1
|
Nakashima S, Matsutani M, Kataoka N, Adachi O, Yamashita R, Matsushita K, Tippayasak U, Theeragool G, Yakushi T. Two NADPH-dependent 2-ketogluconate reductases involved in 2-ketogluconate assimilation in Gluconobacter sp. strain CHM43. Appl Environ Microbiol 2025; 91:e0250124. [PMID: 39878490 PMCID: PMC11837542 DOI: 10.1128/aem.02501-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Incomplete oxidation of glucose by Gluconobacter sp. strain CHM43 produces gluconic acid and then 2- or 5-ketogluconic acid. Although 2-keto-D-gluconate (2KG) is a valuable compound, it is sometimes consumed by Gluconobacter itself via an unknown metabolic pathway. We anticipated that 2KG reductase (2KGR) would be a key enzyme in 2KG metabolism. GLF_0478 and GLF_1777 were identified in the genome of strain CHM43, which encode proteins with 70% and 48% amino acid sequence identity, respectively, to the 2KGR of Gluconobacter oxydans strain 621H. Constructed mutant derivatives of strain CHM43 lacking GLF_0478, GLF_1777, or both were examined for their 2KG consumption ability. Strains ∆GLF_0478 and ∆GLF_1777 consumed 2KG like the parental strain. However, the double-deletion (∆∆) strain did not consume 2KG at all, although it produced 2KG like the parental strain. Strains ∆GLF_0478 and ∆GLF_1777 each showed decreased 2KGR activity compared with the parental strain, and strain ΔΔ lost 2KGR activity. These results suggest that reduction of 2KG catalyzed by GLF_0478 and GLF_1777 is the committed step in 2KG metabolism in Gluconobacter sp. strain CHM43. The two 2KGRs showed high activity at neutral pH and lower KM values for NADPH than NADH. Results of induction experiments suggest that GLF_0478 is constitutively expressed at a low level but induced by 2KG, and GLF_1777 is also inducible by 2KG but repressed in the absence of an inducer. Our study that characterizes the key genes for 2KG consumption in Gluconobacter gives insights for improvement of biological 2KG production systems. IMPORTANCE 2-Keto-D-gluconate (2KG), a product of incomplete oxidation of glucose by acetic acid bacteria including Gluconobacter spp., is used for various purposes, including in the food industry. Gluconobacter also consumes 2KG via an unclear metabolic pathway. It is reported that Pseudomonas spp. and Cupriavidus necator phosphorylate 2KG in the first step of 2KG metabolism, but some enteric bacteria including Escherichia coli reduce 2KG. This study evaluated the 2KG consumption ability of a mutant derivative of a strain of Gluconobacter that lacks two putative 2KGR-encoding genes. The mutant strain did not consume 2KG at all; the two 2KGRs were each found to catalyze 2KG reduction. It is concluded that reduction of 2KG is the committed step in 2KG metabolism in Gluconobacter. The results presented here give insights that might facilitate improvement of 2KG production systems that use Gluconobacter.
Collapse
Affiliation(s)
- Sakura Nakashima
- Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Naoya Kataoka
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Osao Adachi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Riku Yamashita
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Uraiwan Tippayasak
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Gunjana Theeragool
- Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Toshiharu Yakushi
- Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Matsumoto N, Matsutani M, Tanimoto Y, Nakanishi R, Tanaka S, Kanesaki Y, Theeragool G, Kataoka N, Yakushi T, Matsushita K. Implication of amino acid metabolism and cell surface integrity for the thermotolerance mechanism in the thermally adapted acetic acid bacterium Acetobacter pasteurianus TH-3. J Bacteriol 2023; 205:e0010123. [PMID: 37930061 PMCID: PMC10662122 DOI: 10.1128/jb.00101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Acetobacter pasteurianus, an industrial vinegar-producing strain, is suffered by fermentation stress such as fermentation heat and/or high concentrations of acetic acid. By an experimental evolution approach, we have obtained a stress-tolerant strain, exhibiting significantly increased growth and acetic acid fermentation ability at higher temperatures. In this study, we report that only the three gene mutations of ones accumulated during the adaptation process, ansP, dctD, and glnD, were sufficient to reproduce the increased thermotolerance of A. pasteurianus. These mutations resulted in cell envelope modification, including increased phospholipid and lipopolysaccharide synthesis, increased respiratory activity, and cell size reduction. The phenotypic changes may cooperatively work to make the adapted cell thermotolerant by enhancing cell surface integrity, nutrient or oxygen availability, and energy generation.
