1
|
Lorga I, Geraldo R, Soares J, Oliveira L, Firon A, Bonifácio Andrade E. Development of bioluminescent Group B streptococcal strains for longitudinal infection studies. Sci Rep 2024; 14:24439. [PMID: 39424869 PMCID: PMC11489706 DOI: 10.1038/s41598-024-74346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
Group B Streptococcus (GBS) remains the leading bacterial cause of invasive neonatal disease, resulting in substantial morbidity and mortality. New therapeutic approaches beyond antibacterial treatment to prevent neonatal disease outcomes are urgent. One significant limitation in studying GBS disease and progression is the lack of non-invasive technologies for longitudinal studies. Here, we develop and compare three bioluminescent GBS strains for in vivo pathogenic analysis. Bioluminescence is based on the luxABCDE operon on a replicative vector (luxGBS-CC17), and the red-shifted firefly luciferase on a replicative vector (fflucGBS-CC17) or integrated in the genome (glucGBS-CC17). We show that luxGBS-CC17 is suitable for in vitro analysis but does not produce a significant bioluminescent signal in infected pups. In contrast, the fflucGBS-CC17 results in a strong bioluminescent signal proportional to the organ colonisation level. However, the stability of the replicative vector depends on the route of infection, especially when pups acquire the bacteria from infected vaginal mucosa. Stable chromosomal integration of luciferase in glucGBS-CC17 leads to significant bioluminescence in both haematological and vertical infection models associated with high systemic colonisation. These strains will allow the preclinical evaluation of treatment efficacy against GBS invasive disease using whole-mouse bioluminescence imaging.
Collapse
Affiliation(s)
- Inês Lorga
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rafaela Geraldo
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- CBQF - Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia da Universidade Católica Portuguesa, Porto, Portugal
| | - Joana Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Arnaud Firon
- Microbiology Department, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Elva Bonifácio Andrade
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- E2S - Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal.
| |
Collapse
|
2
|
Li G, Tian S, Sun X, Zhao M, Zhang F, Zhang JP, Cheng T, Zhang XB. Leveraging CRISPR-Cas9 for Accurate Detection of AAV-Neutralizing Antibodies: The AAV-HDR Method. Hum Gene Ther 2024; 35:490-505. [PMID: 38069573 DOI: 10.1089/hum.2023.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Guohua Li
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Saining Tian
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinyu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tao Cheng
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
3
|
Lautenschläger N, Schmidt K, Schiffer C, Wulff TF, Hahnke K, Finstermeier K, Mansour M, Elsholz AKW, Charpentier E. Expanding the genetic toolbox for the obligate human pathogen Streptococcus pyogenes. Front Bioeng Biotechnol 2024; 12:1395659. [PMID: 38911550 PMCID: PMC11190166 DOI: 10.3389/fbioe.2024.1395659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Genetic tools form the basis for the study of molecular mechanisms. Despite many recent advances in the field of genetic engineering in bacteria, genetic toolsets remain scarce for non-model organisms, such as the obligatory human pathogen Streptococcus pyogenes. To overcome this limitation and enable the straightforward investigation of gene functions in S. pyogenes, we have developed a comprehensive genetic toolset. By adapting and combining different tools previously applied in other Gram-positive bacteria, we have created new replicative and integrative plasmids for gene expression and genetic manipulation, constitutive and inducible promoters as well as fluorescence reporters for S. pyogenes. The new replicative plasmids feature low- and high-copy replicons combined with different resistance cassettes and a standardized multiple cloning site for rapid cloning procedures. We designed site-specific integrative plasmids and verified their integration by nanopore sequencing. To minimize the effect of plasmid integration on bacterial physiology, we screened publicly available RNA-sequencing datasets for transcriptionally silent sites. We validated this approach by designing the integrative plasmid pSpy0K6 targeting the transcriptionally silent gene SPy_1078. Analysis of the activity of different constitutive promoters indicated a wide variety of strengths, with the lactococcal promoter P 23 showing the strongest activity and the synthetic promoter P xylS2 showing the weakest activity. Further, we assessed the functionality of three inducible regulatory elements including a zinc- and an IPTG-inducible promoter as well as an erythromycin-inducible riboswitch that showed low-to-no background expression and high inducibility. Additionally, we demonstrated the applicability of two codon-optimized fluorescent proteins, mNeongreen and mKate2, as reporters in S. pyogenes. We therefore adapted the chemically defined medium called RPMI4Spy that showed reduced autofluorescence and enabled efficient signal detection in plate reader assays and fluorescence microscopy. Finally, we developed a plasmid-based system for genome engineering in S. pyogenes featuring the counterselection marker pheS*, which enabled the scarless deletion of the sagB gene. This new toolbox simplifies previously laborious genetic manipulation procedures and lays the foundation for new methodologies to study gene functions in S. pyogenes, leading to a better understanding of its virulence mechanisms and physiology.
