1
|
Malos IG, Ghizdareanu AI, Vidu L, Matei CB, Pasarin D. The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective. Foods 2025; 14:1488. [PMID: 40361571 PMCID: PMC12071764 DOI: 10.3390/foods14091488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical oxygen demand underlines the important need for sustainable processing alternatives. This review explores the biotechnological potential of whey as a fermentation medium by examining its chemical composition, microbial interactions, and ability to support the synthesis of valuable metabolites. Functional microorganisms such as lactic acid bacteria (Lactobacillus helveticus, L. acidophilus), yeasts (Kluyveromyces marxianus), actinobacteria, and filamentous fungi (Aspergillus oryzae) have demonstrated the ability to efficiently convert whey into a wide range of bioactive compounds, including organic acids, exopolysaccharides (EPSs), bacteriocins, enzymes, and peptides. To enhance microbial growth and metabolite production, whey fermentation can be carried out using various techniques, including batch, fed-batch, continuous and immobilized cell fermentation, and membrane bioreactors. These bioprocessing methods improve substrate utilization and metabolite yields, contributing to the efficient utilization of whey. These bioactive compounds have diverse applications in food, pharmaceuticals, agriculture, and biofuels and strengthen the role of whey as a sustainable biotechnological resource. Patents and clinical studies confirm the diverse bioactivities of whey-derived metabolites and their industrial potential. Whey peptides provide antihypertensive, antioxidant, immunomodulatory, and antimicrobial benefits, while bacteriocins and EPSs act as natural preservatives in foods and pharmaceuticals. Also, organic acids such as lactic acid and propionic acid act as biopreservatives that improve food safety and provide health-promoting formulations. These results emphasize whey's significant industrial relevance as a sustainable, cost-efficient substrate for the production of high-quality bioactive compounds in the food, pharmaceutical, agricultural, and bioenergy sectors.
Collapse
Affiliation(s)
- Iuliu Gabriel Malos
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania; (I.G.M.)
| | - Andra-Ionela Ghizdareanu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Livia Vidu
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania; (I.G.M.)
| | - Catalin Bogdan Matei
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Diana Pasarin
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
2
|
Hoffmann A, Franz A, Löser C, Hoyer T, Weyd M, Walther T. In situ Product Recovery of Microbially Synthesized Ethyl Acetate from the Exhaust Gas of a Bioreactor by Membrane Technology. Eng Life Sci 2024; 24:e202400041. [PMID: 39649183 PMCID: PMC11620624 DOI: 10.1002/elsc.202400041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 12/10/2024] Open
Abstract
Ethyl acetate is at present exclusively produced from fossil resources. Microbial synthesis of this ester from sugar-rich waste as an alternative is an aerobic process. Ethyl acetate is highly volatile and therefore stripped with the exhaust gas from the bioreactor which enables in situ product recovery. Previous research on microbial formation of ethyl acetate has focused on the kinetics of ester synthesis and in part on the ester stripping, while the separation of the ester from the exhaust gas has hardly been investigated. A mixed matrix membrane was developed consisting of Silikalite-1 embedded in polydimethylsiloxane which was installed in a radial-symmetrical membrane module. Evaluation of the separation of ethyl acetate was based on the analysis of the composition of the feed and retentate gas by mass spectrometry. The separation efficiency of the membrane was first tested with varied flows of artificial exhaust gas, containing defined amounts of ethyl acetate. A model for describing the separation process was parametrized by the measured data and used to design a real separation experiment. Ethyl acetate produced from delactosed whey permeate by Kluyveromyces marxianus DSM 5422 in a stirred bioreactor gassed with 0.5 vvm air was successfully separated from the exhaust gas by membranes; 93.6% of the stripped ester was separated. Liquid ethyl acetate was recovered by cooling the permeate gas to ‒78°C, whereby 99.75% of the condensed organic compounds were ethyl acetate. This study demonstrates for the first time that microbially produced and stripped ethyl acetate can be effectively separated from the exhaust gas of bioreactors by membrane technology to obtain the ester in high yield and purity.