Collapse
Affiliation(s)
- Nami Matsumoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoko Tanimoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Rina Nakanishi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shuhei Tanaka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
- Research Institute of Green Science and Technology, Shizuoka University, , Shizuoka, Japan
| | - Gunjana Theeragool
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Naoya Kataoka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Kataoka N, Matsutani M, Matsumoto N, Oda M, Mizumachi Y, Ito K, Tanaka S, Kanesaki Y, Yakushi T, Matsushita K. Mutations in degP and spoT Genes Mediate Response to Fermentation Stress in Thermally Adapted Strains of Acetic Acid Bacterium Komagataeibacter medellinensis NBRC 3288. Front Microbiol 2022; 13:802010. [PMID: 35633714 PMCID: PMC9135448 DOI: 10.3389/fmicb.2022.802010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
An acetic acid bacterium, Komagataeibacter medellinensis NBRC 3288, was adapted to higher growth temperatures through an experimental evolution approach in acetic acid fermentation conditions, in which the cells grew under high concentrations of ethanol and acetic acid. The thermally adapted strains were shown to exhibit significantly increased growth and fermentation ability, compared to the wild strain, at higher temperatures. Although the wild cells were largely elongated and exhibited a rough cell surface, the adapted strains repressed the elongation and exhibited a smaller cell size and a smoother cell surface than the wild strain. Among the adapted strains, the ITO-1 strain isolated during the initial rounds of adaptation was shown to have three indel mutations in the genes gyrB, degP, and spoT. Among these, two dispensable genes, degP and spoT, were further examined in this study. Rough cell surface morphology related to degP mutation suggested that membrane vesicle-like structures were increased on the cell surface of the wild-type strain but repressed in the ITO-1 strain under high-temperature acetic acid fermentation conditions. The ΔdegP strain could not grow at higher temperatures and accumulated a large amount of membrane vesicles in the culture supernatant when grown even at 30°C, suggesting that the degP mutation is involved in cell surface stability. As the spoT gene of ITO-1 lost a 3′-end of 424 bp, which includes one (Act-4) of the possible two regulatory domains (TGS and Act-4), two spoT mutant strains were created: one (ΔTGSAct) with a drug cassette in between the 5′-half catalytic domain and 3′-half regulatory domains of the gene, and the other (ΔAct-4) in between TGS and Act-4 domains of the regulatory domain. These spoT mutants exhibited different growth responses; ΔTGSAct grew better in both the fermentation and non-fermentation conditions, whereas ΔAct-4 did only under fermentation conditions, such as ITO-1 at higher temperatures. We suggest that cell elongation and/or cell size are largely related to these spoT mutations, which may be involved in fermentation stress and thermotolerance.
Collapse
Affiliation(s)
- Naoya Kataoka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Nami Matsumoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Misuzu Oda
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Mizumachi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kohei Ito
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Shuhei Tanaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
- *Correspondence: Kazunobu Matsushita,
| |
Collapse
|
4
|
Matsumoto N, Matsutani M, Azuma Y, Kataoka N, Yakushi T, Matsushita K. In vitro thermal adaptation of mesophilic Acetobacter pasteurianus NBRC 3283 generates thermotolerant strains with evolutionary trade-offs. Biosci Biotechnol Biochem 2020; 84:832-841. [DOI: 10.1080/09168451.2019.1703638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT
Thermotolerant strains are critical for low-cost high temperature fermentation. In this study, we carried out the thermal adaptation of A. pasteurianus IFO 3283–32 under acetic acid fermentation conditions using an experimental evolution approach from 37ºC to 40ºC. The adapted strain exhibited an increased growth and acetic acid fermentation ability at high temperatures, however, with the trade-off response of the opposite phenotype at low temperatures. Genome analysis followed by PCR sequencing showed that the most adapted strain had 11 mutations, a single 64-kb large deletion, and a single plasmid loss. Comparative phenotypic analysis showed that at least the large deletion (containing many ribosomal RNAs and tRNAs genes) and a mutation of DNA polymerase (one of the 11 mutations) critically contributed to this thermotolerance. The relationship between the phenotypic changes and the gene mutations are discussed, comparing with another thermally adapted A. pasteurianus strains obtained previously.
