1
|
Salehi Jouzani G, Sharafi R, Argentel-Martínez L, Peñuelas-Rubio O, Ozkan C, Incegul B, Goksu R, Hayta Z, Yilki D, Yazici B, Hancer V, Sansinenea E, Shin JH, El-Shabasy A, Azizoglu U. Novel insights into Bacillus thuringiensis: Beyond its role as a bioinsecticide. Res Microbiol 2025; 176:104264. [PMID: 39675400 DOI: 10.1016/j.resmic.2024.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This review explores the diverse applications of Bacillus thuringiensis (Bt) beyond its traditional role as a bioinsecticide. Bt produces a variety of compounds with distinct chemical structures and biological activities. These include antimicrobial agents effective against plant pathogens and bioactive compounds that promote plant growth through the production of siderophores, hormones, and enzymes. Additionally, Bt's industrial potential is highlighted, encompassing biofuel production, bioplastics, nanoparticle synthesis, food preservation, anticancer therapies, and heavy metal bioremediation. This critical analysis emphasizes recent advancements and applications, providing insights into Bt's role in sustainable agriculture, biotechnology, and environmental management.
Collapse
Affiliation(s)
- Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Sharafi
- National Center for Genetic Resources of Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd, Karaj, Iran
| | - Leandris Argentel-Martínez
- Department of Engineering, National Technological Institute of Mexico/Technological Institute of Yaqui Valley, Bacum, Sonora, Mexico
| | - Ofelda Peñuelas-Rubio
- Department of Engineering, National Technological Institute of Mexico/Technological Institute of Yaqui Valley, Bacum, Sonora, Mexico
| | - Ceyda Ozkan
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Bengisu Incegul
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Rana Goksu
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Zehra Hayta
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Deniz Yilki
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Beyza Yazici
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Vildan Hancer
- Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Abdullah Gul University, Kayseri, Turkiye
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. C.P. 72570. Puebla, Pue. Mexico
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - A El-Shabasy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye; Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
2
|
Rojas LS, de Fernandes MG, da Motta ACR, Carminato LP, Zanatta AC, Lôbo-Hajdu G, Jimenez P, Custódio MR, Hardoim CCP. Presence of polyketide synthases and nonribosomal peptide synthetase in culturable bacteria associated with Aplysina fulva and Aplysina caissara (Porifera). Braz J Microbiol 2025; 56:117-136. [PMID: 39792328 PMCID: PMC11885781 DOI: 10.1007/s42770-024-01588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
Culture-dependent and -independent studies have provided access to symbiont genes and the functions they play for host sponges. Thus, this work investigates the diversity, presence of genes of pharmacological interest, biological activities and metabolome of the bacteria isolated from the sponges Aplysina caissara and Aplysina fulva collected on the southwestern Atlantic Coast. The genes for Polyketide Synthases types I and II and Nonribosomal Peptide Synthetases were screened in more than 200 bacterial strains obtained, from which around 40% were putatively novel. Twenty-two were positive for at least one of the genes screened. Among them, 12 exhibited antimicrobial activities and one inhibited the proliferation of cancer cells. The metabolic profiles of the 22 strains were analyzed by liquid chromatography with tandem mass spectrometry and molecular network. The Global Natural Products Social Molecular Networking MolNetEnhancer workflow provided a more comprehensive understanding of the metabolic profiles. The results revealed the existence of a wide range of metabolites, however more than half of the compounds could not be identified. It was further observed that the metabolic diversity among the strains varied primarily due to the cultivation medium used. Together the results obtained here revealed the pharmacological potential of the bacteria isolated from Aplysina species.
Collapse
Affiliation(s)
- Letícia Sanfilippo Rojas
- Graduate Program in Evolution and Diversity, Federal University of ABC, Av. dos Estados, Bairro Bangu, Santo André, São Paulo, 5001, CEP 09210-580, Brazil
| | - Michelle Guzmán de Fernandes
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, CEP 05508-090, Brazil
| | | | - Luiza Porteiro Carminato
- São Paulo State University, Praça Infante Dom Henrique s/nº, Parque Bitaru, São Vicente, São Paulo, CEP 11.330-900, Brazil
| | - Ana Caroline Zanatta
- Institute of Chemistry, São Paulo State University, Rua Prof. Francisco Degni, 55, Araraquara, São Paulo, CEP 14800-060, Quitandinha, Brazil
| | - Gisele Lôbo-Hajdu
- Department of Genetics, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, CEP: 20550-013, Brazil
| | - Paula Jimenez
- Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144, Vila Belmiro, Santos, São Paulo, 11070-100, Brazil
| | - Márcio Reis Custódio
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, CEP 05508-090, Brazil
| | - Cristiane Cassiolato Pires Hardoim
- Graduate Program in Evolution and Diversity, Federal University of ABC, Av. dos Estados, Bairro Bangu, Santo André, São Paulo, 5001, CEP 09210-580, Brazil.