Collapse
Affiliation(s)
- Andreas Hoffmann
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Alexander Franz
- Interfaculty Centre for Bioactive Matter b‐ACT MatterLeipzig UniversityLeipzigGermany
| | - Christian Löser
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Thomas Hoyer
- Fraunhofer Institute for Ceramic Technologies and Systems IKTSHermsdorfGermany
| | - Marcus Weyd
- Fraunhofer Institute for Ceramic Technologies and Systems IKTSHermsdorfGermany
| | - Thomas Walther
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
3
|
Peri KVR, Yuan L, Faria Oliveira F, Persson K, Alalam HD, Olsson L, Larsbrink J, Kerkhoven EJ, Geijer C. A unique metabolic gene cluster regulates lactose and galactose metabolism in the yeast Candida intermedia. Appl Environ Microbiol 2024; 90:e0113524. [PMID: 39240082 PMCID: PMC11497787 DOI: 10.1128/aem.01135-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Lactose assimilation is a relatively rare trait in yeasts, and Kluyveromyces yeast species have long served as model organisms for studying lactose metabolism. Meanwhile, the metabolic strategies of most other lactose-assimilating yeasts remain unknown. In this work, we have elucidated the genetic determinants of the superior lactose-growing yeast Candida intermedia. Through genomic and transcriptomic analyses, we identified three interdependent gene clusters responsible for the metabolism of lactose and its hydrolysis product galactose: the conserved LAC cluster (LAC12, LAC4) for lactose uptake and hydrolysis, the conserved GAL cluster (GAL1, GAL7, and GAL10) for galactose catabolism through the Leloir pathway, and a "GALLAC" cluster containing the transcriptional activator gene LAC9, second copies of GAL1 and GAL10, and a XYL1 gene encoding an aldose reductase involved in carbon overflow metabolism. Bioinformatic analysis suggests that the GALLAC cluster is unique to C. intermedia and has evolved through gene duplication and divergence, and deletion mutant phenotyping proved that the cluster is indispensable for C. intermedia's growth on lactose and galactose. We also show that the regulatory network in C. intermedia, governed by Lac9 and Gal1 from the GALLAC cluster, differs significantly from the galactose and lactose regulons in Saccharomyces cerevisiae, Kluyveromyces lactis, and Candida albicans. Moreover, although lactose and galactose metabolism are closely linked in C. intermedia, our results also point to important regulatory differences.IMPORTANCEThis study paves the way to a better understanding of lactose and galactose metabolism in the non-conventional yeast C. intermedia. Notably, the unique GALLAC cluster represents a new, interesting example of metabolic network rewiring and likely helps to explain how C. intermedia has evolved into an efficient lactose-assimilating yeast. With the Leloir pathway of budding yeasts acting like a model system for understanding the function, evolution, and regulation of eukaryotic metabolism, this work provides new evolutionary insights into yeast metabolic pathways and regulatory networks. In extension, the results will facilitate future development and use of C. intermedia as a cell-factory for conversion of lactose-rich whey into value-added products.
Collapse
Affiliation(s)
| | - Le Yuan
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Fábio Faria Oliveira
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Karl Persson
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Hanna D. Alalam
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Johan Larsbrink
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Eduard J. Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Cecilia Geijer
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Hoffmann A, Franz A, Walther T, Löser C. Utilization of delactosed whey permeate for the synthesis of ethyl acetate with Kluyveromyces marxianus. Appl Microbiol Biotechnol 2023; 107:1635-1648. [PMID: 36786916 PMCID: PMC10006051 DOI: 10.1007/s00253-023-12419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Ethyl acetate is an important organic solvent and currently produced from fossil carbon resources. Microbial synthesis of this ester from sugar-rich waste could be an interesting alternative. Therefore, synthesis of ethyl acetate by Kluyveromyces marxinanus DSM 5422 from delactosed whey permeate (DWP) was studied in an aerated stirred bioreactor at 40 °C. DWP is mainly composed of residual lactose and minerals. The minerals inhibited yeast growth, as witnessed by an increased lag period, a reduced growth rate, and an extended process duration. All experiments were therefore carried out with diluted DWP. In a series of batch experiments, the pH of iron-deficient DWP medium varied between 4.8 and 5.9. The pH of the cultivation medium significantly influenced cell growth and product syntheses, with the highest ethyl acetate yield of 0.347 g g-1 and lowest by-product formation achieved at pH 5.1. It is likely that this effect is due to pH-dependent iron chelation, which affects the iron bioavailability and the intracellular iron content, thus affecting growth and metabolite synthesis. The viability of yeast cells was always high despite the harsh conditions in DWP medium, which enabled extended usage of the biomass in repeated-batch and fed-batch cultivations. These two culture techniques increased the volume of DWP processed per time by 32 and 84% for the repeated-batch and the fed-batch cultivation, respectively, without a drop of the ester yield. KEY POINTS: • Delactosed whey permeate was converted to ethyl acetate with a high rate and yield. • The formation of ethyl acetate in DWP medium at iron limitation is pH-dependent. • Highly active yeasts from batch processes enabled extension as fed and repeated batch.