Collapse
Affiliation(s)
- Nami Matsumoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshinao Azuma
- Biology-oriented Science and Technology, Kinki University, Kinokawa, Japan
| | - Naoya Kataoka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
5
|
In Vitro Thermal and Ethanol Adaptations to Improve Vinegar Fermentation at High Temperature of Komagataeibacter oboediens MSKU 3. Appl Biochem Biotechnol 2019; 189:144-159. [PMID: 30957194 DOI: 10.1007/s12010-019-03003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/27/2019] [Indexed: 12/30/2022]
Abstract
High temperature and high ethanol concentrations obviously affect vinegar fermentation. The thermotolerant and ethanol-resistant strains are expected to become one of the technologies for effective vinegar fermentation. This study aimed to further improve thermotolerant Komagataeibacter oboediens MSKU 3 through thermal and ethanol adaptations for acetic acid fermentation. The MSKU 3 strain was independently cultured by a repetitive cultivation in gradually increasing temperature from 37 to 39 °C for thermal adaptation, while adaptation to ethanol was carried out from concentrations of 3 to 5.5% (v/v) at 37 °C. Acetic acid fermentation revealed that the thermo-adapted T4 strain could produce 2.82% acidity with 3% ethanol at 39 °C, whereas the ethanol-adapted E3 strain could produce 3.54% acidity with 5.5% ethanol at 37 °C, in contrast to the parental strain, MSKU 3, in which no fermentation occurs at either 39 °C or 5.5% ethanol. Furthermore, genome mapping analysis of T4 and E3 strains against the genome of parental strain MSKU 3 revealed several mutated genes that are associated with thermotolerance or ethanol adaptation. The occurrence of these adaptation-associated mutations during adaptive evolution was also analyzed. Therefore, adapted strains T4 and E3 revealed the potential of Komagataeibacter oboediens strain improvement to further enhance vinegar fermentation with high ethanol concentration at high temperature.
Collapse
|
6
|
Introducing a thermotolerant Gluconobacter japonicus strain, potentially useful for coenzyme Q10 production. Folia Microbiol (Praha) 2019; 64:471-479. [DOI: 10.1007/s12223-018-0666-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
|
7
|
A Single-Nucleotide Insertion in a Drug Transporter Gene Induces a Thermotolerance Phenotype in Gluconobacter frateurii by Increasing the NADPH/NADP + Ratio via Metabolic Change. Appl Environ Microbiol 2018; 84:AEM.00354-18. [PMID: 29549098 DOI: 10.1128/aem.00354-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
Abstract
Thermotolerant microorganisms are beneficial to the fermentation industry because they reduce the need for cooling and offer other operational advantages. Previously, we obtained a thermally adapted Gluconobacter frateurii strain by experimental evolution. In the present study, we found only a single G insertion in the adapted strain, which causes a frameshift in a gene encoding a putative drug transporter. A mutant derivative strain with the single G insertion in the transporter gene (Wild-G) was constructed from the wild-type strain and showed increased thermotolerance. We found that the thermotolerant strains accumulated substantial intracellular trehalose and manifested a defect in sorbose assimilation, suggesting that the transporter is partly involved in trehalose efflux and sorbose uptake and that the defect in the transporter can improve thermotolerance. The ΔotsAB strain, constructed by elimination of the trehalose synthesis gene in the wild type, showed no trehalose production but, unexpectedly, much better growth than the adapted strain at high temperatures. The ΔotsAB mutant produced more acetate as the final metabolite than the wild-type strain did. We hypothesized that trehalose does not contribute to thermotolerance directly; rather, a metabolic change including increased carbon flux to the pentose phosphate pathway may be the key factor. The NADPH/NADP+ ratio was higher in strain Wild-G, and much higher in the ΔotsAB strain, than in the wild-type strain. Levels of reactive oxygen species (ROS) were lower in the thermotolerant strains. We propose that the defect of the transporter causes the metabolic flux to generate more NADPH, which may enhance thermotolerance in G. frateuriiIMPORTANCE The biorefinery industry has to ensure that microorganisms are robust and retain their viability and function at high temperatures. Here we show that Gluconobacterfrateurii, an industrially important member of the acetic acid bacteria, exhibited enhanced thermotolerance through the reduction of trehalose excretion after thermal adaptation. Although intracellular trehalose may play a key role in thermotolerance, the molecular mechanisms of action of trehalose in thermotolerance are a matter of debate. Our mutated strain that was defective in trehalose synthase genes, producing no trehalose but a larger amount of acetic acid as the end metabolite instead, unexpectedly showed higher thermotolerance than the wild type. Our adapted and mutated thermotolerant strains showed increased NADPH/NADP+ ratios and reductions in ROS levels. We concluded that in G. frateurii, trehalose does not contribute to thermotolerance directly; rather, the metabolic change increases the NADPH/NADP+ ratio to enhance thermotolerance.
