1
|
Zhang J, Pang Q, Wang Q, Qi Q, Wang Q. Modular tuning engineering and versatile applications of genetically encoded biosensors. Crit Rev Biotechnol 2021; 42:1010-1027. [PMID: 34615431 DOI: 10.1080/07388551.2021.1982858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Genetically encoded biosensors have a diverse range of detectable signals and potential applications in many fields, including metabolism control and high-throughput screening. Their ability to be used in situ with minimal interference to the bioprocess of interest could revolutionize synthetic biology and microbial cell factories. The performance and functions of these biosensors have been extensively studied and have been rapidly improved. We review here current biosensor tuning strategies and attempt to unravel how to obtain ideal biosensor functions through experimental adjustments. Strategies for expanding the biosensor input signals that increases the number of detectable compounds have also been summarized. Finally, different output signals and their practical requirements for biotechnology and biomedical applications and environmental safety concerns have been analyzed. This in-depth review of the responses and regulation mechanisms of genetically encoded biosensors will assist to improve their design and optimization in various application scenarios.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingxiao Pang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qi Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
2
|
Voloshina AD, Gumerova SK, Sapunova АS, Kulik NV, Mirgorodskaya AB, Kotenko AA, Prokopyeva TM, Mikhailov VA, Zakharova LY, Sinyashin OG. The structure - Activity correlation in the family of dicationic imidazolium surfactants: Antimicrobial properties and cytotoxic effect. Biochim Biophys Acta Gen Subj 2020; 1864:129728. [PMID: 32898623 DOI: 10.1016/j.bbagen.2020.129728] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of new effective microbicide surfactants and the search for the structure-biological activity relationship is an important and promising problem. Surfactants containing imidazolium fragment attract attention of researchers in the field of chemotherapy, because these compounds often exhibit high antimicrobial activity. The aim of this work is to identify the newly synthesized surfactants from the viewpoint of their potential usefulness in pharmacology and medicine. For this purpose, a detailed study of antimicrobial, hemolytic and cytotoxic activity of dicationic alkylimidazolium surfactants of the m-s-m (Im) series with a variable length of a hydrocarbon tail (m = 10, 12) and a spacer fragment (s = 2, 3, 4) was carried out. METHODS Aggregation of surfactants in solutions was estimated by tensiometry and conductivity. Antimicrobial activity was determined by the serial dilution technique. Cytotoxic effects of the test compounds on human cancer and normal cells were estimated by means of the multifunctional Cytell Cell Imaging system. Cell Apoptosis Analysis was made by flow cytometry. RESULTS The test compounds show high antimicrobial activity against a wide range of test microorganisms and do not possess high hemolytic activity. Importantly, some of them display a bactericidal activity comparable to ciprofloxacin fluoroquinolone antibiotic against Gram-positive bacteria, including methicillin-resistant strains of S. aureus (MRSA). The cytotoxicity of the compounds against normal and tumor human cell lines has been tested as well, with cytotoxic effect and selectivity strongly controlled by structural factor and kind of cell line. Superior results were revealed for compound 10-4-10 (Im) in the case of HuTu 80 cell line (duodenal adenocarcinoma), for which IC50 value at the level of doxorubicin and a markedly higher selectivity index (SI 7.5) were demonstrated. Flow cytometry assay shows apoptosis-inducing effect of this compound on HuTu 80 cells, through significant changes in the potential of mitochondrial membrane. MAJOR CONCLUSIONS Antibacterial properties are shown to be controlled by alkyl chain length, with the highest activity demonstrated by surfactants with decyl tail, with the length of the spacer fragment showing practically no effect. The results indicate that the mechanism of cytotoxic effect of the compounds can be associated with the induction of apoptosis via the mitochondrial pathway. GENERAL SIGNIFICANCE Selectivity against pathogenic microorganisms and low toxicity against eukaryotic cells allow considering dicationic imidazolium surfactants as new effective antimicrobial agents. At the same time, high selectivity against some cancer cell lines indicates the prospect of their using as components of new anticancer drugs.