Collapse
Affiliation(s)
- Andreas Hoffmann
- Bioprocess Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Alexander Franz
- Bioprocess Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
- Biophysical Chemistry, Institute of Biochemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Thomas Walther
- Bioprocess Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Christian Löser
- Bioprocess Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
5
|
Bever D, Wheeldon I, Da Silva N. RNA polymerase II-driven CRISPR-Cas9 system for efficient non-growth-biased metabolic engineering of Kluyveromyces marxianus. Metab Eng Commun 2022; 15:e00208. [PMID: 36249306 PMCID: PMC9558044 DOI: 10.1016/j.mec.2022.e00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The thermotolerant yeast Kluyveromyces marxianus has gained significant attention in recent years as a promising microbial candidate for industrial biomanufacturing. Despite several contributions to the expanding molecular toolbox for gene expression and metabolic engineering of K. marxianus, there remains a need for a more efficient and versatile genome editing platform. To address this, we developed a CRISPR-based editing system that enables high efficiency marker-less gene disruptions and integrations using only 40 bp homology arms in NHEJ functional and non-functional K. marxianus strains. The use of a strong RNA polymerase II promoter allows efficient expression of gRNAs flanked by the self-cleaving RNA structures, tRNA and HDV ribozyme, from a single plasmid co-expressing a codon optimized Cas9. Implementing this system resulted in nearly 100% efficiency of gene disruptions in both NHEJ-functional and NHEJ-deficient K. marxianus strains, with donor integration efficiencies reaching 50% and 100% in the two strains, respectively. The high gRNA targeting performance also proved instrumental for selection of engineered strains with lower growth rate but improved polyketide biosynthesis by avoiding an extended outgrowth period, a common method used to enrich for edited cells but that fails to recover advantageous mutants with even slightly impaired fitness. Finally, we provide the first demonstration of simultaneous, markerless integrations at multiple loci in K. marxianus using a 2.6 kb and a 7.6 kb donor, achieving a dual integration efficiency of 25.5% in a NHEJ-deficient strain. These results highlight both the ease of use and general robustness of this system for rapid and flexible metabolic engineering in this non-conventional yeast. RNAP II-driven tRNA-gRNA-HDV ribozyme cassette built for K. marxianus genome editing. Gene integrations up to 7.6 kb were achieved with only 40 bp homology sequences. Recovery of growth-biased modifications achievable as extended outgrowth not required. Application (ZWF1 and GPD1 knockouts) increased polyketide specific titers. Expressing two unique gRNAs from one cassette enabled integrations at separate loci.
Collapse
|
6
|
Baptista M, Domingues L. Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation. Biotechnol Adv 2022; 60:108027. [PMID: 35952960 DOI: 10.1016/j.biotechadv.2022.108027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is widely used for several biotechnological applications, mainly due to its thermotolerance, high growth rate, and ability to metabolise a wide range of sugars. These cell traits are strategic for lignocellulosic biomass valorisation and strain diversity prompts the development of robust chassis, either with improved tolerance to lignocellulosic inhibitors or ethanol. This review summarises bioethanol and value-added chemicals production by K. marxianus from different lignocellulosic biomasses. Moreover, metabolic engineering and process optimization strategies developed to expand K. marxianus potential are also compiled, as well as studies reporting cell mechanisms to cope with lignocellulosic-derived inhibitors. The main lignocellulosic-based products are bioethanol, representing 71% of the reports, and xylitol, representing 17% of the reports. K. marxianus also proved to be a good chassis for lactic acid and volatile compounds production from lignocellulosic biomass, although the literature on this matter is still scarce. The increasing advances in genome editing tools and process optimization strategies will widen the K. marxianus-based portfolio products.
Collapse
Affiliation(s)
- Marlene Baptista
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
7
|
Optimization of Synthetic Media Composition for Kluyveromyces marxianus Fed-Batch Cultivation. FERMENTATION 2021. [DOI: 10.3390/fermentation7020062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Kluyveromyces marxianus yeast recently has gained considerable attention due to its applicability in high-value-added product manufacturing. In order to intensify the biosynthesis rate of a target product, reaching high biomass concentrations in the reaction medium is mandatory. Fed-batch processes are an attractive and efficient way how to achieve high cell densities. However, depending on the physiology of the particular microbial strain, an optimal media composition should be used to avoid by-product synthesis and, subsequently, a decrease in overall process effi-ciency. Thus, the aim of the present study was to optimise the synthetic growth medium and feeding solution compositions (in terms of carbon, nitrogen, phosphorous, magnesium, and calcium concentrations) for high cell density K. marxianus fed‑batch cultivations. Additionally, the biomass yields from the vitamin mixture and other macro/microelements were identified. A model predictive control algorithm was successfully applied for a fed-batch cultivation control. Biomass growth and substrate consumption kinetics were compared with the mathematical model predictions. Finally, 2‑phenylethanol biosynthesis was induced and its productivity was estimated. The determined optimal macronutrient ratio for K. marxianus biomass growth was identified as C:N:P = 1:0.07:0.011. The maximal attained yeast biomass concentration was close to 70 g·L-1 and the 2-PE biosynthesis rate was 0.372 g·L−1·h−1, with a yield of 74% from 2-phenylalanine.
