their enhanced stability at forbidding conditions. In this review, we made an attempt to point out the unique features of extremophiles, particularly thermophiles and psychrophiles, at the structural, genomic and proteomic levels, which allow for functionality at harsh conditions focusing on the temperature tolerance by them.
Collapse
Affiliation(s)
- Isha Kohli
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Naveen C. Joshi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Swati Mohapatra
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
11
|
de O Buanafina MM, Fernanda Buanafina M, Laremore T, Shearer EA, Fescemyer HW. Characterization of feruloyl esterases in maize pollen. PLANTA 2019; 250:2063-2082. [PMID: 31576447 DOI: 10.1007/s00425-019-03288-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Ferulic acid esterases have been identified and partially purified from maize pollen. Results suggest that maize pollen FAEs may play an important role in pollen fertilization. A critical step in maize (Zea mays) seed production involves fertilization of the ovule by pollen, a process that relies on ability of the pollen tube to grow through the highly structured and feruloylated arabinoxylan/cellulose-rich tissue of the silk and stigma. It is known that different cell wall hydrolases are present on the surface of pollen. An important hydrolase reported to date is an endo-xylanase (ZmXYN1). We report presence and characterization of another hydrolase, ferulic acid esterase (FAE), in maize pollen. Using a combination of biochemical approaches, these FAEs were partially purified and characterized with respect to their biochemical properties and putative sequences. Maize pollen FAEs were shown to be expressed early during pollen development, to release significant amounts of both monomeric and dimeric ferulates esterified from maize silks and other grass cell walls, and to synergize with an externally applied fungal endo-1,4-β-xylanase on the release of cell wall ferulates and diferulates. Preliminary analysis of maize silk cell walls following pollination, showed a significant reduction of esterified ferulates up to 96 h following pollination, compared to unpollinated silks. These results suggest that maize pollen FAEs may play an important biological role in pollen fertilization and possibly in seed production.
Collapse
Affiliation(s)
- Marcia M de O Buanafina
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - M Fernanda Buanafina
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana Laremore
- Penn State Proteomics and Mass Spectrometry Core Facility, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Erica A Shearer
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Howard W Fescemyer
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Cloning, Characterization, and Functional Expression of a Thermostable Type B Feruloyl Esterase from Thermophilic Thielavia Terrestris. Appl Biochem Biotechnol 2019; 189:1304-1317. [DOI: 10.1007/s12010-019-03065-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
|
13
|
Ay Sal F, Colak DN, Guler HI, Canakci S, Belduz AO. Biochemical characterization of a novel thermostable feruloyl esterase from Geobacillus thermoglucosidasius DSM 2542T. Mol Biol Rep 2019; 46:4385-4395. [DOI: 10.1007/s11033-019-04893-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
|
14
|
Dupoiron S, Lameloise ML, Bedu M, Lewandowski R, Fargues C, Allais F, Teixeira AR, Rakotoarivonina H, Rémond C. Recovering ferulic acid from wheat bran enzymatic hydrolysate by a novel and non-thermal process associating weak anion-exchange and electrodialysis. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Lemos LN, Pereira RV, Quaggio RB, Martins LF, Moura LMS, da Silva AR, Antunes LP, da Silva AM, Setubal JC. Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting. Front Microbiol 2017; 8:644. [PMID: 28469608 PMCID: PMC5395642 DOI: 10.3389/fmicb.2017.00644] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/29/2017] [Indexed: 11/22/2022] Open
Abstract
Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.
