1
|
Hu S, Zhu R, Yu XY, Wang BT, Ruan HH, Jin FJ. A High-Quality Genome Sequence of the Penicillium oxalicum 5-18 Strain Isolated from a Poplar Plantation Provides Insights into Its Lignocellulose Degradation. Int J Mol Sci 2023; 24:12745. [PMID: 37628925 PMCID: PMC10454814 DOI: 10.3390/ijms241612745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Studies on the degradation of plant cell wall polysaccharides by fungal extracellular enzymes have attracted recent attention from researchers. Xylan, abundant in hemicellulose, that play great role in connection between cellulose and lignin, has seen interest in its hydrolytic enzymatic complex. In this study, dozens of fungus species spanning genera were isolated from rotting leaves based on their ability to decompose xylan. Among these isolates, a strain with strong xylanase-producing ability was selected for further investigation by genome sequencing. Based on phylogenetic analysis of ITS (rDNA internal transcribed spacer) and LSU (Large subunit 28S rDNA) regions, the isolate was identified as Penicillium oxalicum. Morphological analysis also supported this finding. Xylanase activity of this isolated P. oxalicum 5-18 strain was recorded to be 30.83 U/mL using the 3,5-dinitro-salicylic acid (DNS) method. Further genome sequencing reveals that sequenced reads were assembled into a 30.78 Mb genome containing 10,074 predicted protein-encoding genes. In total, 439 carbohydrate-active enzymes (CAZymes) encoding genes were predicted, many of which were associated with cellulose, hemicellulose, pectin, chitin and starch degradation. Further analysis and comparison showed that the isolate P. oxalicum 5-18 contains a diverse set of CAZyme genes involved in degradation of plant cell wall components, particularly cellulose and hemicellulose. These findings provide us with valuable genetic information about the plant biomass-degrading enzyme system of P. oxalicum, facilitating a further exploration of the repertoire of industrially relevant lignocellulolytic enzymes of P. oxalicum 5-18.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.H.); (R.Z.); (X.-Y.Y.); (B.-T.W.); (H.-H.R.)
| |
Collapse
|
2
|
Advance diversity of enzymatically modified arabinoxylan from wheat chaff. Food Chem 2020; 339:128093. [PMID: 33152881 DOI: 10.1016/j.foodchem.2020.128093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/24/2023]
Abstract
Hydrolysates of arabinoxylan extracted from wheat chaff were prepared using different enzymatic treatments with an emphasis on improvements in their anti-diabetic, antioxidant and functional characteristics. The extracted arabinoxylan was subjected to enzymatic hydrolysis using individual xylanase, arabinofuranosidase, and feruloyl esterase, and their combinations. In all obtained hydrolysates, peaks corresponding to molecular weight lower than 38 kDa were noticed, while non-hydrolysed arabinoxylan had only peaks corresponding to 580 and 38 kDa. Results indicated that applied enzymes could hydrolyse polymeric arabinoxylan while their synergistic actions successfully modified its structure reflecting in lowered viscosity. Besides, it has been observed that the synergistic actions of enzymes improved the biological activities of arabinoxylan more than twice. Chemometric classification analysis showed that synergistic enzymes' actions were predominantly responsible for the improvement of biological activities. It indicated that they might be a useful tool for diversification and enhancement of biological activities of arabinoxylan from wheat chaff.
Collapse
|
3
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Poria V, Saini JK, Singh S, Nain L, Kuhad RC. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. BIORESOURCE TECHNOLOGY 2020; 304:123019. [PMID: 32089440 DOI: 10.1016/j.biortech.2020.123019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 05/15/2023]
Abstract
Alpha-L-arabinofuranoside arabinofuranohydrolase (ARA), more commonly known as alpha-L-arabinofuranosidase (E.C. number 3.2.1.55), is a hydrolytic enzyme, catalyzing the cleavage of alpha-L-arabinose by acting on the non-reducing ends of alpha-L-arabinofuranosides, alpha-L-arabinans containing (1,3)- and/or (1,5)-linked arabinoxylans and arabinogalactans. ARA functions as debranching enzyme removing arabinose substituents from arabinoxylan and arabinoxylooligomers, thereby, boosting the hydrolysis of arabinoxylan fraction of hemicellulose and improving bioconversion of lignocellulosic biomass. Previously, comprehensive information on this enzyme has not been reviewed thoroughly. Therefore, the main aim of this review is to highlight the important properties of this interesting enzyme, microorganisms used for its production, and enhanced production using genetic engineering approach. An account on synergism with other biomass hydrolyzing enzymes and various industrial applications of this enzyme has also been provided along with an outlook on further research and development.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Division of Microbiology, Indian Agricultural Research Institute, New Delhi PIN-110012, India.