Collapse
|
8
|
Löser C, Kupsch C, Walther T, Hoffmann A. A new approach for balancing the microbial synthesis of ethyl acetate and other volatile metabolites during aerobic bioreactor cultivations. Eng Life Sci 2021; 21:137-153. [PMID: 33716613 PMCID: PMC7923609 DOI: 10.1002/elsc.202000047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Ethyl acetate is an organic solvent with many industrial applications, currently produced by energy-intensive chemical processes based on fossil carbon resources. Ethyl acetate can be synthesized from renewable sugars by yeasts like Kluyveromyces marxianus in aerobic processes. However, ethyl acetate is highly volatile and thus stripped from aerated cultivation systems which complicate the quantification of the produced ester. Synthesis of volatile metabolites is commonly monitored by repeated analysis of metabolite concentrations in both the gas and liquid phase. In this study, a model-based method for quantifying the synthesis and degradation of volatile metabolites was developed. This quantification of volatiles is solely based on repeatedly measured gas-phase concentrations and allows calculation of reaction rates and yields in high temporal resolution. Parameters required for these calculations were determined in abiotic stripping tests. The developed method was validated for ethyl acetate, ethanol and acetaldehyde which were synthesized by K. marxianus DSM 5422 during an iron-limited batch cultivation; it was shown that the presented method is more precise and less time-consuming than the conventional method. The biomass-specific synthesis rate and the yield of ethyl acetate varied over time and exhibited distinct momentary maxima of 0.50 g g‒1h‒1 and 0.38 g g‒1 at moderate iron limitation.
Collapse
Affiliation(s)
- Christian Löser
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Christian Kupsch
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Thomas Walther
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Andreas Hoffmann
- Chair of Bioprocess Engineering, Institute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
9
|
Hoffmann A, Kupsch C, Walther T, Löser C. Synthesis of ethyl acetate from glucose by Kluyveromyces marxianus, Cyberlindnera jadinii and Wickerhamomyces anomalus depending on the induction mode. Eng Life Sci 2021; 21:154-168. [PMID: 33716614 PMCID: PMC7923572 DOI: 10.1002/elsc.202000048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
Ethyl acetate is currently produced from fossil carbon resources. This ester could also be microbially synthesized from sugar-rich wastes of the food industry. Wild-type strains with GRAS status are preferred for such applications. Production of ethyl acetate by wild-type yeasts has been repeatedly reported, but comparative studies with several strains at various induction modes are largely missing. Here, synthesis of ethyl acetate by three yeasts with GRAS status, Kluyveromyces marxianus DSM 5422, Cyberlindnera jadinii DSM 2361 and Wickerhamomyces anomalus DSM 6766, was studied under identical and well-defined conditions in an aerated bioreactor, by inducing the ester synthesis via iron or oxygen limitation. Balancing the ester synthesis was based on measured concentrations of ethyl acetate in the exhaust gas, delivering masses of synthesized ester and synthesis rates in a high temporal resolution. All tested yeasts synthesized ethyl acetate under these conditions, but the intensity varied with the strain and induction mode. The highest yields were achieved under iron limitation with K. marxianus (0.182 g g-1) and under oxygen limitation with W. anomalus (0.053 g g-1). Iron limitation proved to be the better inducer for ester synthesis while oxygen limitation favored ethanol formation. K. marxianus DSM 5422 was the most potent producer of ethyl acetate exhibiting the highest biomass-specific synthesis rate of 0.5 g g-1h-1 under moderate iron limitation.
Collapse
Affiliation(s)
- Andreas Hoffmann
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Christian Kupsch
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Thomas Walther
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Christian Löser
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
10
|
Patinios C, Lanza L, Corino I, Franssen MCR, Van der Oost J, Weusthuis RA, Kengen SWM. Eat1-Like Alcohol Acyl Transferases From Yeasts Have High Alcoholysis and Thiolysis Activity. Front Microbiol 2020; 11:579844. [PMID: 33193208 PMCID: PMC7658179 DOI: 10.3389/fmicb.2020.579844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Esters are important flavor and fragrance compounds that are present in many food and beverage products. Many of these esters are produced by yeasts and bacteria during fermentation. While ester production in yeasts through the alcohol acyl transferase reaction has been thoroughly investigated, ester production through alcoholysis has been completely neglected. Here, we further analyze the catalytic capacity of the yeast Eat1 enzyme and demonstrate that it also has alcoholysis and thiolysis activities. Eat1 can perform alcoholysis in an aqueous environment in vitro, accepting a wide range of alcohols (C2-C10) but only a small range of acyl donors (C2-C4). We show that alcoholysis occurs in vivo in several Crabtree negative yeast species but also in engineered Saccharomyces cerevisiae strains that overexpress Eat1 homologs. The alcoholysis activity of Eat1 was also used to upgrade ethyl esters to butyl esters in vivo by overexpressing Eat1 in Clostridium beijerinckii. Approximately 17 mM of butyl acetate and 0.3 mM of butyl butyrate could be produced following our approach. Remarkably, the in vitro alcoholysis activity is 445 times higher than the previously described alcohol acyl transferase activity. Thus, alcoholysis is likely to affect the ester generation, both quantitatively and qualitatively, in food and beverage production processes. Moreover, mastering the alcoholysis activity of Eat1 may give rise to the production of novel food and beverage products.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Bioprocess Engineering, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Lucrezia Lanza
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Inge Corino
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - John Van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud A. Weusthuis
- Laboratory of Bioprocess Engineering, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Control of Specific Growth Rate in Fed-Batch Bioprocesses: Novel Controller Design for Improved Noise Management. Processes (Basel) 2020. [DOI: 10.3390/pr8060679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accurate control of the specific growth rate (µ) of microorganisms is dependent on the ability to quantify the evolution of biomass reliably in real time. Biomass concentration can be monitored online using various tools and methods, but the obtained signal is often very noisy and unstable, leading to inaccuracies in the estimation of μ. Furthermore, controlling the growth rate is challenging as the process evolves nonlinearly and is subject to unpredictable disturbances originating from the culture’s metabolism. In this work, a novel feedforward-feedback controller logic is presented to counter the problem of noise and oscillations in the control variable and to address the exponential growth dynamics more effectively. The controller was tested on fed-batch cultures of Kluyveromyces marxianus, during which μ was estimated in real time from online biomass concentration measurements obtained with dielectric spectroscopy. It is shown that the specific growth rate can be maintained at different setpoint values with an average root mean square control error of 23 ± 6%.