Collapse
Affiliation(s)
- Leandro N Lemos
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Roberta V Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Ronaldo B Quaggio
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Layla F Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Livia M S Moura
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Amanda R da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Luciana P Antunes
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Biocomplexity Institute, Virginia TechBlacksburg, VA, USA
| |
Collapse
|
16
|
Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Song YR, Baik SH. Molecular cloning, purification, and characterization of a novel thermostable cinnamoyl esterase from Lactobacillus helveticus KCCM 11223. Prep Biochem Biotechnol 2017; 47:496-504. [PMID: 28045590 DOI: 10.1080/10826068.2016.1275011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A gene encoding cinnamoyl esterase (CE), which breaks down chlorogenic acid (ChA) into caffeic and quinic acids, was cloned from Lactobacillus helveticus KCCM 11223. The gene with an open reading frame of 759 nucleotides was expressed in Escherichia coli, which resulted in a 51.6-fold increase in specific activity compared to L. helveticus KCCM 11223. The recombinant CE exists as a monomeric enzyme having a molecular weight of 27.4 kDa. Although the highest activity was observed at pH 7, the enzyme showed stable activity at pH 4.0-10.0. Its optimum temperature was 65°C, and it also possessed a thermophilic activity: the half-life of CE was 24.4 min at 65°C. The half-life of CE was 145.5, 80.5, and 24.4 min at 60, 62, and 65°C, respectively. The Km and Vmax values for ChA were 0.153 mM and 559.6 µM/min, respectively. Moreover, the CE showed the highest substrate specificity with methyl caffeate among other methyl esters of hydroxycinnamic acids such as methyl ferulate, methyl sinapinate, methyl p-coumarate, and methyl caffeate. Ca2+, Cu2+, and Fe2+ significantly reduced the relative activity on ChA up to 70%. This is the first report on a thermostable CE from lactic acid bacteria that can be useful to hydrolyze ChA from plant cell walls.
Collapse
Affiliation(s)
- Young-Ran Song
- a Department of Food Science and Human Nutrition, and Fermented Food Research Center , Chonbuk National University , Jeonju , Korea.,b Korea Food Research Institute , Sungnam , Gyeonggi-do , Korea
| | - Sang-Ho Baik
- a Department of Food Science and Human Nutrition, and Fermented Food Research Center , Chonbuk National University , Jeonju , Korea
| |
Collapse
|
18
|
The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules. Appl Microbiol Biotechnol 2016; 100:7577-90. [DOI: 10.1007/s00253-016-7562-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/10/2016] [Accepted: 04/16/2016] [Indexed: 12/27/2022]
|
19
|
Clostridium thermocellum releases coumaric acid during degradation of untreated grasses by the action of an unknown enzyme. Appl Microbiol Biotechnol 2016; 100:2907-15. [PMID: 26762388 DOI: 10.1007/s00253-016-7294-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/20/2015] [Accepted: 12/26/2015] [Indexed: 12/17/2022]
Abstract
Clostridium thermocellum is an anaerobic thermophile with the ability to digest lignocellulosic biomass that has not been pretreated with high temperatures. Thermophilic anaerobes have previously been shown to more readily degrade grasses than wood. Part of the explanation for this may be the presence of relatively large amounts of coumaric acid in grasses, with linkages to both hemicellulose and lignin. We found that C. thermocellum and cell-free cellulase preparations both release coumaric acid from bagasse and switchgrass. Cellulase preparations from a mutant strain lacking the scaffoldin cipA still showed activity, though diminished. Deletion of all three proteins in C. thermocellum with ferulic acid esterase domains, either singly or in combination, did not eliminate the activity. Further work will be needed to identify the novel enzyme(s) responsible for the release of coumaric acid from grasses and to determine whether these enzymes are important factors of microbial biomass degradation.
Collapse
|
20
|
Hunt CJ, Tanksale A, Haritos VS. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation. Appl Microbiol Biotechnol 2015; 100:1777-1787. [DOI: 10.1007/s00253-015-7044-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
|
21
|
Cao LC, Chen R, Xie W, Liu YH. Enhancing the Thermostability of Feruloyl Esterase EstF27 by Directed Evolution and the Underlying Structural Basis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8225-33. [PMID: 26329893 DOI: 10.1021/acs.jafc.5b03424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To improve the thermostability of EstF27, two rounds of random mutagenesis were performed. A thermostable mutant, M6, with six amino acid substitutions was obtained. The half-life of M6 at 55 °C is 1680 h, while that of EstF27 is 0.5 h. The Kcat/Km value of M6 is 1.9-fold higher than that of EstF27. The concentrations of ferulic acid released from destarched wheat bran by EstF27 and M6 at their respective optimal temperatures were 223.2 ± 6.8 and 464.8 ± 11.9 μM, respectively. To further understand the structural basis of the enhanced thermostability, the crystal structure of M6 is determined at 2.0 Å. Structural analysis shows that a new disulfide bond and hydrophobic interactions formed by the mutations may play an important role in stabilizing the protein. This study not only provides us with a robust catalyst, but also enriches our knowledge about the structure-function relationship of feruloyl esterase.