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, CEP 05508-090, Brazil.
| |
Collapse
|
3
|
Venkataraman S, Rajendran DS, Vaidyanathan VK. An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector. Food Sci Biotechnol 2024; 33:245-273. [PMID: 38222912 PMCID: PMC10786815 DOI: 10.1007/s10068-023-01435-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 01/16/2024] Open
Abstract
Microbial biosurfactants surpass synthetic alternatives due to their biodegradability, minimal toxicity, selective properties, and efficacy across a wide range of environmental conditions. Owing to their remarkable advantages, biosurfactants employability as effective emulsifiers and stabilizers, antimicrobial and antioxidant attributes, rendering them for integration into food preservation, processing, formulations, and packaging. The biosurfactants can also be derived from various types of food wastes. Biosurfactants are harnessed across multiple sectors within the food industry, ranging from condiments (mayonnaise) to baked goods (bread, muffins, loaves, cookies, and dough), and extending into the dairy industry (cheese, yogurt, and fermented milk). Additionally, their impact reaches the beverage industry, poultry feed, seafood products like tuna, as well as meat processing and instant foods, collectively redefining each sector's landscape. This review thoroughly explores the multifaceted utilization of biosurfactants within the food industry as emulsifiers, antimicrobial, antiadhesive, antibiofilm agents, shelf-life enhancers, texture modifiers, and foaming agents.
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
4
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
5
|
Yu YY, Zhang YY, Wang T, Huang TX, Tang SY, Jin Y, Mi DD, Zheng Y, Niu DD, Guo JH, Jiang CH. Kurstakin Triggers Multicellular Behaviors in Bacillus cereus AR156 and Enhances Disease Control Efficacy Against Rice Sheath Blight. PLANT DISEASE 2023:PDIS01220078RE. [PMID: 36205689 DOI: 10.1094/pdis-01-22-0078-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Kurstakin is the latest discovered family of lipopeptides secreted by Bacillus spp. In this study, the effects of kurstakin on the direct antagonism, multicellularity, and disease control ability of Bacillus cereus AR156 were explored. An insertion mutation in the nonribosomal peptide synthase responsible for kurstakin synthesis led to a significant reduction of antagonistic ability of AR156 against the plant-pathogenic fungi Rhizoctonia solani, Ascochyta citrullina, Fusarium graminearum, and F. oxysporum f. sp. cubense. The loss of kurstakin synthesis ability significantly impaired the swarming motility of AR156 and reduced biofilm formation and amyloid protein accumulation. Although the loss of kurstakin synthesis ability did not reduce the competitiveness of AR156 under laboratory conditions, the colonization and environmental adaptability of the mutant was significantly weaker than that of wild-type AR156 on rice leaves. The cell surface of wild-type AR156 colonizing the leaf surface was covered by a thick biofilm matrix under a scanning electron microscope, but not the mutant. The colonization ability on rice roots and control efficacy against rice sheath blight disease of the mutant were also impaired. Thus, kurstakin participates in the control of plant diseases by B. cereus AR156 through directly inhibiting the growth of pathogenic fungi and improving long-term environmental adaptability and colonization of AR156 on the host surface by triggering multicellularity. This study explored the multiple functions of kurstakin in plant disease control by B. cereus.
Collapse
Affiliation(s)
- Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Yi-Yuan Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ting Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Tao-Xiang Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Shu-Ya Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Yu Jin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dan-Dan Mi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dong-Dong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| |
Collapse
|
6
|
Guillén-Navarro K, López-Gutiérrez T, García-Fajardo V, Gómez-Cornelio S, Zarza E, De la Rosa-García S, Chan-Bacab M. Broad-Spectrum Antifungal, Biosurfactants and Bioemulsifier Activity of Bacillus subtilis subsp. spizizenii-A Potential Biocontrol and Bioremediation Agent in Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1374. [PMID: 36987062 PMCID: PMC10056679 DOI: 10.3390/plants12061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 μg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Tomás López-Gutiérrez
- Facultad de Ciencias Biologicas, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| | - Verónica García-Fajardo
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Sergio Gómez-Cornelio
- Ingeniería en Biotecnología, Universidad Politécnica del Centro, Carretera Federal Villahermosa-Teapa km 22.5, Villahermosa 86290, Tabasco, Mexico;
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez km 1, Cunduacán 86690, Tabasco, Mexico
| | - Eugenia Zarza
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
- Investigadora CONACyT—El Colegio de la Frontera Sur. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico City, Mexico
| | - Susana De la Rosa-García
- Laboratorio de Microbiología Aplicada, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas km 0.5, Villahermosa 86000, Tabasco, Mexico
| | - Manuel Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| |
Collapse
|
7
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
8
|
Ghazala I, Charfeddine S, Charfeddine M, Gargouri-Bouzid R, Ellouz-Chaabouni S, Haddar A. Antimicrobial and antioxidant activities of Bacillus mojavensis I4 lipopeptides and their potential application against the potato dry rot causative Fusarium solani. Arch Microbiol 2022; 204:484. [PMID: 35834024 DOI: 10.1007/s00203-022-03098-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Lipopeptides are diverse metabolites produced by various bacterial and fungal genera. They are known for their antimicrobial and surfactant activities with diverse environmental, pharmaceutical, and also agronomic applications as biocontrol agents. In this study, a PCR was used to confirm the presence of NRPS genes in Bacillus mojavensis I4. This bacterial strain could produce diverse lipopeptides which belong to the fengycin, and surfactin families. The antioxidant activity of I4 biosurfactants was determined through four different in vitro assays. Furthermore, antimicrobial activity assays indicated that I4 lipopeptides exhibited marked inhibitory activity against several bacterial and fungal strains. Further treatment of potato dry rot causative pathogen Fusarium solani with I4 lipopeptides demonstrated a remarkable reduction in the fungal penetration by almost 80% after 15 days of incubation. The findings suggest that I4 lipopeptide is a potential biocontrol agent during potato tuber storage.