Collapse
|
12
|
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SW, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv 2019; 37:107407. [DOI: 10.1016/j.biotechadv.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|
13
|
Löbs AK, Schwartz C, Thorwall S, Wheeldon I. Highly Multiplexed CRISPRi Repression of Respiratory Functions Enhances Mitochondrial Localized Ethyl Acetate Biosynthesis in Kluyveromyces marxianus. ACS Synth Biol 2018; 7:2647-2655. [PMID: 30354074 DOI: 10.1021/acssynbio.8b00331] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The emergence of CRISPR-Cas9 for targeted genome editing and regulation has enabled the manipulation of desired traits and enhanced strain development of nonmodel microorganisms. The natural capacity of the yeast Kluyveromyces marxianus to produce volatile esters at high rate and at elevated temperatures make it a potentially valuable production platform for industrial biotechnology. Here, we identify the native localization of ethyl acetate biosynthesis in K. marxianus and use this information to develop a multiplexed CRISPRi system for redirecting carbon flux along central metabolic pathways, increasing ethyl acetate productivity. First, we identified the primary pathways of precursor and acetate ester biosynthesis. A genetic knockout screen revealed that the alcohol acetyltransferase Eat1 is the critical enzyme for ethyl, isoamyl, and phenylethyl acetate production. Truncation studies revealed that high ester biosynthesis is contingent on Eat1 mitochondrial localization. As ethyl acetate is formed from the condensation of ethanol and acetyl-CoA, we modulated expression of the TCA cycle and electron transport chain genes using a highly multiplexed CRISPRi approach. The simultaneous knockdown of ACO2b, SDH2, RIP1, and MSS51 resulted in a 3.8-fold increase in ethyl acetate productivity over the already high natural capacity. This work demonstrates that multiplexed CRISPRi regulation of central carbon flux, supported by a fundamental understanding of pathway biochemistry, is a potent strategy for metabolic engineering in nonconventional microorganisms.
Collapse
Affiliation(s)
- Ann-Kathrin Löbs
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
| | - Cory Schwartz
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
| | - Sarah Thorwall
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
- Center for Industrial Biotechnology, Bourns College of Engineering, University of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
14
|
Alcohol Acetyltransferase Eat1 Is Located in Yeast Mitochondria. Appl Environ Microbiol 2018; 84:AEM.01640-18. [PMID: 30054364 DOI: 10.1128/aem.01640-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/24/2018] [Indexed: 11/20/2022] Open
Abstract
Eat1 is a recently discovered alcohol acetyltransferase responsible for bulk ethyl acetate production in yeasts such as Wickerhamomyces anomalus and Kluyveromyces lactis These yeasts have the potential to become efficient bio-based ethyl acetate producers. However, some fundamental features of Eat1 are still not understood, which hampers the rational engineering of efficient production strains. The cellular location of Eat1 in yeast is one of these features. To reveal its location, Eat1 was fused with yeast-enhanced green fluorescent protein (yEGFP) to allow intracellular tracking. Despite the current assumption that bulk ethyl acetate production occurs in the yeast cytosol, most of Eat1 localized to the mitochondria of Kluyveromyces lactis CBS 2359 Δku80 We then compared five bulk ethyl acetate-producing yeasts in iron-limited chemostats with glucose as the carbon source. All yeasts produced ethyl acetate under these conditions. This strongly suggests that the mechanism and location of bulk ethyl acetate synthesis are similar in these yeast strains. Furthermore, an in silico analysis showed that Eat1 proteins from various yeasts were mostly predicted as mitochondrial. Altogether, it is concluded that Eat1-catalyzed ethyl acetate production occurs in yeast mitochondria. This study has added new insights into bulk ethyl acetate synthesis in yeast, which is relevant for developing efficient production strains.IMPORTANCE Ethyl acetate is a common bulk chemical that is currently produced from petrochemical sources. Several Eat1-containing yeast strains naturally produce large amounts of ethyl acetate and are potential cell factories for the production of bio-based ethyl acetate. Rational design of the underlying metabolic pathways may result in improved production strains, but it requires fundamental knowledge on the function of Eat1. A key feature is the location of Eat1 in the yeast cell. The precursors for ethyl acetate synthesis can be produced in multiple cellular compartments through different metabolic pathways. The location of Eat1 determines the relevance of each pathway, which will provide future targets for the metabolic engineering of bulk ethyl acetate production in yeast.
