1
|
Manes A, Di Renzo T, Dodani L, Reale A, Gautiero C, Di Lauro M, Nasti G, Manco F, Muscariello E, Guida B, Tarantino G, Cataldi M. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines 2023; 11:2562. [PMID: 37761003 PMCID: PMC10526314 DOI: 10.3390/biomedicines11092562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable among individuals. We performed a systematic review of published evidence supporting the hypothesis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics, efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota was also reviewed. The PubMed and Scopus databases were searched using specific keywords without limits of species (human or animal) or time from publication. One thousand and fifty five published papers were retrieved in the initial database search. After screening, 50 papers were selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophenolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while all the others showed significant changes in the relative abundance of specific intestinal bacteria. However, no unique pattern of microbiota modification was observed across the different studies. In conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute to the variability in the response to some cIMDs, whereas data are still missing for others.
Collapse
Affiliation(s)
- Annalaura Manes
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Loreta Dodani
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Claudia Gautiero
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Mariastella Di Lauro
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Gilda Nasti
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Espedita Muscariello
- Nutrition Unit, Department of Prevention, Local Health Authority Napoli 3 Sud, 80059 Naples, Italy;
| | - Bruna Guida
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| |
Collapse
|
2
|
Biotechnological Transformation of Hydrocortisone into 16α-Hydroxyprednisolone by Coupling Arthrobacter simplex and Streptomyces roseochromogenes. Molecules 2020; 25:molecules25214912. [PMID: 33114231 PMCID: PMC7660607 DOI: 10.3390/molecules25214912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
16α-Hydroxyprednisolone, an anti-inflammatory drug, could be potentially obtained from hydrocortisone bioconversion by combining a 1,2-dehydrogenation reaction performed by Arthrobacter simplexATCC31652 with a 16α-hydroxylation reaction by Streptomyces roseochromogenes ATCC13400. In this study we tested, for the first time, potential approaches to couple the two reactions using similar pH and temperature conditions for hydrocortisone bioconversion by the two strains. The A. simplex capability to 1,2-dehydrogenate the 16α-hydroxyhydrocortisone, the product of S. roseochromogenes transformation of hydrocortisone, and vice versa the capability of S. roseochromogenes to 16α-hydroxylate the prednisolone were assessed. Bioconversions were studied in shake flasks and strain morphology changes were observed by SEM. Whole cell experiments were set up to perform the two reactions in a sequential mode in alternate order or contemporarily at diverse temperature conditions. A. simplex catalyzed either the dehydrogenation of hydrocortisone into prednisolone efficiently or of 16α-hydroxyhydrocortisone into 16α-hydroxyprednisolone in 24 h (up to 93.9%). Surprisingly S. roseochromogenes partially converted prednisolone back to hydrocortisone. A 68.8% maximum of 16α-hydroxyprednisolone was obtained in 120-h bioconversion by coupling whole cells of the two strains at pH 6.0 and 26 °C. High bioconversion of hydrocortisone into 16α-hydroxyprednisolone was obtained for the first time by coupling A. simplex and S. roseochromogenes.
Collapse
|
3
|
Δ1-Dehydrogenation and C20 Reduction of Cortisone and Hydrocortisone Catalyzed by Rhodococcus Strains. Molecules 2020; 25:molecules25092192. [PMID: 32392887 PMCID: PMC7248985 DOI: 10.3390/molecules25092192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Prednisone and prednisolone are steroids widely used as anti-inflammatory drugs. Development of the pharmaceutical industry is currently aimed at introducing biotechnological processes and replacing multiple-stage chemical syntheses. In this work we evaluated the ability of bacteria belonging to the Rhodococcus genus to biotransform substrates, such as cortisone and hydrocortisone, to obtain prednisone and prednisolone, respectively. These products are of great interest from a pharmaceutical point of view as they have higher anti-inflammatory activity than the starting substrates. After an initial lab-scale screening of 13 Rhodococcus strains, to select the highest producers of prednisone and prednisolone, we reported the 200 ml-batch scale-up to test the process efficiency and productivity of the most promising Rhodococcus strains. R. ruber, R. globerulus and R. coprophilus gave the Δ1-dehydrogenation products of cortisone and hydrocortisone (prednisone and prednisolone) in variable amounts. In these biotransformations, the formation of products with the reduced carbonyl group in position C20 of the lateral chain of the steroid nucleus was also observed (i.e., 20β-hydroxy-prednisone and 20β-hydroxy-prednisolone). The yields, the absence of collateral products, and in some cases the absence of starting products allow us to say that cortisone and hydrocortisone are partly degraded.