Collapse
Affiliation(s)
- Imen Ghazala
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia.
| | - Safa Charfeddine
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Mariam Charfeddine
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Semia Ellouz-Chaabouni
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Anissa Haddar
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| |
Collapse
|
9
|
Diallo MM, Vural C, Şahar U, Ozdemir G. Kurstakin molecules facilitate diesel oil assimilation by Acinetobacter haemolyticus strain 2SA through overexpression of alkane hydroxylase genes. ENVIRONMENTAL TECHNOLOGY 2021; 42:2031-2045. [PMID: 31752596 DOI: 10.1080/09593330.2019.1689301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Biodegradation is a cost-effective process commonly used to eliminate many xenobiotic hydrocarbons such as diesel oils. However, their hydrophobic character reduces the biodegradation efficiency. In order to overcome this hurdle, kurstakins isolated from Bacillus thuringiensis strain 7SA were used as emulsifying agents. The influence of kurstakin molecules on diesel oil degradation by Acinetobacter haemolyticus strain 2SA was evaluated in the presence and absence of the aforementioned lipopeptide. The degradation rates and gene expressions of alkane hydroxylases were evaluated at days 4, 10, 14 and 21. Results showed that kurstakin molecules increased the hydrophobicity of 2SA. Moreover, diesel oil degradation activities were higher in the presence of kurstakin with 29%, 35%, 29% and 23% improvement at 4th, 10th, 14th and 21st day respectively. Statistical analysis indicated that the difference between the degradation rates in the presence and absence of kurstakin was significant with p = 0.03. The detection of three different hydroxylase genes namely alkB, almA and cyp153 in 2SA genome, might have allowed more efficient degradability of alkanes. According to the real-time PCR results, cyp153 was the most induced gene during diesel oil degradation in the presence and absence of kurstakin. Yet, the three genes demonstrated higher levels of expression in the presence of kurstakin when compared to its absence. This study showed that kurstakins enhance the diesel oil biodegradation rate by increasing the hydrophobicity of 2SA. In addition to their anti-fungal activities, kurstakins can be used as biosurfactant to increase biodegradation of diesel oil.
Collapse
Affiliation(s)
- Mamadou Malick Diallo
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Caner Vural
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Umut Şahar
- Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| | - Guven Ozdemir
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| |
Collapse
|
10
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Nam J, Alam ST, Kang K, Choi J, Seo MH. Anti-staphylococcal activity of a cyclic lipopeptide, C 15 -bacillomycin D, produced by Bacillus velezensis NST6. J Appl Microbiol 2020; 131:93-104. [PMID: 33211361 DOI: 10.1111/jam.14936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess antibacterial activity of a novel Bacillus velezensis strain NST6, and further identify its active compound against pathogenic Staphylococcus strains for clinical therapeutic applications. METHODS AND RESULTS In this study, a novel B. velezensis strain NST6 harbouring strong antimicrobial activity against human pathogenic bacteria was isolated from a soil sample. The solvent extract of the strain exhibited strong antibacterial activity against Gram-positive and Gram-negative bacteria in disc diffusion assay and measurement of minimal inhibitory concentration and bactericidal concentration, of which it showed notable efficacy to Staphylococcus species including Staphylococcus epidermidis, Staphylococcus aureus and methicillin-resistant S. aureus. Strong antibacterial effect against pathogenic S. aureus and low toxicity of the bacterial extract were further validated in Caenorhabditis elegans model. Moreover, by antibacterial activity-guided fractionation using RP-HPLC and LC-MS, we defined C15 -bacillomycin D as the anti-staphylococcal compound produced by the strain. CONCLUSION The primary anti-staphylococcal compound from B. velezensis NST6 was identified as a cyclic lipopeptide, C15 -bacillomycin D, which proved its potential to treat Staphylococcus strains in vitro and in vivo experiments with insignificant level of toxicity. SIGNIFICANCE AND IMPACT OF THE STUDY We provide an alternative treatment option to Staphylococcus infections by investigating the specific anti-staphylococcal activity of C15 -bacillomycin D produced by a B. velezensis strain.
Collapse
Affiliation(s)
- J Nam
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - S T Alam
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - K Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - J Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - M-H Seo
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| |
Collapse
|
12
|
Maksimov IV, Singh BP, Cherepanova EA, Burkhanova GF, Khairullin RM. Prospects and Applications of Lipopeptide-Producing Bacteria for Plant Protection (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
14
|
Aberkane L, Nacer-Khodja A, Djenane Z, Djouadi LN, Ouafek A, Bouslama L, Grib H, Mameri N, Nateche F, Djefal A. In Vitro Cytotoxicity of Parasporins from Native Algerian Bacillus thuringiensis Strains Against Laryngeal and Alveolar Cancers. Curr Microbiol 2019; 77:405-414. [PMID: 31844934 DOI: 10.1007/s00284-019-01841-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Parasporins (PS), a class of non-insecticidal and non-hemolytic crystal proteins of Bacillus thuringiensis (Bt), are being explored as promising anti-cancer agents due to their specific toxicity to cancer cells. This work is considered as a first initiative aiming at investigating Algerian soil Bt isolates' activity and cytotoxic potential against cancer cells. A total of 48 Bacillus spp. were isolated from different sites in Algeria. Phenotypic and biochemical tests, 16S rDNA molecular identification, and microscopic observation of crystal have confirmed the identification of Bt for ten strains. A screening for non-hemolytic crystalline proteins was performed. Extraction, purification, and activation of non-hemolytic proteins by chromatographic analysis yielded several polypeptides of different molecular weights. A purified PS1, with pro-protein of 81 kDa and several peptides with different molecular weights (18-58 kDa) after activation by trypsin, has been identified from the strain BDzG. The NH2-terminal sequence deciphered in BLAST analysis showed homology to a Bt PS1 protein. Moreover, the screening of parasporin-1 (PS1) gene has also been performed. Cytocidal activity against human epithelial type 2 (HEp2) cells, considered to originate from a human laryngeal carcinoma, was observed with an IC50 equal to 2.33 μg/ml, while moderate cytotoxicity against adenocarcinomic human alveolar basal epithelial (A549) cells has been shown with IC50 equal to 18.54 μg/ml. No cytotoxicity against normal cells was noted. Fluorescence microscopy revealed a condensed or fragmented chromatin indicating the apoptotic death of HEp2 cells. Thus, Bt PS-producer isolated from Algerian soil might have a potential to join the arsenal of natural anti-cancer drugs with high therapeutic potential.