Collapse
|
15
|
Löser C, Haas C, Liu W, Grahl S, Bley T. Uptake of iron by Kluyveromyces marxianus DSM 5422 cultivated in a whey-based medium. Eng Life Sci 2018; 18:459-474. [PMID: 32624927 DOI: 10.1002/elsc.201700195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of Kluyveromyces marxianus for converting lactose into ethyl acetate offers a chance for the economical reuse of whey. Iron plays a significant role in this process as ester synthesis requires a low intracellular iron content, xFe . The iron content in turn is decreased by growth due to cell expansion and increased by iron uptake. Thus, the iron-uptake rate, ψ, is important for the considered process. Iron uptake by K. marxianus DSM 5422 was studied in aerobic cultivation on a whey-borne medium with varied initial iron content, in part combined with a feed of iron under intensive growth conditions. A possible precipitation of iron that would pretend iron uptake was verified not to have occurred. Regularly measured dissolved iron concentrations, CFe,L , allowed the xFe and ψ parameters to be obtained by model-based iron balancing. The achieved data were used for establishing a ψ(CFe,L , xFe ) model. Mathematical simulations based on this iron-uptake model reproduced the performed cultivation processes. The created iron-uptake model allows for a future predictive system to be developed for the optimization of biotechnological ester production.
Collapse
Affiliation(s)
- Christian Löser
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Christiane Haas
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Wanqiong Liu
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Sebastian Grahl
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Thomas Bley
- Chair of Bioprocess Engineering Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| |
Collapse
|
16
|
Kruis AJ, Levisson M, Mars AE, van der Ploeg M, Garcés Daza F, Ellena V, Kengen SW, van der Oost J, Weusthuis RA. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab Eng 2017; 41:92-101. [DOI: 10.1016/j.ymben.2017.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/09/2023]
|
17
|
Pentjuss A, Stalidzans E, Liepins J, Kokina A, Martynova J, Zikmanis P, Mozga I, Scherbaka R, Hartman H, Poolman MG, Fell DA, Vigants A. Model-based biotechnological potential analysis of Kluyveromyces marxianus central metabolism. J Ind Microbiol Biotechnol 2017; 44:1177-1190. [PMID: 28444480 DOI: 10.1007/s10295-017-1946-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/16/2017] [Indexed: 12/11/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is an emerging industrial producer for many biotechnological processes. Here, we show the application of a biomass-linked stoichiometric model of central metabolism that is experimentally validated, and mass and charge balanced for assessing the carbon conversion efficiency of wild type and modified K. marxianus. Pairs of substrates (lactose, glucose, inulin, xylose) and products (ethanol, acetate, lactate, glycerol, ethyl acetate, succinate, glutamate, phenylethanol and phenylalanine) are examined by various modelling and optimisation methods. Our model reveals the organism's potential for industrial application and metabolic engineering. Modelling results imply that the aeration regime can be used as a tool to optimise product yield and flux distribution in K. marxianus. Also rebalancing NADH and NADPH utilisation can be used to improve the efficiency of substrate conversion. Xylose is identified as a biotechnologically promising substrate for K. marxianus.
Collapse
Affiliation(s)
- A Pentjuss
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - E Stalidzans
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia.
| | - J Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - A Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - J Martynova
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - P Zikmanis
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - I Mozga
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - R Scherbaka
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - H Hartman
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - M G Poolman
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - D A Fell
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - A Vigants
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| |
Collapse
|
18
|
Modeling of exo-inulinase biosynthesis by Kluyveromyces marxianus in fed-batch mode: correlating production kinetics and metabolic heat fluxes. Appl Microbiol Biotechnol 2016; 101:1877-1887. [PMID: 27844140 DOI: 10.1007/s00253-016-7971-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
A metabolic heat-based model was used for estimating the growth of Kluyveromyces marxianus, and the modified Luedeking-Piret kinetic model was used for describing the inulinase production kinetics. For the first time, a relationship was developed to relate inulinase production kinetics directly to metabolic heat generated, which corroborated well with the experimental data (with R 2 values of above 0.9). It also demonstrated the predominantly growth-associated nature of the inulinase production with Luedeking-Piret parameters α and β, having values of 0.75 and 0.033, respectively, in the exponential feeding experiment. MATLAB was used for simulating the inulinase production kinetics which demonstrated the model's utility in performing real-time prediction of inulinase concentration with metabolic heat data as input. To validate the model predictions, a biocalorimetric (Bio RC1e) experiment for inulinase production by K. marxianus was performed. The inulinase concentration (IU/mL) values acquired from the model in were validated with the experimental values and the metabolic heat data. This modeling approach enabled the optimization, monitoring, and control of inulinase production process using the real-time biocalorimetric (Bio RC1e) data. Gas chromatography and mass spectrometry analysis were carried out to study the overflow metabolism taking place in K. marxianus inulinase production.