Collapse
Affiliation(s)
| | - Katja Schmidt
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Thomas F. Wulff
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Karin Hahnke
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Moïse Mansour
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Guo M, Renshaw CP, Mull RW, Tal-Gan Y. Noncanonical Streptococcus sanguinis ComCDE circuitry integrates environmental cues in transformation outcome decision. Cell Chem Biol 2024; 31:298-311.e6. [PMID: 37832551 PMCID: PMC10922391 DOI: 10.1016/j.chembiol.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Natural competence is the principal driver of streptococcal evolution. While acquisition of new traits could facilitate rapid fitness improvement for bacteria, entry into the competent state is a highly orchestrated event, involving an interplay between various pathways. We present a new type of competence-predation coordination mechanism in Streptococcus sanguinis. Unlike other streptococci that mediate competence through the ComABCDE regulon, several key components are missing in the S. sanguinis ComCDE circuitry. We assembled two synthetic biology devices linking competence-stimulating peptide (CSP) cleavage and export with a quantifiable readout to unravel the unique features of the S. sanguinis circuitry. Our results revealed the ComC precursor cleavage pattern and the two host ABC transporters implicated in the export of the S. sanguinis CSP. Moreover, we discovered a ComCDE-dependent bacteriocin locus. Overall, this study presents a mechanism for commensal streptococci to maximize transformation outcome in a fluid environment through extensive circuitry rewiring.
Collapse
Affiliation(s)
- Mingzhe Guo
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Clay P Renshaw
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Ryan W Mull
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA.
| |
Collapse
|
5
|
Ren K, Zhao Y, Chen GQ, Ao X, Wu Q. Construction of a Stable Expression System Based on the Endogenous hbpB/ hbpC Toxin-Antitoxin System of Halomonas bluephagenesis. ACS Synth Biol 2024; 13:61-67. [PMID: 38100561 DOI: 10.1021/acssynbio.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Halomonas bluephagenesis is a halophilic bacterium capable of efficiently producing polyhydroxyalkanoates and other valuable chemicals through high salinity open fermentation, offering an appealing platform for next-generation industrial biotechnology. Various techniques have been developed to engineer Halomonas bluephagenesis, each with its inherent shortcomings. Genome editing methods often entail complex and time-consuming processes, while flexible expression systems relying on plasmids necessitate the use of antibiotics. In this study, we developed a stable recombinant plasmid vector, pHbPBC, based on a novel hbpB/hbpC toxin-antitoxin system found within the endogenous plasmid of Halomonas bluephagenesis. Remarkably, pHbPBC exhibited exceptional stability during 7 days of continuous subculture, eliminating the need for antibiotics or other selection pressures. This stability even rivaled genomic integration, all while achieving higher levels of heterologous expression. Our research introduces a novel approach for genetically modifying and harnessing nonmodel halophilic bacteria, contributing to the advancement of next-generation industrial biotechnology.
Collapse
Affiliation(s)
- Kang Ren
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiqing Zhao
- Beijing No.12 High School, Beijing 100071, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiang Ao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
The effects of sugar in drinking water on Streptococcus pyogenes colonisation in a murine nasopharyngeal infection model. Sci Rep 2022; 12:17716. [PMID: 36271250 PMCID: PMC9587037 DOI: 10.1038/s41598-022-22648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
The number of sugar-sweetened beverages consumed per day has been associated with an increased risk of acute rheumatic fever, an autoimmune disease triggered by superficial Streptococcus pyogenes infection. To explore if there could be a biological basis for this association, we used a mouse model of S. pyogenes nasopharyngeal colonisation combined with a dietary intervention. We observed an increased bacterial load in the nasopharynx of mice receiving sucrose drinking water post-infection, suggesting that high sucrose intake promotes S. pyogenes growth and/or survival. This provides new insight into the potential biological basis behind the association seen in humans.