Collapse
|
8
|
Yakushi T, Fukunari S, Kodama T, Matsutani M, Nina S, Kataoka N, Theeragool G, Matsushita K. Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108. Appl Microbiol Biotechnol 2018; 102:4549-4561. [DOI: 10.1007/s00253-018-8940-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/28/2022]
|
9
|
Gomes RJ, Borges MDF, Rosa MDF, Castro-Gómez RJH, Spinosa WA. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol Biotechnol 2018; 56:139-151. [PMID: 30228790 DOI: 10.17113/ftb.56.02.18.5593] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The group of Gram-negative bacteria capable of oxidising ethanol to acetic acid is called acetic acid bacteria (AAB). They are widespread in nature and play an important role in the production of food and beverages, such as vinegar and kombucha. The ability to oxidise ethanol to acetic acid also allows the unwanted growth of AAB in other fermented beverages, such as wine, cider, beer and functional and soft beverages, causing an undesirable sour taste. These bacteria are also used in the production of other metabolic products, for example, gluconic acid, l-sorbose and bacterial cellulose, with potential applications in the food and biomedical industries. The classification of AAB into distinct genera has undergone several modifications over the last years, based on morphological, physiological and genetic characteristics. Therefore, this review focuses on the history of taxonomy, biochemical aspects and methods of isolation, identification and quantification of AAB, mainly related to those with important biotechnological applications.
Collapse
Affiliation(s)
- Rodrigo José Gomes
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| | - Maria de Fatima Borges
- Embrapa Tropical Agroindustry, 2270 Dra. Sara Mesquita Road, 60511-110 Fortaleza, CE, Brazil
| | | | - Raúl Jorge Hernan Castro-Gómez
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| | - Wilma Aparecida Spinosa
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid (PR 445) Road, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
10
|
Matsushita K, Azuma Y, Kosaka T, Yakushi T, Hoshida H, Akada R, Yamada M. Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations. Biosci Biotechnol Biochem 2015; 80:655-68. [PMID: 26566045 DOI: 10.1080/09168451.2015.1104235] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Environmental adaptation is considered as one of the most challenging subjects in biology to understand evolutionary or ecological diversification processes and in biotechnology to obtain useful microbial strains. Temperature is one of the important environmental stresses; however, microbial adaptation to higher temperatures has not been studied extensively. For industrial purposes, the use of thermally adapted strains is important, not only to reduce the cooling expenses of the fermentation system, but also to protect fermentation production from accidental failure of thermal management. Recent progress in next-generation sequencing provides a powerful tool to track the genomic changes of the adapted strains and allows us to compare genomic DNA sequences of conventional strains with those of their closely related thermotolerant strains. In this article, we have attempted to summarize our recent approaches to produce thermotolerant strains by thermal adaptation and comparative genomic analyses of Acetobacter pasteurianus for high-temperature acetic acid fermentations, and Zymomonas mobilis and Kluyveromyces marxianus for high-temperature ethanol fermentations. Genomic analysis of the adapted strains has found a large number of mutations and/or disruptions in highly diversified genes, which could be categorized into groups related to cell surface functions, ion or amino acid transporters, and some transcriptional factors. Furthermore, several phenotypic and genetic analyses revealed that the thermal adaptation could lead to decreased ROS generation in cells that produce higher ROS levels at higher temperatures. Thus, it is suggested that the thermally adapted cells could become robust and resistant to many stressors, and thus could be useful for high-temperature fermentations.