Collapse
|
4
|
Hull CM, Warrilow AGS, Rolley NJ, Price CL, Donnison IS, Kelly DE, Kelly SL. Co-production of 11α-hydroxyprogesterone and ethanol using recombinant yeast expressing fungal steroid hydroxylases. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:226. [PMID: 29021826 PMCID: PMC5622474 DOI: 10.1186/s13068-017-0904-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Bioethanol production from sustainable sources of biomass that limit effect on food production are needed and in a biorefinery approach co-products are desirable, obtained from both the plant material and from the microbial biomass. Fungal biotransformation of steroids was among the first industrial biotransformations allowing corticosteroid production. In this work, the potential of yeast to produce intermediates needed in corticosteroid production is demonstrated at laboratory scale following bioethanol production from perennial ryegrass juice. RESULTS Genes encoding the 11α-steroid hydroxylase enzymes from Aspergillus ochraceus (11α-SHAoch) and Rhizopus oryzae (CYP509C12) transformed into Saccharomyces cerevisiae for heterologous constitutive expression in p425TEF. Both recombinant yeasts (AH22:p11α-SHAoch and AH22:p509C12) exhibited efficient progesterone bioconversion (on glucose minimal medial containing 300 µM progesterone) producing either 11α-hydroxyprogesterone as the sole metabolite (AH22:p11α-SHAoch) or a 7:1 mixture of 11α-hydroxyprogesterone and 6β-hydroxyprogesterone (AH22:p509C12). Ethanol yields for AH22:p11α-SHAoch and AH22:p509C12 were comparable resulting in ≥75% conversion of glucose to alcohol. Co-production of bioethanol together with efficient production of the 11-OH intermediate for corticosteroid manufacture was then demonstrated using perennial ryegrass juice. Integration of the 11α-SHAoch gene into the yeast genome (AH22:11α-SHAoch+K) resulted in a 36% reduction in yield of 11α-hydroxyprogesterone to 174 µmol/L using 300 µM progesterone. However, increasing progesterone concentration to 955 µM and optimizing growth conditions increased 11α-hydroxyprogesterone production to 592 µmol/L product formed. CONCLUSIONS The progesterone 11α-steroid hydroxylases from A. ochraceus and R. oryzae, both monooxygenase enzymes of the cytochrome P450 superfamily, have been functionally expressed in S. cerevisiae. It appears that these activities in fungi are not associated with a conserved family of cytochromes P450. The activity of the A. ochraceous enzyme was important as the specificity of the biotransformation yielded just the 11-OH product needed for corticosteroid production. The data presented demonstrate how recombinant yeast could find application in rural biorefinery processes where co-production of value-added products (11α-hydroxyprogesterone and ethanol) from novel feedstocks is an emergent and attractive possibility.