Collapse
Affiliation(s)
- Lila Aberkane
- Medical Applications Department, Nuclear Applications Division, Nuclear Research Center of Algiers (CRNA), 02 Bd Frantz Fanon, P.O. Box 399, 16000, Algiers-Gare, Algiers, Algeria.,Environmental Engineering Department, National Polytechnic School of Algiers (ENP), 10 Rue des Frères Oudek, Hacène Badi, PO Box 182, 16200, El Harrach, Algiers, Algeria
| | - Assia Nacer-Khodja
- Medical Applications Department, Nuclear Applications Division, Nuclear Research Center of Algiers (CRNA), 02 Bd Frantz Fanon, P.O. Box 399, 16000, Algiers-Gare, Algiers, Algeria
| | - Zahia Djenane
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Lydia Neila Djouadi
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Abdelhakim Ouafek
- Medical Applications Department, Nuclear Applications Division, Nuclear Research Center of Algiers (CRNA), 02 Bd Frantz Fanon, P.O. Box 399, 16000, Algiers-Gare, Algiers, Algeria
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), University of Tunis El Manar, P.O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Hocine Grib
- Environmental Engineering Department, National Polytechnic School of Algiers (ENP), 10 Rue des Frères Oudek, Hacène Badi, PO Box 182, 16200, El Harrach, Algiers, Algeria
| | - Nabil Mameri
- Environmental Engineering Department, National Polytechnic School of Algiers (ENP), 10 Rue des Frères Oudek, Hacène Badi, PO Box 182, 16200, El Harrach, Algiers, Algeria
| | - Farida Nateche
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Assia Djefal
- Medical Applications Department, Nuclear Applications Division, Nuclear Research Center of Algiers (CRNA), 02 Bd Frantz Fanon, P.O. Box 399, 16000, Algiers-Gare, Algiers, Algeria.
| |
Collapse
|
15
|
Janakiev T, Dimkić I, Bojić S, Fira D, Stanković S, Berić T. Bacterial communities of plum phyllosphere and characterization of indigenous antagonistic Bacillus thuringiensis R3/3 isolate. J Appl Microbiol 2019; 128:528-543. [PMID: 31606926 DOI: 10.1111/jam.14488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/01/2022]
Abstract
AIMS The characterization of bacterial communities diversity on four local plum cultivars in two phenological stages using culture-dependent and culture-independent methods and screening among culturable plum community for indigenous bacteria active against phytopathogens. METHODS AND RESULTS The bacterial communities associated with leaves and fruits of four local Serbian plum cultivars (Požegača, Ranka, Čačanska Lepotica and Čačanska Rodna) were investigated in two phenological stages during early (May) and late (July) fruit maturation. Metagenomic approach revealed Methylobacterium, Sphingomonas and Hymenobacter as dominant genera. The most frequently isolated representatives with cultivable approach were pseudomonads with Pseudomonas syringae and Pseudomonas graminis, the most likely resident species of plum community. Antagonistic Bacillus thuringiensis R3/3 isolate from plum phyllosphere had ability to produce exoenzymes, reduce the growth of phytopathogenic bacteria in co-culture environment and show quorum quenching activity. CONCLUSIONS Plum cultivar and growth season contribute to the structure of the bacterial community associated with plum. Plum phyllosphere is good source of antagonists effective against phytopathogens. SIGNIFICANCE AND IMPACT OF STUDY Knowledge of bacterial communities on plum will have an impact on studies related to phyllosphere ecology and biocontrol. The indigenous antagonistic isolate, B. thuringiensis R3/3, from plum could be further investigated for its potential use in biological control of plum diseases.