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi PIN-110012, India
| | - Ramesh Chander Kuhad
- Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi PIN-110021, India
| |
Collapse
|
5
|
Terrone CC, Montesino de Freitas Nascimento J, Fanchini Terrasan CR, Brienzo M, Carmona EC. Salt-tolerant α-arabinofuranosidase from a new specie Aspergillus hortai CRM1919: Production in acid conditions, purification, characterization and application on xylan hydrolysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Performance and structural comparison of hydrogels made from wheat bran arabinoxylan using enzymatic and coacervation methods as micro-and nano- encapsulation and delivery devices. Biomed Microdevices 2019; 21:97. [PMID: 31729590 DOI: 10.1007/s10544-019-0445-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study evaluated the structural and performance differences between arabinoglucuronoxylan micro-hydrogels that were enzymatically produced from alkaline-extracted wheat bran arabinoglucuronoxylans using recombinant α-L-arabinofuranosidase (AbfB) that selectively removes arabinose side chains, and chemically through coacervation process, as delivery devices for bioactive substances. The encapsulations of model bioactive substance, gallic acid (GA), in the hydrogels, were done either in-situ or ex-situ to identify the most effective encapsulation and delivery method. The hydrogels particle size distribution, polydispersity index, GA encapsulation efficiency, retention and release of functional GA (based on antioxidant activity) were assessed. The hydrogels formed in both coacervation and enzymatic processes had particle size ranges of 469-678 nm, which classify them as micro-hydrogels. However, the latter were monodispersed with polydispersity index (PdI) < 0.4 compared to the former with PdI > 0.7. In addition, enzymatically produced hydrogels attained higher zeta potential (-8.8 mV) and retained and released GA with higher anti-oxidant capacity (91%) than chemically formed micro-hydrogels (zeta potential = - 3.3 mV and antioxidant capacity = 80%). However, GA encapsulation efficiencies (72% in-situ and 68% ex-situ) were higher in chemically formed micro-hydrogels than enzymatically produced micro-hydrogels (59% in-situ and 52% ex-situ). The in-situ encapsulated GA experienced less initial burst during sustained release of 8 h compared to ex-situ encapsulation. Overall, enzymatic modification process and in-situ encapsulation were the most effective methods for production of arabinoglucuronoxylan micro-hydrogels delivery devices and for encapsulation of the GA, respectively, because of maintaining functional GA upon release and having the potential to customize the structural and functional properties of the micro-hydrogels.
Collapse
|
7
|
Chimphango AF, Görgens J, van Zyl W. In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material. Carbohydr Polym 2016; 143:172-8. [DOI: 10.1016/j.carbpol.2016.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/25/2022]
|
8
|
Bajwa PK, Harrington S, Dashtban M, Lee H. Expression and Characterization of Glycosyl Hydrolase Family 115 α-Glucuronidase fromScheffersomyces stipitis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Paramjit K. Bajwa
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Sean Harrington
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mehdi Dashtban
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Hung Lee
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
9
|
Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. G3-GENES GENOMES GENETICS 2015; 6:193-204. [PMID: 26566947 PMCID: PMC4704718 DOI: 10.1534/g3.115.024067] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.
Collapse
|
10
|
Modifying solubility of polymeric xylan extracted from Eucalyptus grandis and sugarcane bagasse by suitable side chain removing enzymes. Carbohydr Polym 2015; 131:177-85. [DOI: 10.1016/j.carbpol.2015.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 11/17/2022]
|
11
|
Characterization of a novel GH2 family α-l-arabinofuranosidase from hyperthermophilic bacterium Thermotoga thermarum. Biotechnol Lett 2014; 36:1321-8. [DOI: 10.1007/s10529-014-1493-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/05/2014] [Indexed: 11/28/2022]
|