Collapse
Affiliation(s)
- Li-chuang Cao
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Ran Chen
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Wei Xie
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Yu-huan Liu
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| |
Collapse
|
22
|
Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis. Appl Microbiol Biotechnol 2015; 99:10047-56. [PMID: 26266754 DOI: 10.1007/s00253-015-6889-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/05/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Feruloyl or ferulic acid esterase (Fae, EC 3.1.1.73) catalyzes the hydrolysis of ester bonds between polysaccharides and phenolic acid compounds in xylan side chain. In this study, the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii was increased by iterative saturation mutagenesis (ISM). Two amino acids, Ser33 and Asn92, were selected for saturation mutagenesis according to the B-factors analyzed by B-FITTER software and ΔΔG values predicted by PoPMuSiC algorithm. After screening the saturation mutagenesis libraries constructed in Pichia pastoris, 15 promising variants were obtained. The best variant S33E/N92-4 (S33E/N92R) produced a T m value of 44.5 °C, the half-lives (t1/2) of 35 and 198 min at 55 and 50 °C, respectively, corresponding to a 4.7 °C, 2.33- and 3.96-fold improvement compared to the wild type. Additionally, the best S33 variant S33-6 (S33E) was thermostable at 50 °C with a t1/2 of 82 min, which was 32 min longer than that of the wild type. All the screened S33E/N92 variants were more thermostable than the best S33 variant S33-6 (S33E). This work would contribute to the further studies on higher thermostability modification of type A feruloyl esterases, especially those from fungi. The thermostable feruloyl esterase variants were expected to be potential candidates for industrial application in prompting the enzymic degradation of plant biomass materials at elevated temperatures.
Collapse
|
23
|
Yin X, Hu D, Li JF, He Y, Zhu TD, Wu MC. Contribution of Disulfide Bridges to the Thermostability of a Type A Feruloyl Esterase from Aspergillus usamii. PLoS One 2015; 10:e0126864. [PMID: 25969986 PMCID: PMC4429965 DOI: 10.1371/journal.pone.0126864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
The contribution of disulfide bridges to the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii E001 was studied by introducing an extra disulfide bridge or eliminating a native one from the enzyme. MODIP and DbD, two computational tools that can predict the possible disulfide bridges in proteins for thermostability improvement, and molecular dynamics (MD) simulations were used to design the extra disulfide bridge. One residue pair A126-N152 was chosen, and the respective amino acid residues were mutated to cysteine. The wild-type AuFaeA and its variants were expressed in Pichia pastoris GS115. The temperature optimum of the recombinant (re-) AuFaeAA126C-N152C was increased by 6°C compared to that of re-AuFaeA. The thermal inactivation half-lives of re-AuFaeAA126C-N152C at 55 and 60°C were 188 and 40 min, which were 12.5- and 10-folds longer than those of re-AuFaeA. The catalytic efficiency (kcat/Km) of re-AuFaeAA126C-N152C was similar to that of re-AuFaeA. Additionally, after elimination of each native disulfide bridge in AuFaeA, a great decrease in expression level and at least 10°C decrease in thermal stability of recombinant AuEaeA variants were also observed.