Collapse
Affiliation(s)
- Kazunobu Matsushita
- a Faculty of Agriculture , Yamaguchi University , Yamaguchi , Japan.,d Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| | - Yoshinao Azuma
- b Biology-oriented Science and Technology , Kinki University , Kinokawa , Japan
| | - Tomoyuki Kosaka
- a Faculty of Agriculture , Yamaguchi University , Yamaguchi , Japan.,d Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| | - Toshiharu Yakushi
- a Faculty of Agriculture , Yamaguchi University , Yamaguchi , Japan.,d Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| | - Hisashi Hoshida
- c Department of Applied Molecular Bioscience, Graduate School of Medicine , Yamaguchi University , Ube , Japan.,d Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| | - Rinji Akada
- c Department of Applied Molecular Bioscience, Graduate School of Medicine , Yamaguchi University , Ube , Japan.,d Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| | - Mamoru Yamada
- a Faculty of Agriculture , Yamaguchi University , Yamaguchi , Japan.,d Research Center for Thermotolerant Microbial Resources , Yamaguchi University , Yamaguchi , Japan
| |
Collapse
|
11
|
Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol Adv 2015; 33:1260-71. [DOI: 10.1016/j.biotechadv.2014.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
12
|
A functionally critical single nucleotide polymorphism in the gene encoding the membrane-bound alcohol dehydrogenase found in ethanol oxidation-deficient Gluconobacter thailandicus. Gene 2015; 567:201-7. [PMID: 25943635 DOI: 10.1016/j.gene.2015.04.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/30/2022]
Abstract
The Gluconobacter thailandicus strains NBRC3254, NBRC3255, NBRC3256, NBRC3257, and NBRC3258 are naturally deficient in the ethanol-oxidizing respiratory chain because they do not produce the cytochrome subunit of the membrane-bound alcohol dehydrogenase (ADH). Draft genomes of G. thailandicus strains NBRC3255 and NBRC3257 indicated that the adhB gene encoding the cytochrome subunit contains four base differences when compared to a closely related gene in the public database One of the nucleotide differences results in an Opal codon at the -19th tryptophan (Trp) in the signal sequence for translocation to the periplasmic space (here, the position of +1st residue is assigned to the N-terminal amino acid residue after signal peptide cleavage), while the other differences result in one missense and two silent amino acid alterations. All five of the G. thailandicus strains were shown to have the Trp(-19)Opal alteration. Ethanol oxidation and ADH activities in NBRC3255 were restored by transformation with a derivative of the endogenous adhB gene, of which the -19th Opal codon was altered to encode Trp. These results indicate that this sequence is a functionally critical single nucleotide polymorphism in the cytochrome subunit. Comparative genomic analyses between the draft genomes of NBRC3255 and NBRC3257 revealed that although the two genomes are closely related, they both have a significant number of unique open reading frames. We suggest that the closely related NBRC3255 and NBRC3257 diverged from a common ancestor having the mutation in the adhB gene, whereas no additional functionally critical mutation occurred in the adhB pseudogene over the course of evolution.
Collapse
|
13
|
Affiliation(s)
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
14
|
Chouaia B, Gaiarsa S, Crotti E, Comandatore F, Degli Esposti M, Ricci I, Alma A, Favia G, Bandi C, Daffonchio D. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol Evol 2015; 6:912-20. [PMID: 24682158 PMCID: PMC4007555 DOI: 10.1093/gbe/evu062] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts.