Collapse
|
19
|
Löser C, Urit T, Keil P, Bley T. Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422. Appl Microbiol Biotechnol 2014; 99:1131-44. [PMID: 25487884 DOI: 10.1007/s00253-014-6098-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022]
Abstract
Kluyveromyces marxianus converts whey-borne sugar into ethyl acetate, an environmentally friendly solvent with many applications. K. marxianus DSM 5422 presumably synthesizes ethyl acetate from acetyl-SCoA. Iron limitation as a trigger for this synthesis is explained by a diminished aconitase and succinate dehydrogenase activity (both enzymes depend on iron) causing diversion of acetyl-SCoA from the tricarboxic acid cycle to ester synthesis. Copper limitation as another trigger for ester synthesis in this yeast refers to involvement of the electron transport chain (all ETC complexes depend on iron and complex IV requires copper). This hypothesis was checked by using several ETC inhibitors. Malonate was ineffective but carboxin partially inhibited complex II and initiated ester synthesis. Antimycin A and cyanide as complexes III and IV inhibitors initiated ester synthesis only at moderate levels while higher concentrations disrupted all respiration and caused ethanol formation. A restricted supply of oxygen (the terminal electron acceptor) also initiated some ester synthesis but primarily forced ethanol production. A switch from aerobic to anaerobic conditions nearly stopped ester synthesis and induced ethanol formation. Iron-limited ester formation was compared with anaerobic ethanol production; the ester yield was lower than the ethanol yield but a higher market price, a reduced number of process stages, a faster process, and decreased expenses for product recovery by stripping favor biotechnological ester production.
Collapse
Affiliation(s)
- Christian Löser
- Institute of Food Technology and Bioprocess Engineering, TU Dresden, 01062, Dresden, Germany,
| | | | | | | |
Collapse
|
20
|
Löser C, Urit T, Bley T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol 2014; 98:5397-415. [DOI: 10.1007/s00253-014-5765-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
21
|
Urit T, Li M, Bley T, Löser C. Growth of Kluyveromyces marxianus and formation of ethyl acetate depending on temperature. Appl Microbiol Biotechnol 2013; 97:10359-71. [DOI: 10.1007/s00253-013-5278-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/28/2022]
|
22
|
Effect of high oxygen and high carbon dioxide atmosphere packaging on the microbial spoilage and shelf-life of fresh-cut honeydew melon. Int J Food Microbiol 2013; 166:378-90. [PMID: 24021822 DOI: 10.1016/j.ijfoodmicro.2013.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/22/2013] [Accepted: 08/04/2013] [Indexed: 01/18/2023]
Abstract
This study evaluated the potential of modified atmospheres (MAs) combining high oxygen (O₂) and high carbon dioxide (CO₂) levels to extend the shelf-life of fresh-cut honeydew melon. Firstly, the effect of MA on the growth and volatile organic metabolite production of Candida sake, Leuconostoc mesenteroides and Leuconostoc gelidum, which had all been previously isolated from spoiled commercial fresh-cut honeydew melon, was evaluated separately on honeydew melon agar at 7 °C. Additionally, the effect of selected MAs on the microbial, physico-chemical and sensory quality of commercial fresh-cut honeydew melon cubes was evaluated at 7 °C. The results showed that MAs with high O₂ and high CO₂ levels greatly retarded the growth, CO₂ and volatile metabolite production (i.e. ethanol, 2-methyl-1-butanol, ethyl acetate, phenylacetic acid, nonanal) of C. sake on honeydew melon agar; especially MAs consisting of 50% O₂+50% CO₂ and 70% O₂+30% CO₂. In contrast, the MAs evaluated only had a minor effect on the growth and volatile metabolite production of L. mesenteroides and L. gelidum. Overall, the effect of MAs on colour, juice leakage, juiciness, and firmness of fresh-cut honeydew melon was small during storage. Sensory preference was generally for fresh-cut honeydew melon cubes packaged in MA of 50% O₂+50% CO₂. These were still acceptable on day five of storage and had appreciably lower populations of yeasts and lactic acid bacteria, lower quantities of volatile organic compounds, but slightly stronger colour oxidation compared to honeydew melon that was packaged in air. Additionally, most of the samples packed in air had blown by day five due to the large quantity of CO₂ production during storage. Therefore, 50% O₂+50% CO₂ is a potential MA solution for extending the shelf-life of fresh-cut honeydew melon.
