1
|
SIDDIQUE F, Hon LAM EK, Raymond WONG WK. Synergistic hydrolysis of filter paper by recombinant cellulase cocktails leveraging a key cellobiase, Cba2, of Cellulomonas biazotea. Front Bioeng Biotechnol 2022; 10:990984. [PMID: 36246366 PMCID: PMC9554474 DOI: 10.3389/fbioe.2022.990984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cellulomonas biazotea, a Gram-positive cellulolytic bacterium isolated from soil, is capable of producing a complete cellulase complex exhibiting endoglucanase, exoglucanase, and cellobiase activities. Despite the presence of a full complement of all three types of cellulases, samples prepared from both cell lysates and culture media of C. biazotea showed only weak synergistic activities formed among the cellulase components, as reflected by their inefficient performance in filter paper hydrolysis. However, when the five previously characterized recombinant cellobiases of C. biazotea were mixed individually or in different combinations with recombinant enzyme preparations (CenA/Cex) containing an endoglucanase, CenA, and an exoglucanase, Cex, of another Cellulomonas species, C. fimi, the cellulase cocktails exhibited not only much higher but also synergistic activities in filter paper hydrolysis. Among the 5 C. biazotea cellobiases studied, Cba2 was shown to perform 2.8 to 3.8 times better than other homologous isozymes when acting individually with CenA/Cex. More noteworthy is that when Cba2 and Cba4 were added together to the reaction mixture, an even better synergistic effect was achieved. The filter paper activities resulting from Cba2 and Cba4 interacting with CenA/Cex are comparable to those obtained from some commercial fungal cellulase mixtures. To our knowledge, our results represent the first demonstration of synergistic effects on filter paper hydrolysis achieved using recombinant bacterial cellulases.
Collapse
Affiliation(s)
- Faiza SIDDIQUE
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Edward Kat Hon LAM
- Green Faith (International) Environmental Technology Ltd, Unit G, 19/F, King Palace Plaza, Kwun Tong, Kowloon, Hong Kong, China
| | - Wan Keung Raymond WONG
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- *Correspondence: Wan Keung Raymond WONG,
| |
Collapse
|
2
|
Wang H, Wang L, Zhong B, Dai Z. Protein Splicing of Inteins: A Powerful Tool in Synthetic Biology. Front Bioeng Biotechnol 2022; 10:810180. [PMID: 35265596 PMCID: PMC8899391 DOI: 10.3389/fbioe.2022.810180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Inteins are protein segments that are capable of enabling the ligation of flanking extein into a new protein, a process known as protein splicing. Since its discovery, inteins have become powerful biotechnological tools for applications such as protein engineering. In the last 10 years, the development in synthetic biology has further endowed inteins with enhanced functions and diverse utilizations. Here we review these efforts and discuss the future directions.
Collapse
Affiliation(s)
- Hao Wang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Wang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baihua Zhong
- Materials Interfaces Center, Institute of Advanced Materials Science and Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhuojun Dai
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Lai CY, Ng KL, Wang H, Lam CC, Wong WKR. Spontaneous Cleavages of a Heterologous Protein, the CenA Endoglucanase of Cellulomonas fimi, in Escherichia coli. Microbiol Insights 2021; 14:11786361211024637. [PMID: 34188486 PMCID: PMC8209791 DOI: 10.1177/11786361211024637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/22/2021] [Indexed: 11/26/2022] Open
Abstract
CenA is an endoglucanase secreted by the Gram-positive cellulolytic bacterium, Cellulomonas fimi, to the environment as a glycosylated protein. The role of glycosylation in CenA is unclear. However, it seems not crucial for functional activity and secretion since the unglycosylated counterpart, recombinant CenA (rCenA), is both bioactive and secretable in Escherichia coli. Using a systematic screening approach, we have demonstrated that rCenA is subjected to spontaneous cleavages (SC) in both the cytoplasm and culture medium of E. coli, under the influence of different environmental factors. The cleavages were found to occur in both the cellulose-binding (CellBD) and catalytic domains, with a notably higher occurring rate detected in the former than the latter. In CellBD, the cleavages were shown to occur close to potential N-linked glycosylation sites, suggesting that these sites might serve as ‘attributive tags’ for differentiating rCenA from endogenous proteins and the points of initiation of SC. It is hypothesized that glycosylation plays a crucial role in protecting CenA from SC when interacting with cellulose in the environment. Subsequent to hydrolysis, SC would ensure the dissociation of CenA from the enzyme-substrate complex. Thus, our findings may help elucidate the mechanisms of protein turnover and enzymatic cellulolysis.