Collapse
Affiliation(s)
- T Janakiev
- University of Belgrade - Faculty of Biology, Belgrade, Serbia
| | - I Dimkić
- University of Belgrade - Faculty of Biology, Belgrade, Serbia
| | - S Bojić
- University of Belgrade - Faculty of Biology, Belgrade, Serbia
| | - D Fira
- University of Belgrade - Faculty of Biology, Belgrade, Serbia
| | - S Stanković
- University of Belgrade - Faculty of Biology, Belgrade, Serbia
| | - T Berić
- University of Belgrade - Faculty of Biology, Belgrade, Serbia
| |
Collapse
|
16
|
Bukelskis D, Dabkeviciene D, Lukoseviciute L, Bucelis A, Kriaučiūnas I, Lebedeva J, Kuisiene N. Screening and Transcriptional Analysis of Polyketide Synthases and Non-ribosomal Peptide Synthetases in Bacterial Strains From Krubera-Voronja Cave. Front Microbiol 2019; 10:2149. [PMID: 31572349 PMCID: PMC6753585 DOI: 10.3389/fmicb.2019.02149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Identification of novel bioactive compounds represents an important field in modern biomedical research. Microorganisms of the underexplored environments, such as deserts, hot springs, oceans, and caves are highly promising candidates for screening such metabolites. Screening for biosynthetic genes is the most effective strategy to characterize bioactivity in a certain environment. However, knowledge is either scant or non-existent about the expression of the biosynthetic genes encoding for various bioactive compounds in the microorganisms from the caves. The aim of the current study was to screen for the genes of polyketide synthases and non-ribosomal peptide synthetases in Krubera–Voronja Cave (43.4184 N 40.3083 E, Western Caucasus) bacterial isolates as well as to evaluate the expression of these genes under laboratory conditions. In total, 91 bacterial strains isolated from the cave were screened for the presence of polyketide synthase and non-ribosomal peptide synthetase genes. Phenotypically inactive strains were the main focus (the test group) of our study, while the strains with the identified antibacterial activity served as the control group. Our PCR-based screening clearly showed that the majority of the strains harbored at least one biosynthetic gene. Prediction of the putative products allowed us to identify bioactive compounds with antibacterial, anticancer, antifungal, anti-inflammatory, antimycoplasmic, antiviral, insecticidal, and thrombolytic activity. For most polyketide synthases and non-ribosomal peptide synthetases, putative products could not be predicted; they are unknown. Qualitative transcriptional analysis did not show substantial differences between the test group and the control group of the strains. One to four biosynthetic genes were constitutively expressed in all the tested strains, irrespective of the group. Quantitative transcriptional analysis of the constitutively expressed biosynthetic genes demonstrated that the expression of a particular gene could be affected by both the amount of the nutrients in the culture medium and the growth phase.
Collapse
Affiliation(s)
- Dominykas Bukelskis
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Dabkeviciene
- Institute of Biosciences, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laima Lukoseviciute
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Airidas Bucelis
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ignas Kriaučiūnas
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jolanta Lebedeva
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Institute of Biosciences, Department of Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
17
|
Jemil N, Hmidet N, Manresa A, Rabanal F, Nasri M. Isolation and characterization of kurstakin and surfactin isoforms produced by Enterobacter cloacae C3 strain. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:7-18. [PMID: 30324699 DOI: 10.1002/jms.4302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
In this work, the extraction, structural analysis, and identification as well as antimicrobial, anti-adhesive, and antibiofilm activities of lipopeptides produced by Enterobacter cloacae C3 strain were studied. A combination of chromatographic and spectroscopic techniques offers opportunities for a better characterization of the biosurfactant structure. Thin layer chromatography (TLC) and HPLC for amino acid composition determination are used. Efficient spectroscopic techniques have been utilized for investigations on the biochemical structure of biosurfactants, such as Fourier transform infrared (FT-IR) spectroscopy and mass spectrometry analysis. This is the first work describing the production of different isoforms belonging to kurstakin and surfactin families by E cloacae strain. Three kurstakin homologues differing by the fatty acid chain length from C10 to C12 were detected. The spectrum of lipopeptides belonging to surfactin family contains various isoforms differing by the fatty acid chain length as well as the amino acids at positions four and seven. Lipopeptide C3 extract exhibited important antibacterial activity against Gram-positive and Gram-negative bacteria, antifungal activity, and interesting anti-adhesive and disruptive properties against biofilm formation by human pathogenic bacterial strains: Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus cereus, and Candida albicans.
Collapse
Affiliation(s)
- Nawel Jemil
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, Sfax, Tunisia
| | - Noomen Hmidet
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, Sfax, Tunisia
| | - Angeles Manresa
- Section of Microbiology, Department of Biology, Health and Environment, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Francesc Rabanal
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, Sfax, Tunisia
| |
Collapse
|
18
|
Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. J Biotechnol 2018; 285:44-55. [DOI: 10.1016/j.jbiotec.2018.07.044] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
|
19
|
Abdellaziz L, Chollet M, Abderrahmani A, Béchet M, Yaici L, Chataigné G, Arias AA, Leclère V, Jacques P. Lipopeptide biodiversity in antifungal Bacillus strains isolated from Algeria. Arch Microbiol 2018; 200:1205-1216. [PMID: 29947835 DOI: 10.1007/s00203-018-1537-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Several Bacillus strains have been well studied for their ability to control soil-borne plant diseases. This property is linked to the production of several families of lipopeptides. Depending of their structure, these compounds show antifungal and/or plant systemic resistance inducing activities. In this work, the biodiversity of lipopeptides produced by different antifungal Bacillus strains isolated from seeds, rhizospheric, and non-rhizospheric soils in Algeria was analyzed. Sixteen active strains were characterized by PCR for their content in genes involved in lipopeptide biosynthesis and by MALDI-ToF for their lipopeptide production, revealing a high biodiversity of products. The difficulty to detect kurstakin genes led us to design two new sets of specific primers. An interesting potential of antifungal activity and the synthesis of two forms of fengycins differing in the eighth amino acid (Gln/Glu) were found from the strain 8. Investigation of its genome led to the finding of an adenylation domain of the fengycin synthetase predicted to activate the glutamate residue instead of the glutamine one. According to the comparison of both the results of MALDI-ToF-MS and genome analysis, it was concluded that this adenylation domain could activate both residues at the same time. This study highlighted that the richness of the Algerian ecosystems in Bacillus strains is able to produce: surfactin, pumilacidin, lichenysin, kurstakin, and different types of fengycins.