Collapse
|
23
|
Fonseca GG, de Carvalho NMB, Gombert AK. Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source. Appl Microbiol Biotechnol 2013; 97:5055-67. [PMID: 23435899 DOI: 10.1007/s00253-013-4748-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 12/01/2022]
Abstract
The yeast Kluyveromyces marxianus has been pointed out as a promising microorganism for a variety of industrial bioprocesses. Although genetic tools have been developed for this yeast and different potential applications have been investigated, quantitative physiological studies have rarely been reported. Here, we report and discuss the growth, substrate consumption, metabolite formation, and respiratory parameters of K. marxianus CBS 6556 during aerobic batch bioreactor cultivations, using a defined medium with different sugars as sole carbon and energy source, at 30 and 37 °C. Cultivations were carried out both on single sugars and on binary sugar mixtures. Carbon balances closed within 95 to 101 % in all experiments. Biomass and CO2 were the main products of cell metabolism, whereas by-products were always present in very low proportion (<3 % of the carbon consumed), as long as full aerobiosis was guaranteed. On all sugars tested as sole carbon and energy source (glucose, fructose, sucrose, lactose, and galactose), the maximum specific growth rate remained between 0.39 and 0.49 h(-1), except for galactose at 37 °C, which only supported growth at 0.31 h(-1). Different growth behaviors were observed on the binary sugar mixtures investigated (glucose and lactose, glucose and galactose, lactose and galactose, glucose and fructose, galactose and fructose, fructose and lactose), and the observations were in agreement with previously published data on the sugar transport systems in K. marxianus. We conclude that K. marxianus CBS 6556 does not present any special nutritional requirements; grows well in the range of 30 to 37 °C on different sugars; is capable of growing on sugar mixtures in a shorter period of time than Saccharomyces cerevisiae, which is interesting from an industrial point of view; and deviates tiny amounts of carbon towards metabolite formation, as long as full aerobiosis is maintained.
Collapse
Affiliation(s)
- Gustavo Graciano Fonseca
- Department of Chemical Engineering, University of São Paulo, PO Box 61548, CEP 05424-970 São Paulo, SP, Brazil
| | | | | |
Collapse
|
24
|
Amaya-Delgado L, Herrera-López EJ, Arrizon J, Arellano-Plaza M, Gschaedler A. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation. World J Microbiol Biotechnol 2013; 29:875-81. [DOI: 10.1007/s11274-012-1242-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
|
25
|
Urit T, Manthey R, Bley T, Löser C. Formation of ethyl acetate byKluyveromyces marxianuson whey: Influence of aeration and inhibition of yeast growth by ethyl acetate. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Thanet Urit
- Institute of Food Technology and Bioprocess Engineering; Dresden University of Technology; Dresden; Germany
| | - Rene Manthey
- Institute of Food Technology and Bioprocess Engineering; Dresden University of Technology; Dresden; Germany
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering; Dresden University of Technology; Dresden; Germany
| | - Christian Löser
- Institute of Food Technology and Bioprocess Engineering; Dresden University of Technology; Dresden; Germany
| |
Collapse
|
26
|
Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J Biotechnol 2013; 163:17-23. [DOI: 10.1016/j.jbiotec.2012.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022]
|
27
|
Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch and chemostat cultivation at iron limitation. Appl Microbiol Biotechnol 2012; 96:685-96. [PMID: 22695802 DOI: 10.1007/s00253-012-4205-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
The ability of Kluyveromyces marxianus to convert lactose into ethyl acetate offers a chance for an economic reuse of whey. Former experiments with K. marxianus DSM 5422 proved limitation of growth by iron (Fe) or copper as a precondition for significant ester synthesis. Several aerobic batch and chemostat cultivations were done with whey-borne media of a variable Fe content for exploring the effect of Fe on growth, the Fe content of biomass, and metabolite synthesis. At low Fe doses, Fe was the growth-limiting factor, the available Fe was completely absorbed by the yeasts, and the biomass formation linearly depended on the Fe dose governed by a minimum Fe content in the yeasts, x (Fe,min). At batch conditions, x (Fe,min) was 8.8 μg/g, while during chemostat cultivation at D = 0.15 h(-1), it was 23 μg/g. At high Fe doses, sugar was the growth-limiting factor, Fe was more or less absorbed, and the formed biomass became constant. Significant amounts of ethyl acetate were only formed at Fe limitation while high Fe doses suppressed ester formation. Analysis of formed metabolites such as glycerol, pyruvate, acetate, ethanol, ethyl acetate, isocitrate, 2-oxoglutarate, succinate, and malate during chemostat cultivation allowed some interpretation of the Fe-dependent mechanism of ester synthesis; formation of ethyl acetate from acetyl-SCoA and ethanol is obviously initiated by a diminished metabolic flux of acetyl-SCoA into the citrate cycle and by a limited oxidation of NADH in the respiratory chain since Fe is required for the function of aconitase, succinate dehydrogenase, and the electron-transferring proteins.
Collapse
|