Collapse
Affiliation(s)
- Claire M. Hull
- Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP Wales UK
| | - Andrew G. S. Warrilow
- Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP Wales UK
| | - Nicola J. Rolley
- Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP Wales UK
| | - Claire L. Price
- Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP Wales UK
| | - Iain S. Donnison
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Wales SY23 3EE UK
| | - Diane E. Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP Wales UK
| | - Steven L. Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP Wales UK
| |
Collapse
|
5
|
Mohamed SS, El-Hadi AA, Abo-Zied KM. Biotransformation of prednisolone to hydroxy derivatives by Penicillium aurantiacum. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1316265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sayeda S. Mohamed
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza, Egypt
| | - Abeer A. El-Hadi
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza, Egypt
| | | |
Collapse
|
6
|
Restaino OF, Marseglia M, Diana P, Borzacchiello MG, Finamore R, Vitiello M, D’Agostino A, De Rosa M, Schiraldi C. Advances in the 16α-hydroxy transformation of hydrocortisone by Streptomyces roseochromogenes. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Sultan S, Noor MZBM, Anouar EH, Shah SAA, Salim F, Rahim R, Al Trabolsy ZBK, Weber JFF. Structure and absolute configuration of 20β-Hydroxyprednisolone, a biotransformed product of predinisolone by the marine endophytic fungus Penicilium lapidosum. Molecules 2014; 19:13775-87. [PMID: 25255760 PMCID: PMC6271985 DOI: 10.3390/molecules190913775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/22/2014] [Accepted: 08/11/2014] [Indexed: 12/05/2022] Open
Abstract
The anti-inflammatory drug predinisolone (1) was reduced to 20β-hydroxyprednisolone (2) by the marine endophytic fungus Penicilium lapidosum isolated from an alga. The structural elucidation of 2 was achieved by 1D- and 2D-NMR, MS, IR data. Although, 2 is a known compound previously obtained through microbial transformation, the data provided failed to prove the C20 stereochemistry. To solve this issue, DFT and TD-DFT calculations have been carried out at the B3LYP/6–31+G (d,p) level of theory in gas and solvent phase. The absolute configuration of C20 was eventually assigned by combining experimental and calculated electronic circular dichroism spectra and 3JHH chemical coupling constants.
Collapse
Affiliation(s)
- Sadia Sultan
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Muhammad Zaimi Bin Mohd Noor
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - El Hassane Anouar
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Fatimah Salim
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Rohani Rahim
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | | | - Jean-Frédéric Faizal Weber
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
8
|
Escherichia coli kduD encodes an oxidoreductase that converts both sugar and steroid substrates. Appl Microbiol Biotechnol 2014; 98:5471-85. [DOI: 10.1007/s00253-014-5551-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 11/24/2022]
|
9
|
Biotechnological transformation of hydrocortisone to 16α-hydroxy hydrocortisone by Streptomyces roseochromogenes. Appl Microbiol Biotechnol 2013; 98:1291-9. [PMID: 24327211 DOI: 10.1007/s00253-013-5384-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 10/25/2022]
Abstract
Streptomyces roseochromogenes is able to hydroxylate steroid compounds in different positions of their cycloalkane rings thanks to a cytochrome P-450 multi-enzyme complex. In this paper, the hydroxylation of the hydrocortisone in the 16α position, performed by bacterial whole cells, was investigated in both shake flask and fermentation conditions; the best settings for both cellular growth and transformation reaction were studied by investigating the optimal medium composition, the kinetic of conversion, the most suitable substrate concentration and the preferred addition timing. Using newly formulated malt extract- and yeast extract-based media, a 16α-hydrohydrocortisone concentration of 0.2 ± 0.01 g L(-1) was reached in shake flasks. Batch experiments in a 2-L fermentor established the reproducibility and robustness of the biotransformation, while a pulsed batch fermentation strategy allowed the production to increase up to 0.508 ± 0.01 g L(-1). By-product formation was investigated, and two new derivates of the hydrocortisone obtained during the bacterial transformation reaction and unknown so far, a C-20 hydroxy derivate and a C-21 N-acetamide one, were determined by NMR analyses.
Collapse
|
10
|
Luo SL, Dang LZ, Li JF, Zou CG, Zhang KQ, Li GH. Biotransformation of Saponins by Endophytes Isolated fromPanax notoginseng. Chem Biodivers 2013; 10:2021-31. [DOI: 10.1002/cbdv.201300005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Indexed: 11/05/2022]
|
11
|
Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 2012; 94:1423-47. [PMID: 22562163 DOI: 10.1007/s00253-012-4078-0] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 12/14/2022]
Abstract
Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.
Collapse
Affiliation(s)
- Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow Region 142290, Russia.
| | | |
Collapse
|