Collapse
Affiliation(s)
- Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Syumbelya K Gumerova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Аnastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Natalia V Kulik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia.
| | - Alla A Kotenko
- L.M. Litvinenko Institute of Physical Organic Chemistry and Coal Chemistry, 70 R. Luxemburg St., 83114 Donetsk, Ukraine
| | - Tatiana M Prokopyeva
- L.M. Litvinenko Institute of Physical Organic Chemistry and Coal Chemistry, 70 R. Luxemburg St., 83114 Donetsk, Ukraine
| | - Vasilii A Mikhailov
- L.M. Litvinenko Institute of Physical Organic Chemistry and Coal Chemistry, 70 R. Luxemburg St., 83114 Donetsk, Ukraine
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| |
Collapse
|
3
|
Bervoets I, Charlier D. A novel and versatile dual fluorescent reporter tool for the study of gene expression and regulation in multi- and single copy number. Gene 2017; 642:474-482. [PMID: 29191759 DOI: 10.1016/j.gene.2017.11.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022]
Abstract
To unravel intricate mechanisms of gene regulation it is imperative to work in physiologically relevant conditions and therefore preferentially in single copy constructs, which are not always easy to manipulate. Such in vivo studies are generally based on enzymatic assays, microarrays, RNA-seq, qRT-PCR, or multicopy reporter gene systems, frequently with β-galactosidase, luciferase or a fluorescent protein as reporter. Each method has its advantages and shortcomings and may require validation. Enzyme assays are generally reliable but may be quite complex, time consuming, and require a (expensive) substrate. Microarrays and RNA-seq provide a genome wide view of gene expression but may rapidly become expensive and time consuming especially for detailed studies with large numbers of mutants, different growth conditions and multiple time points. Multicopy reporter gene systems are handy to generate numerous constructs but may not provide accurate information due to titration effects of trans-acting regulatory elements. Therefore and in spite of the existence of various reporter systems, there is still need for an efficient and user-friendly tool for detailed studies and high throughput screenings. Here we develop and validate a novel and versatile fluorescent reporter tool to study gene regulation in single copy mode that enables real-time measurement. This tool bears two independent fluorescent reporters that allow high throughput screening and standardization, and combines modern efficient cloning methods (multicopy, in vitro manipulation) with classical genetics (in vivo homologous recombination with a stable, self-transmissible episome) to generate multi- and single copy reporter systems. We validate the system with constitutive and differentially regulated promoters and show that the tool can equally be used with heterologous transcription factors. The flexibility and versatility of this dual reporter tool in combination with an easy conversion from a multicopy plasmid to a stable, single copy reporter system makes this system unique and attractive for a variety of applications. Examples are in vivo studies of DNA-binding transcription factors (single copy) or screening of promoter and RBS libraries (multicopy) for synthetic biology purposes.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
4
|
Pałkowski Ł, Błaszczyński J, Skrzypczak A, Błaszczak J, Kozakowska K, Wróblewska J, Kożuszko S, Gospodarek E, Krysiński J, Słowiński R. Antimicrobial Activity and SAR Study of New Gemini Imidazolium-Based Chlorides. Chem Biol Drug Des 2013; 83:278-88. [DOI: 10.1111/cbdd.12236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Łukasz Pałkowski
- Department of Pharmaceutical Technology; Nicolaus Copernicus University; Jurasza 2 85-094 Bydgoszcz Poland
| | - Jerzy Błaszczyński
- Institute of Computing Science; Poznań University of Technology; Piotrowo 2 60-965 Poznań Poland
| | - Andrzej Skrzypczak
- Institute of Chemical Technology; Poznań University of Technology; Skłodowskiej-Curie 2 60-965 Poznań Poland
| | - Jan Błaszczak
- Institute of Chemical Technology; Poznań University of Technology; Skłodowskiej-Curie 2 60-965 Poznań Poland
| | - Karolina Kozakowska
- Department of Pharmaceutical Technology; Nicolaus Copernicus University; Jurasza 2 85-094 Bydgoszcz Poland
| | - Joanna Wróblewska
- Department of Microbiology; Nicolaus Copernicus University; Skłodowskiej-Curie 9 85-094 Bydgoszcz Poland
| | - Sylwia Kożuszko
- Department of Microbiology; Nicolaus Copernicus University; Skłodowskiej-Curie 9 85-094 Bydgoszcz Poland
| | - Eugenia Gospodarek
- Department of Microbiology; Nicolaus Copernicus University; Skłodowskiej-Curie 9 85-094 Bydgoszcz Poland
| | - Jerzy Krysiński
- Department of Pharmaceutical Technology; Nicolaus Copernicus University; Jurasza 2 85-094 Bydgoszcz Poland
| | - Roman Słowiński
- Institute of Computing Science; Poznań University of Technology; Piotrowo 2 60-965 Poznań Poland
- Systems Research Institute; Polish Academy of Sciences; Newelska 6 01-447 Warsaw Poland
| |
Collapse
|