Collapse
Affiliation(s)
- Lamia Abdellaziz
- Microbiological Team, Cellular and Molecular Biological Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.,Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Marlène Chollet
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Ahmed Abderrahmani
- Microbiological Team, Cellular and Molecular Biological Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.,Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Max Béchet
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Lamia Yaici
- Microbiological Team, Cellular and Molecular Biological Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.,Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Gabrielle Chataigné
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Anthony Arguelles Arias
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liege, Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Philippe Jacques
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France. .,Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liege, Gembloux, Belgium.
| |
Collapse
|
20
|
Maksimov IV, Maksimova TI, Sarvarova ER, Blagova DK, Popov VO. Endophytic Bacteria as Effective Agents of New-Generation Biopesticides (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Dimkić I, Stanković S, Nišavić M, Petković M, Ristivojević P, Fira D, Berić T. The Profile and Antimicrobial Activity of Bacillus Lipopeptide Extracts of Five Potential Biocontrol Strains. Front Microbiol 2017; 8:925. [PMID: 28588570 PMCID: PMC5440568 DOI: 10.3389/fmicb.2017.00925] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
In this study the efficacy of two different methods for extracting lipopeptides produced by five Bacillus strains-ethyl acetate extraction, and acid precipitation followed by methanol extraction—was investigated using mass spectrometry. High performance thin layer chromatography (HPTLC) was also used for the simultaneous separation of complex mixtures of lipopeptide extracts and for the determination of antimicrobial activity of their components. The mass spectra clearly showed well-resolved groups of peaks corresponding to different lipopeptide families (kurstakins, iturins, surfactins, and fengycins). The ethyl acetate extracts produced the most favorable results. The extracts of SS-12.6, SS-13.1, and SS-38.4 showed the highest inhibition zones. An iturin analog is responsible for the inhibition of Xanthomonas arboricola and Pseudomonas syringae phytopathogenic strains. HPTLC bioautography effectively identified the active compounds from a mixture of lipopeptide extracts, proving in situ its potential for use in direct detection and determination of antimicrobials. In the test of potential synergism among individual extracts used in different mixtures, stronger antimicrobial effects were not observed. Biochemical and phylogenetic analysis clustered isolates SS-12.6, SS-13.1, SS-27.2, and SS-38.4 together with Bacillus amyloliquefaciens, while SS-10.7 was more closely related to Bacillus pumilus.
Collapse
Affiliation(s)
- Ivica Dimkić
- Department of Microbiology, Faculty of Biology, University of BelgradeBelgrade, Serbia
| | - Slaviša Stanković
- Department of Microbiology, Faculty of Biology, University of BelgradeBelgrade, Serbia
| | - Marija Nišavić
- Department of Physical Chemistry, Institute of Nuclear Sciences "Vinča," University of BelgradeBelgrade, Serbia
| | - Marijana Petković
- Department of Physical Chemistry, Institute of Nuclear Sciences "Vinča," University of BelgradeBelgrade, Serbia
| | - Petar Ristivojević
- Innovation Centre of the Faculty of Chemistry Ltd., University of BelgradeBelgrade, Serbia
| | - Djordje Fira
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of BelgradeBelgrade, Serbia
| | - Tanja Berić
- Department of Microbiology, Faculty of Biology, University of BelgradeBelgrade, Serbia
| |
Collapse
|
22
|
Djenane Z, Nateche F, Amziane M, Gomis-Cebolla J, El-Aichar F, Khorf H, Ferré J. Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria. Toxins (Basel) 2017; 9:E139. [PMID: 28406460 PMCID: PMC5408213 DOI: 10.3390/toxins9040139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 11/23/2022] Open
Abstract
This work represents the first initiative to analyze the distribution of B. thuringiensis in Algeria and to evaluate the biological potential of the isolates. A total of 157 isolates were recovered, with at least one isolate in 94.4% of the samples. The highest Bt index was found in samples from rhizospheric soil (0.48) and from the Mediterranean area (0.44). Most isolates showed antifungal activity (98.5%), in contrast to the few that had antibacterial activity (29.9%). A high genetic diversity was made evident by the finding of many different crystal shapes and various combinations of shapes within a single isolate (in 58.4% of the isolates). Also, over 50% of the isolates harbored cry1, cry2, or cry9 genes, and 69.3% contained a vip3 gene. A good correlation between the presence of chitinase genes and antifungal activity was observed. More than half of the isolates with a broad spectrum of antifungal activity harbored both endochitinase and exochitinase genes. Interestingly, 15 isolates contained the two chitinase genes and all of the above cry family genes, with some of them harboring a vip3 gene as well. The combination of this large number of genes coding for entomopathogenic proteins suggests a putative wide range of entomotoxic activity.