Collapse
Affiliation(s)
- Cheuk Yin Lai
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Ka Lun Ng
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Hao Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chui Chi Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wan Keung Raymond Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Azari M, Asad S, Mehrnia MR. Heterologous production of porcine derived antimicrobial peptide PR-39 in Escherichia coli using SUMO and intein fusion systems. Protein Expr Purif 2020; 169:105568. [PMID: 31935447 DOI: 10.1016/j.pep.2020.105568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
About half a century after antibiotics discovery, multi-antibiotic-resistant bacteria posed a new challenge to medicine. Attempts to discover new antibiotics have drawn the attention to Antimicrobial Peptides (AMPs). The rapid growth, besides its known genetic and manipulation systems, makes E. coli the preferred host system for production of recombinant proteins on an industrial scale. To produce AMPs in E. coli, the application of fusion-tags with the aim of stability, solubility, and prevention of antimicrobial activity is one of the best practices in this regard. In this study, we presented two different expression systems for the production of PR-39 in E. coli; one in fusion with intein-Chitin binding domain (CBD) and another in fusion with SUMO accompanied by polyhistidine affinity tag. Both were cloned in the NdeI-XhoI sites of pET-17b and transformed to E. coli BL21 (DE3) pLysS. Recombinant bacteria were cultured and induced with 0.4 mM IPTG at 30 °C. Expression and purification of target proteins were confirmed by Tricine- SDS-PAGE and dot blot analysis. Recovery of 250 μg PR-39/L from SUMO fusion system and 280 μg PR-39/L from the intein fusion system was achieved. Both purified peptides showed antibacterial activity using MIC/MBC demonstrating their functionality after SUMO and intein mediated purification.
Collapse
Affiliation(s)
- Mandana Azari
- School of Chemical Engineering-Biotechnology, College of Engineering, Kish International Campus, University of Tehran, Kish, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Luo H, Hu L, Ma B, Zhao M, Luo M, Deng Q, Deng S, Ye H, Lin T, Chen J, Wang T, Zhu J, Lu H. Molecular dynamics based improvement of the solubilizing self-cleavable tag Z basic-ΔI-CM application in the preparation of recombinant proteins in Escherichia coli. Biochem Biophys Res Commun 2019; 513:412-418. [PMID: 30967267 DOI: 10.1016/j.bbrc.2019.03.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Zbasic-ΔI-CM is a novel intein-based self-cleavable tag we developed to accelerate the soluble expression of recombinant proteins in Escherichia coli (E. coli). Previously we found that intein activity could be interfered by its flanking exteins, and thus reducing the production efficiency and final yield. In this work, we used CXC-chemokine 9 (CXCL9) as a model C-extein, which fusion with Zbasic-ΔI-CM showed high intein activity. When the fusion protein got soluble expression, CXCL9 was released immediately and purified directly from cell lysis supernatant. The results demonstrated that Zbasic-ΔI-CM tag had successfully mediated the efficient production of high-quality CXCL9 with reduced time and resources consumption in comparison with inclusion bodies expression. Molecular dynamics simulations suggested that the improved cleavage activity of Zbasic-ΔI-CM upon fusion with CXCL9 may be due to the higher dynamics of the first half loop and stabilization of the second half loop of intein. Our results proved that the self-cleavable Zbasic-ΔI-CM mediated soluble expression could be a feasible process for cytokines like CXCL9, thus of attractive potentials for production of therapeutic proteins using E. coli expression system.