Collapse
Affiliation(s)
- Bessem Chouaia
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J Microbiol Biotechnol 2015; 31:255-63. [PMID: 25575804 DOI: 10.1007/s11274-015-1799-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.
Collapse
|
16
|
Xu S, Wang X, Du G, Zhou J, Chen J. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb Cell Fact 2014; 13:146. [PMID: 25323199 PMCID: PMC4205284 DOI: 10.1186/s12934-014-0146-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/08/2014] [Indexed: 11/12/2022] Open
Abstract
Background Production of L-sorbose from D-sorbitol by Gluconobacter oxydans is the first step to produce L-ascorbic acid on industrial scale. The sldhAB gene, which encodes the sorbitol dehydrogenase (SLDH), was overexpressed in an industrial strain G. oxydans WSH-003 with a strong promoter, PtufB. To enhance the mRNA abundance, a series of artificial poly(A/T) tails were added to the 3′-terminal of sldhAB gene. Besides, their role in sldhAB overexpression and their subsequent effects on L-sorbose production were investigated. Results The mRNA abundance of the sldhAB gene could be enhanced in G. oxydans by suitable poly(A/T) tails. By self-overexpressing the sldhAB gene in G. oxydans WSH-003 with an optimal poly(A/T) tail under the constitutive promoter PtufB, the titer and the productivity of L-sorbose were enhanced by 36.3% and 25.0%, respectively, in a 1-L fermenter. Immobilization of G. oxydans-sldhAB6 cells further improved the L-sorbose titer by 33.7% after 20 days of semi-continuous fed-batch fermentation. Conclusions The artificial poly(A/T) tails could significantly enhance the mRNA abundance of the sldhAB. Immobilized G. oxydans-sldhAB6 cells could further enlarge the positive effect caused by enhanced mRNA abundance of the sldhAB.
Collapse
Affiliation(s)
- Sha Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Xiaobei Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
17
|
Matsutani M, Suzuki H, Yakushi T, Matsushita K. Draft genome sequence of Gluconobacter thailandicus NBRC 3257. Stand Genomic Sci 2014; 9:614-23. [PMID: 25197448 PMCID: PMC4149004 DOI: 10.4056/sigs.4778605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconobacter thailandicus strain NBRC 3257, isolated from downy cherry (Prunus tomentosa), is a strict aerobic rod-shaped Gram-negative bacterium. Here, we report the features of this organism, together with the draft genome sequence and annotation. The draft genome sequence is composed of 107 contigs for 3,446,046 bp with 56.17% G+C content and contains 3,360 protein-coding genes and 54 RNA genes.
Collapse
Affiliation(s)
- Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Haruo Suzuki
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
18
|
Matsutani M, Nishikura M, Saichana N, Hatano T, Masud-Tippayasak U, Theergool G, Yakushi T, Matsushita K. Adaptive mutation of Acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. J Biotechnol 2013; 165:109-19. [PMID: 23524057 DOI: 10.1016/j.jbiotec.2013.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/26/2013] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
Abstract
In vitro adaptation is one of the most challenging subjects in biology to understand adaptive evolution. Microbial adaptation to temperature is not only interesting in terms of understanding the adaptation mechanism, but also useful for industrial applications. In this study, we attempted the in vitro adaptation of Acetobacter pasteurianus SKU1108 by repeating its cultivation under high-temperature acetic acid fermentation conditions. As a result, thermo-adapted strains having the higher fermentation ability than the wild-type strain were obtained. Mutations and/or disruptions in several proteins of the adapted strains were detected with NGS sequencing technology. In particular, two different adapted strains had mutations or disruptions in three specific genes in common, suggesting that these genes are essential for thermotolerance or fermentation at higher temperature. In order to clarify their involvement in thermotolerance, two of the three genes were disrupted and their phenotype was examined. The results showed that mutations of the two proteins, MarR and an amino acid transporter, are partly responsible for higher fermentation ability and/or thermotolerance. Thus, it was suggested that these elevated abilities of the adapted strains are acquired by assembling several single gene mutations including the above two mutations.
Collapse
Affiliation(s)
- Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | |
Collapse
|