Collapse
Affiliation(s)
- Zahia Djenane
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
- Department of Science and Technology, Faculty of Science, University Dr Yahia Frès, 26000 Médéa, Algeria.
| | - Farida Nateche
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
| | - Meriam Amziane
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
| | - Joaquín Gomis-Cebolla
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| | - Fairouz El-Aichar
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
| | - Hassiba Khorf
- Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar, 16111 Algiers, Algeria.
| | - Juan Ferré
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| |
Collapse
|
23
|
Ben Ayed H, Hmidet N, Béchet M, Jacques P, Nasri M. Identification and natural functions of cyclic lipopeptides from Bacillus amyloliquefaciens An6. Eng Life Sci 2016; 17:536-544. [PMID: 32624798 DOI: 10.1002/elsc.201600050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/11/2016] [Accepted: 11/10/2016] [Indexed: 11/09/2022] Open
Abstract
Lipopeptides constitute a structurally diverse group of metabolites produced by various bacterial and fungal genera. In the past decades, research on lipopeptides has been fueled by their surfactant activities. However, natural functions of lipopeptides compounds have received considerably less attention. The aim of this study was to isolate and identify the lipopeptides from Bacillus amyloliquefaciens An6, and further evaluate their biological activities. An6 lipopeptides were detected by PCR using degenerated primers and MALDI-TOF-MS. An6 strain was found to produce surfactin, fengycin, and bacillomycin. Following their purification, the in vitro antioxidant activity of An6 lipopeptides was studied through different assays. The scavenging effect on 1,1-diphenyl-2-picrylhydrazyl radicals at a dosage of 0.75 mg/mL was 81%. Its reducing power was concentration-dependant and reached a maximum of 1.07 at 2.5 mg/mL. Moreover, they showed a strong inhibition of β-carotene bleaching. An6 lipopeptides mixture was also found to display significant antimicrobial activity against several Gram-positive, Gram-negative bacteria, and fungal strains. An6 lipopeptides were insensitive to proteolytic enzymes, stable between pH 4.0 and 12.0, and resistant to high temperature. Our results provided enough evidence proving that An6 lipopeptides could be used as functional-food components.
Collapse
Affiliation(s)
- Hanen Ben Ayed
- Laboratoire de Génie Enzymatique et de Microbiologie Ecole Nationale d'Ingénieurs de Sfax Université de Sfax Sfax Tunisia
| | - Noomen Hmidet
- Laboratoire de Génie Enzymatique et de Microbiologie Ecole Nationale d'Ingénieurs de Sfax Université de Sfax Sfax Tunisia
| | - Max Béchet
- ProBioGEM- EA1026, Polytech'Lille/IUTA Université Lille-Nord de France Villeneuve d'Asq France
| | - Philippe Jacques
- ProBioGEM- EA1026, Polytech'Lille/IUTA Université Lille-Nord de France Villeneuve d'Asq France
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie Ecole Nationale d'Ingénieurs de Sfax Université de Sfax Sfax Tunisia
| |
Collapse
|
24
|
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016; 17:882. [PMID: 27821051 PMCID: PMC5100339 DOI: 10.1186/s12864-016-3224-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. RESULTS We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. CONCLUSIONS Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
25
|
Yaseen Y, Gancel F, Drider D, Béchet M, Jacques P. Influence of promoters on the production of fengycin in Bacillus spp. Res Microbiol 2016; 167:272-281. [DOI: 10.1016/j.resmic.2016.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
|
26
|
Biniarz P, Łukaszewicz M, Janek T. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol 2016; 37:393-410. [PMID: 27098391 DOI: 10.3109/07388551.2016.1163324] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipopeptide biosurfactants are surface active biomolecules that are produced by a variety of microorganisms. Microbial lipopeptides have gained the interest of microbiologists, chemists and biochemists for their high biodiversity as well as efficient action, low toxicity and good biodegradability in comparison to synthetic counterparts. In this report, we review methods for the production, isolation and screening, purification and structural characterization of microbial lipopeptides. Several techniques are currently available for each step, and we describe the most commonly utilized and recently developed techniques in this review. Investigations on lipopeptide biosurfactants in natural products require efficient isolation techniques for the characterization and evaluation of chemical and biological properties. A combination of chromatographic and spectroscopic techniques offer opportunities for a better characterization of lipopeptide structures, which in turn can lead to the application of lipopeptides in food, pharmaceutical, cosmetics, agricultural and bioremediation industries.
Collapse
Affiliation(s)
- Piotr Biniarz
- a Faculty of Biotechnology, University of Wroclaw , Wroclaw, Poland
| | | | - Tomasz Janek
- a Faculty of Biotechnology, University of Wroclaw , Wroclaw, Poland.,b Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University , Wroclaw, Poland
| |
Collapse
|
27
|
Meng Y, Zhao W, You J, Gang HZ, Liu JF, Yang SZ, Ye RQ, Mu BZ. Structural Analysis of the Lipopeptide Produced by the Bacillus subtilis Mutant R2-104 with Mutagenesis. Appl Biochem Biotechnol 2016; 179:973-85. [PMID: 27020566 DOI: 10.1007/s12010-016-2044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The lipopeptide and its homologues are a kind of the five major biosurfactants with prominent interfacial and biological activities. A suite of mutagenesis method was adopted to expose a wild lipopeptide-producing strain Bacillus subtilis HSO121 to improve lipopeptide yield, and a stable mutant named R2-104 with a 2.0-fold production of lipopeptide was obtained. Compared to that of the wild strain HSO121, the lipopeptide produced by R2-104 showed a similar surface activity, but the course profiles of lipopeptide production during cultivation were different, with the peak yield of 500 mg at about 9 h by R2-104, and 400 mg at about 5 h by HSO121. The constituent abundance of the lipopeptide homologues produced by R2-104 was also different from that by HSO121. Combined methods of ESI-MS, GC-MS and MS-MS were applied for structural characterization of lipopeptide homologues, and it showed that the lipopeptides produced by R2-104 and HSO121 were attributed to a surfactin family with different constituents. The dominant constituent of the surfactin family produced by R2-104 was anteiso C15-surfactin with a relative content of 43.8 %, while the dominant one produced by HSO121was iso C14-surfactin with a relative content of 33.1 %.