Collapse
Affiliation(s)
- Han Luo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Research Institute at Frederick, Frederick, MD, 21702, USA
| | - Meiqi Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Manyu Luo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qing Deng
- Regeneromics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shaorong Deng
- Regeneromics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ye
- Regeneromics Laboratory, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tong Lin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Junsheng Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tao Wang
- Jecho Biopharmaceuticals Co. Ltd., 2633 Zhongbin Road, Sino-Singapore Tianjin Eco-City, Tianjin, 300467, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Jecho Biopharmaceuticals Co. Ltd., 2633 Zhongbin Road, Sino-Singapore Tianjin Eco-City, Tianjin, 300467, China; Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA.
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
6
|
Hu X, Lai CYN, Sivakumar T, Wang H, Ng KL, Lam CC, Wong WKR. Novel strategy for expression of authentic and bioactive human basic fibroblast growth factor in Bacillus subtilis. Appl Microbiol Biotechnol 2018; 102:7061-7069. [PMID: 29951857 DOI: 10.1007/s00253-018-9176-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Inteins, also known as "protein introns," have been found to be present in many microbial species and widely employed for the expression and purification of recombinant proteins in Escherichia coli. However, interestingly, until now there has not been much information on the identification and application of inteins to protein expression in Bacillus subtilis. In this article, for the first time, despite the likelihood of absence of inteins in B. subtilis, this bacterium was shown to be able to facilitate auto-catalytic cleavages of fusions formed between inteins and recombinant proteins. Employing a construct expressing the intein, Ssp DnaB, (DnaB), which was fused at its N-terminus with the cellulose-binding domain (CellBD) of an endoglucanase encoded by the cenA gene of Cellulomonas fimi, the construct was demonstrated to be capable of mediating intracellular expression of basic fibroblast growth factor (bFGF), followed by auto-processing of the CellBD-DnaB-bFGF fusion to result in bFGF possessing the 146-residue authentic structure. The mentioned fusion was shown to result in a high yield of 84 mg l-1 of biologically active bFGF. Future work in improving the growth of B. subtilis may enable the use of this bacterium, working in cooperation with inteins, to result in a new platform for efficient expression of valuable proteins.
Collapse
Affiliation(s)
- Xiuhua Hu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheuk Yin Nelson Lai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - T Sivakumar
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hao Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K L Ng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - C C Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - W K R Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Kleiner-Grote GRM, Risse JM, Friehs K. Secretion of recombinant proteins from E. coli. Eng Life Sci 2018; 18:532-550. [PMID: 32624934 DOI: 10.1002/elsc.201700200] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one- or two-step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often-overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.
Collapse
Affiliation(s)
| | - Joe M Risse
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karl Friehs
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
8
|
Cloning and characterization of two novel β-glucosidase genes encoding isoenzymes of the cellobiase complex from Cellulomonas biazotea. Gene 2018; 642:367-375. [DOI: 10.1016/j.gene.2017.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
|
9
|
Shi S, Chen H, Jiang H, Xie Y, Zhang L, Li N, Zhu C, Chen J, Luo H, Wang J, Feng L, Lu H, Zhu J. A novel self-cleavable tag Zbasic–∆I-CM and its application in the soluble expression of recombinant human interleukin-15 in Escherichia coli. Appl Microbiol Biotechnol 2016; 101:1133-1142. [DOI: 10.1007/s00253-016-7848-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 01/11/2023]
|
10
|
Kwong KWY, Sivakumar T, Wong WKR. Intein mediated hyper-production of authentic human basic fibroblast growth factor in Escherichia coli. Sci Rep 2016; 6:33948. [PMID: 27653667 PMCID: PMC5032022 DOI: 10.1038/srep33948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/30/2016] [Indexed: 11/09/2022] Open
Abstract
Human basic fibroblast growth factor is a functionally versatile but very expensive polypeptide. In this communication, employing a novel amplification method for the target gene and genetic optimization of a previously engineered expression construct, pWK3R, together with a refined fed-batch fermentation protocol, we report an achievement of a phenomenal yield of 610 mg/L of the 146 aa authentic human basic fibroblast growth factor (bFGF) in Escherichia coli. Construct pWK3R was first modified to form plasmid pWK311ROmpAd, which was devoid of the ompA leader sequence and possessed two copies of a DNA segment encoding a fusion product comprising an intein, Saccharomyces cerevisiae vascular membrane ATPase (VMA), and bFGF. When E. coli transformant JM101 [pWK311ROmpAd] was cultivated using the refined fed-batch fermentation protocol, superb expression resulting in a total yield of 610 mg/L of bFGF was detected. Despite existing in high levels, the bFGF remained to be soluble and highly bioactive.