Collapse
Affiliation(s)
- Xin Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Die Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian-Fang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yao He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tian-Di Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Min-Chen Wu
- Wuxi Medical School, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Sawhney N, Crooks C, St. John F, Preston JF. Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2. Appl Environ Microbiol 2015; 81:1490-501. [PMID: 25527555 PMCID: PMC4309694 DOI: 10.1128/aem.03523-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/13/2014] [Indexed: 11/20/2022] Open
Abstract
Xylans, including methylglucuronoxylans (MeGX(n)) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharidesin hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGX(n) and MeGAX(n) and assimilates the generated oligosaccharides, resulting in efficient saccharification and subsequent metabolism of these polysaccharides. A xylan utilization regulon encoding a cellassociated GH10 (glycoside hydrolase family 10) endoxylanase, transcriptional regulators, ABC (ATP binding cassette) transporters, an intracellular GH67 -glucuronidase, and other glycoside hydrolases contributes to complete metabolism. This GH10/GH67 system has been proposed to account for preferential utilization of xylans compared to free oligo- and monosaccharides. To identify additional genes contributing to MeGX(n) and MeGAXn utilization, the transcriptome of Pjdr2 has been sequenced following growth on each of these substrates as well as xylose and arabinose. Increased expression of genes with different substrates identified pathways common or unique to the utilization of MeGX(n) or MeGAX(n). Coordinate upregulation of genes comprising the GH10/GH67 xylan utilization regulon is accompanied with upregulation of genes encoding a GH11 endoxylanase and a GH115 -glucuronidase, providing evidence for a novel complementary pathway for processing xylans. Elevated expression of genes encoding a GH43 arabinoxylan arabinofuranohydrolase and an arabinose ABC transporter on MeGAX(n) but not on MeGX(n) supports a process in which arabinose may be removed extracellularly followed by its rapid assimilation.Further development of Pjdr2 for direct conversion of xylans to targeted products or introduction of these systems into fermentative strains of related bacteria may lead to biocatalysts for consolidated bioprocessing of hemicelluloses released from lignocellulose.
Collapse
Affiliation(s)
- Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Casey Crooks
- U.S. Department of Agriculture, U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA
| | - Franz St. John
- U.S. Department of Agriculture, U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA
| | - James F. Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Rakotoarivonina H, Hermant B, Aubry N, Rabenoelina F, Baillieul F, Rémond C. Dynamic study of how the bacterial breakdown of plant cell walls allows the reconstitution of efficient hemicellulasic cocktails. BIORESOURCE TECHNOLOGY 2014; 170:331-341. [PMID: 25151078 DOI: 10.1016/j.biortech.2014.07.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/20/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Designing more efficient mixtures of enzymes is necessary to produce molecules of interest from biomass lignocellulosic fractionation. The present study aims to investigate the strategies used by the thermophilic and hemicellulolytic bacterium Thermobacillus xylanilyticus to fractionate wheat bran and wheat straw during its growth. Results demonstrated ratios and levels of hemicellulases produced varied during growth on both biomasses. Xylanase activity was mainly produced during stationary stages of growth whereas esterase and arabinosidase activities were detected earlier. This enzymatic profile is correlated with the expression pattern of genes encoding four hemicellulases (two xylanases, one arabinosidase and one esterase) produced by T. xylanilyticus during growth. Based on identification of the bacterial strategy, the synergistic efficiency of the four hemicellulases during the hydrolysis of both substrates was evaluated. The four hemicellulases worked together with high degree of synergy and released high amounts of xylose, arabinose and phenolic acids from wheat bran and wheat straw.
Collapse
Affiliation(s)
- H Rakotoarivonina
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France; INRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France.