Collapse
Affiliation(s)
- Yong Meng
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jia You
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hong-Ze Gang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ru-Qiang Ye
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
28
|
El Arbi A, Rochex A, Chataigné G, Béchet M, Lecouturier D, Arnauld S, Gharsallah N, Jacques P. The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Res Microbiol 2016; 167:46-57. [DOI: 10.1016/j.resmic.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/29/2015] [Accepted: 09/20/2015] [Indexed: 11/15/2022]
|
29
|
Mora I, Cabrefiga J, Montesinos E. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria. PLoS One 2015; 10:e0127738. [PMID: 26024374 PMCID: PMC4449161 DOI: 10.1371/journal.pone.0127738] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/19/2015] [Indexed: 11/23/2022] Open
Abstract
The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of antimicrobial cLPs.
Collapse
Affiliation(s)
- Isabel Mora
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Jordi Cabrefiga
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Campus Montilivi, 17071, Girona, Spain
- * E-mail:
| |
Collapse
|
30
|
Tambadou F, Lanneluc I, Sablé S, Klein GL, Doghri I, Sopéna V, Didelot S, Barthélémy C, Thiéry V, Chevrot R. Novel nonribosomal peptide synthetase (NRPS) genes sequenced from intertidal mudflat bacteria. FEMS Microbiol Lett 2014; 357:123-30. [PMID: 25039651 DOI: 10.1111/1574-6968.12532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPS) are actively sought out, due to pharmacologically important activities of their metabolites. In marine environment, the most prevalent nonribosomal peptide antibiotic producers are sponges inhabiting microorganisms. Conversely, strains from marine sediments and more especially from intertidal mudflats have not been extensively screened for the presence of new NRPS. In this study, for the first time, a collection of one hundred intertidal mudflat bacterial isolates (Marennes-Oléron Bay, France) was assessed for (1) the presence of NRPS genes by degenerated PCR targeting conserved adenylation domains and (2) for their production of antimicrobial molecules. (1) Bacteria with adenylation domains (14 strains) were identified by 16S rRNA gene sequence analysis and grouped into Firmicutes (one strain) and Proteobacteria (13 strains). In silico analysis of the NRPS amino acid sequences (n = 7) showed 41-58% ID with sequences found in the NCBI database. Three new putative adenylation domain signatures were found. (2) The culture supernatant of one of these strains, identified as a Bacillus, was shown to strongly inhibit the growth of Staphylococcus aureus, S. epidermidis, and Enterococcus faecalis. This study portends that the intertidal mudflat niche could be of interest for the discovery of new NRPS genes and antimicrobial producing strains.
Collapse
Affiliation(s)
- Fatoumata Tambadou
- Laboratoire Littoral Environnement et Sociétés, Université de La Rochelle, LIENSs - UMR 7266 - CNRS, La Rochelle Cedex 1, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery. PLoS One 2014; 9:e85667. [PMID: 24465643 PMCID: PMC3897469 DOI: 10.1371/journal.pone.0085667] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/01/2013] [Indexed: 02/04/2023] Open
Abstract
Nonribosomal peptides represent a large variety of natural active compounds produced by microorganisms. Due to their specific biosynthesis pathway through large assembly lines called NonRibosomal Peptide Synthetases (NRPSs), they often display complex structures with cycles and branches. Moreover they often contain non proteogenic or modified monomers, such as the D-monomers produced by epimerization. We investigate here some sequence specificities of the condensation (C) and epimerization (E) domains of NRPS that can be used to predict the possible isomeric state (D or L) of each monomer in a putative peptide. We show that C- and E- domains can be divided into 2 sub-regions called Up-Seq and Down-Seq. The Up-Seq region corresponds to an InterPro domain (IPR001242) and is shared by C- and E-domains. The Down-Seq region is specific to the enzymatic activity of the domain. Amino-acid signatures (represented as sequence logos) previously described for complete C-and E-domains have been restricted to the Down-Seq region and amplified thanks to additional sequences. Moreover a new Down-Seq signature has been found for Ct-domains found in fungi and responsible for terminal cyclization of the peptides. The identification of these signatures has been included in a workflow named Florine, aimed to predict nonribosomal peptides from NRPS sequence analyses. In some cases, the prediction of isomery is guided by genus-specific rules. Florine was used on a Pseudomonas genome to allow the determination of the type of pyoverdin produced, the update of syringafactin structure and the identification of novel putative products.
Collapse
|
32
|
Kim BY, Ahn JH, Weon HY, Song J, Kim SI, Kim WG. Isolation and Characterization of Bacillus Species Possessing Antifungal Activity against Ginseng Root Rot Pathogens. ACTA ACUST UNITED AC 2012. [DOI: 10.7585/kjps.2012.16.4.357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
33
|
Béchet M, Caradec T, Hussein W, Abderrahmani A, Chollet M, Leclère V, Dubois T, Lereclus D, Pupin M, Jacques P. Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl Microbiol Biotechnol 2012; 95:593-600. [DOI: 10.1007/s00253-012-4181-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/01/2022]
|
34
|
Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog 2012; 8:e1002629. [PMID: 22511867 PMCID: PMC3325205 DOI: 10.1371/journal.ppat.1002629] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading.
Collapse
|
35
|
|