Collapse
Affiliation(s)
- Keith W Y Kwong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - T Sivakumar
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - W K R Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Engineering versatile protein expression systems mediated by inteins in Escherichia coli. Appl Microbiol Biotechnol 2015; 100:255-62. [PMID: 26381664 DOI: 10.1007/s00253-015-6960-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/13/2015] [Accepted: 08/23/2015] [Indexed: 10/23/2022]
Abstract
We have recently employed an intein, Saccharomyces cerevisiae vascular membrane ATPase (VMA), in conjunction with efficient expression and secretory functions formed between the ompA leader sequence and the human epidermal growth factor (EGF) gene (fused at the 5' end of VMA), and the human basic fibroblast growth factor (bFGF) gene (fused at the 3' end of VMA), to engineer an efficient intein-based Escherichia coli system for high-level co-expression of EGF and bFGF as authentic mature products. Both products were found not only excreted to the culture medium but also located, surprisingly, in the cytoplasm (Kwong and Wong 2013). In this study, we employed two structurally varied inteins, VMA and Mycobacterium xenopi GyraseA (GyrA), and further demonstrated that despite acting alone, both VMA and GyrA were able to mediate successful co-expression of two widely different proteins, EGF and an endoglucanase (Eng) in E. coli. Although EGF and Eng were initially expressed as large precursors/intermediates, they were soluble and auto-cleavable to finally yield the desired products in both the cytoplasm and culture media. The results further substantiate our postulation that the aforementioned intein/E. coli approach might lead to the development of cost-effective and versatile host systems, wherein all culture fractions are involved in producing the target proteins.
Collapse
|
12
|
High-efficiency expression of TAT-bFGF fusion protein in Escherichia coli and the effect on hypertrophic scar tissue. PLoS One 2015; 10:e0117448. [PMID: 25706539 PMCID: PMC4338132 DOI: 10.1371/journal.pone.0117448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/19/2014] [Indexed: 01/09/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF) is a member of the fibroblast growth factor family that has effects on wounding healing and neuro-protection. However, it is difficult to use bFGF to treat diseases that are separated by physiological barriers, such as the dermal barrier and blood brain barrier. Methodology/Principal Findings To improve bFGF’s penetration ability, we fused the recombinant human fibroblast growth factor (rhbFGF) gene with TAT. We constructed a pET3c vector that contained the recombinant bFGF gene and successfully expressed this gene in the E. coli strain BL21 (DE3) pLsS. The fusion protein was purified using CM Sepharose FF and heparin affinity chromatography. The purity of the TAT-rhbFGF was greater than 95%, as detected by SDS-PAGE. An in vitro MTT trial revealed that the modified bFGF significantly promoted the proliferation of NIH3T3 cells. The cell penetration trial and the mouse skin penetration trial demonstrated that the fusion protein had certain penetration abilities. The animal experiments confirmed that TAT-rhbFGF was effective in the treatment of the hypertrophic scars. Conclusions/Significance We have successfully expressed and purified a TAT-rhbFGF fusion protein in this study. Our results have shown that the fusion protein had a greater ability to penetrate the dermal skin layer. TAT-rhbFGF improved the physical appearance of hypertrophic scars. TAT-rhbFGF may be a potential fusion protein in the treatment of dermal disorders, including hypertrophic scar.
Collapse
|