| | - B Hermant
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France; INRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - N Aubry
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France; INRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| | - F Rabenoelina
- Université de Reims Champagne-Ardenne, Unité de Recherche Vignes et Vins de Champagne, EA 4707, F-51687 Reims, France
| | - F Baillieul
- Université de Reims Champagne-Ardenne, Unité de Recherche Vignes et Vins de Champagne, EA 4707, F-51687 Reims, France
| | - C Rémond
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France; INRA, UMR614 Fractionnement des AgroRessources et Environnement, F-51100 Reims, France
| |
Collapse
|
26
|
Yu XH, Gu ZX. Direct production of feruloyl oligosaccharides and hemicellulase inducement and distribution in a newly isolated Aureobasidium pullulans strain. World J Microbiol Biotechnol 2013; 30:747-55. [PMID: 24078110 DOI: 10.1007/s11274-013-1503-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Studies were carried out to screen and identify strains that are able to directly produce ferulic oligosaccharides (FOs) from wheat bran (WB). The inducement and distribution of hemicellulases from strain 2012, which was identified as a non-melanin secreting strain of Aureobasidium pullulans (A. pullulans), were also determined. In a 60 g/L WB solution, A. pullulans could produce 545 nmol/L FOs, 64.12 IU/mL xylanase and 0.14 IU/mL ferulic acid esterase (FAE). A. pullulans was cultivated in media with WB, glucose, xylose, sucrose, lactose or xylan as the carbon source, and hemicellulases were mainly induced by xylan and WB and inhibited by glucose and sucrose. Xylanase and FAE were mainly present in the culture filtrate, xylosidase in the hyphal filaments and arabinofuranosidase was a membrane-bound enzyme. The yield of FOs was positively correlated to the hemicellulases activity, and significantly positively (P < 0.05) correlated to the xylanase activity (r = 0.992).
Collapse
|
27
|
Deangelis KM, Sharma D, Varney R, Simmons B, Isern NG, Markilllie LM, Nicora C, Norbeck AD, Taylor RC, Aldrich JT, Robinson EW. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 2013; 4:280. [PMID: 24065962 PMCID: PMC3777014 DOI: 10.3389/fmicb.2013.00280] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 01/05/2023] Open
Abstract
Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability.
Collapse
Affiliation(s)
- Kristen M Deangelis
- Department of Microbiology, University of Massachusetts Amherst Amherst, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rashamuse K, Ronneburg T, Sanyika W, Mathiba K, Mmutlane E, Brady D. Metagenomic mining of feruloyl esterases from termite enteric flora. Appl Microbiol Biotechnol 2013; 98:727-37. [DOI: 10.1007/s00253-013-4909-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
|
29
|
Rakotoarivonina H, Hermant B, Monthe N, Rémond C. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Fact 2012; 11:159. [PMID: 23241174 PMCID: PMC3541102 DOI: 10.1186/1475-2859-11-159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/21/2012] [Indexed: 11/26/2022] Open
Abstract
Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization), were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided resulted in dissimilar enzyme production profiles. These results indicate the importance of using different biomass sources to encourage the production of specific enzymes.
Collapse
|
30
|
Debeire P, Khoune P, Jeltsch JM, Phalip V. Product patterns of a feruloyl esterase from Aspergillus nidulans on large feruloyl-arabino-xylo-oligosaccharides from wheat bran. BIORESOURCE TECHNOLOGY 2012; 119:425-8. [PMID: 22770893 DOI: 10.1016/j.biortech.2012.01.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 05/11/2023]
Abstract
A purified feruloyl esterase (EC 3.1.1.73) from Aspergillus nidulans produced in Pichia pastoris was used to study the de-esterification of large feruloyl oligosaccharides consisting of 4 to 20 pentose residues and (xylose plus arabinose) and one ferulic acid residue. The feruloyl oligosaccharides were prepared from total oligosaccharidic hydrolysates from wheat bran treated with a purified endoxylanase from Thermobacillus xylanilyticus. The feruloyl esterase showed similar specific activity but an affinity about 3.5-fold higher towards feruloyl oligosaccharides than towards methyl ferulate. Mass spectrometry analysis of the products after long-term enzymatic hydrolyses showed that the esterase was able to hydrolyze the largest feruloyl oligosaccharides and therefore could act alone on feruloyled xylans. Consequently, the feruloyl esterase from A. nidulans could be useful for the enzymatic deconstruction of xylans in plant cell walls.
Collapse
Affiliation(s)
- Philippe Debeire
- Laboratory of Polymers Engineering for High Technologies (LIPHT), Strasbourg University, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | | | | | | |
Collapse
|
31
|
Study of new feruloyl esterases to understand lipase evolution: the case of Bacillus flexus. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 861:53-61. [PMID: 22426711 DOI: 10.1007/978-1-61779-600-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Recently, the crystal structure of the feruloyl esterase A from Aspergillus niger (AnFaeA) was elucidated. This enzyme displays an α/β hydrolase fold and a catalytic triad similar to that found in fungal lipases (30-37% identity). Surprisingly, AnFaeA showed an overall fold similarity with the Rhizomucor miehei and other related fungal lipases. All these data strongly suggest that the ancestral function (lipase) had shifted, with molecular adaptation leading to a novel enzyme (type-A feruloyl esterase). The discovery of new feruloyl esterases could lead to get insight into the evolutionary pathways of these enzymes and into new possibilities of directed evolution of lipases. In this chapter, the production of Bacillus flexus NJY2 feruloyl esterases is described. Unlike the previously described feruloyl esterases, which mostly belong to eukaryotes (mainly fungus), this unique feruloyl esterases from a prokaryotic alkaliphile microorganism could be the starting point for new discoveries on lipase and feruloyl esterase evolutionary relationships.
Collapse
|
32
|
Cheng F, Sheng J, Cai T, Jin J, Liu W, Lin Y, Du Y, Zhang M, Shen L. A protease-insensitive feruloyl esterase from China Holstein cow rumen metagenomic library: expression, characterization, and utilization in ferulic acid release from wheat straw. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2546-2553. [PMID: 22352374 DOI: 10.1021/jf204556u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A metagenomic library of China Holstein cow rumen microbes was constructed and screened for novel gene cluster. A novel feruloyl esterase (FAE) gene was identified with a length of 789 bp and encoded a protein displaying 56% identity to known esterase sequences. The gene was functionally expressed in Escherichia coli BL21 (DE3), and the total molecular weight of the recombined protein was 32.4 kDa. The purified enzyme showed a broad specificity against the four methyl esters of hydroxycinnamic acids and high activity (259.5 U/mg) to methyl ferulate at optimum conditions (pH 8.0, 40 °C). High thermal and pH stability were also observed. Moreover, the enzyme showed broad resistance to proteases. FAE-SH1 can enhance the release of ferulic acid from wheat straw with cellulase, β-1,4-endoxylanase, β-1,3-glucanase, and pectase. These features suggest FAE-SH1 as a good candidate to enhance biomass degradation and improve the health effects of food and forage.
Collapse
Affiliation(s)
- Fansheng Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li J, Cai S, Luo Y, Dong X. Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Appl Environ Microbiol 2011; 77:6141-7. [PMID: 21764976 PMCID: PMC3165382 DOI: 10.1128/aem.00657-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/01/2011] [Indexed: 11/20/2022] Open
Abstract
Feruloyl esterases (Faes) constitute a subclass of carboxyl esterases that specifically hydrolyze the ester linkages between ferulate and polysaccharides in plant cell walls. Until now, the described microbial Faes were mainly from fungi. In this study, we report that Cellulosilyticum ruminicola H1, a previously described fibrolytic rumen bacterium, possesses three different active feruloyl esterases, FaeI, FaeII, and FaeIII. Phylogenetic analysis classified the described bacterial Faes into two types, FaeI and FaeII in type I and FaeIII in type II. Substrate specificity assays indicated that FaeI is more active against the ester bonds in natural hemicelluloses and FaeIII preferentially attacks the ferulate esters with a small moiety, such as methyl groups, while FaeII is active on both types of substrates. Among the three feruloyl esterase genes, faeI was the only one induced significantly by xylose and xylan, while pectin appeared to moderately induce the three genes during the late log phase to stationary phase. Western blot analysis determined that FaeI and FaeIII were secreted and cytoplasmic proteins, respectively, whereas FaeII seemed to be cell associated. The addition of FaeI and FaeII but not FaeIII enhanced the activity of a xylanase on maize cob, suggesting a synergy of the former two with xylanase. Hence, we propose that the three feruloyl esterases work in concert to hydrolyze ferulate esters in natural hemicelluloses.
Collapse
Affiliation(s)
- Jiabao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shichun Cai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|