Collapse
|
7
|
Pathogen-Specific Bactericidal Method Mediated by Conjugative Delivery of CRISPR-Cas13a Targeting Bacterial Endogenous Transcripts. Microbiol Spectr 2022; 10:e0130022. [PMID: 35950861 PMCID: PMC9430969 DOI: 10.1128/spectrum.01300-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The emergence of antibiotic-resistant bacteria threatens public health, and the use of broad-spectrum antibiotics often leads to unintended consequences, including disturbing the beneficial gut microbiota and resulting in secondary diseases. Therefore, developing a novel strategy that specifically kills pathogens without affecting the residential microbiota is desirable and urgently needed. Here, we report the development of a precise bactericidal system by taking advantage of CRISPR-Cas13a targeting endogenous transcripts of Salmonella enterica serovar Typhimurium delivered through a conjugative vehicle. In vitro, the CRISPR-Cas13a system exhibited specific killing, growth inhibition, and clearance of S. Typhimurium in mixed microbial flora. In a mouse infection model, the CRISPR-Cas13a system, when delivered by a donor Escherichia coli strain, significantly reduced S. Typhimurium colonization in the intestinal tract. Overall, the results demonstrate the feasibility and efficacy of the designed CRISPR-Cas13a system in selective killing of pathogens and broaden the utility of conjugation-based delivery of bactericidal approaches. IMPORTANCE Antibiotics with broad-spectrum activities are known to disturb both pathogens and beneficial gut microbiota and cause many undesired side effects, prompting increased interest in developing therapies that specifically eliminate pathogenic bacteria without damaging gut resident flora. To achieve this goal, we developed a strategy utilizing bacterial conjugation to deliver CRISPR-Cas13a programmed to specifically kill S. Typhimurium. This system produced pathogen-specific killing based on CRISPR RNA (crRNAs) targeting endogenous transcripts in pathogens and was shown to be effective in both in vitro and in vivo experiments. Additionally, the system can be readily delivered by conjugation and is adaptable for targeting different pathogens. With further optimization and improvement, the system has the potential to be used for biotherapy and microbial community modification.
Collapse
|
8
|
Davis RW, Muse CG, Eggleston H, Hill M, Panizzi P. Sugar Shock: Probing Streptococcus pyogenes Metabolism Through Bioluminescence Imaging. Front Microbiol 2022; 13:864014. [PMID: 35722335 PMCID: PMC9203041 DOI: 10.3389/fmicb.2022.864014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes (S. pyogenes) can thrive in its host during an infection, and, as a result, it must be able to respond to external stimuli and available carbon sources. The preclinical use of engineered pathogens capable of constitutive light production may provide real-time information on microbial-specific metabolic processes. In this study, we mapped the central metabolism of a luxABCDE-modified S. pyogenes Xen20 (Strep. Xen20) to its de novo synthesis of luciferase substrates as assessed by the rate of light production in response to different environmental triggers. Previous characterization predicted that the lux operon was under the myo-inositol iolE promotor. In this study, we revealed that supplementation with myo-inositol generated increased Strep. Xen20 luminescence. Surprisingly, when supplemented with infection-relevant carbon sources, such as glucose or glycine, light production was diminished. This was presumably due to the scavenging of pyruvate by L-lactate dehydrogenase (LDH). Inhibition of LDH by its inhibitor, oxamate, partially restored luminescent signal in the presence of glucose, presumably by allowing the resulting pyruvate to proceed to acetyl-coenzyme A (CoA). This phenomenon appeared specific to the lactic acid bacterial metabolism as glucose or glycine did not reduce signal in an analogous luxABCDE-modified Gram-positive pathogen, Staph. Xen29. The Strep. Xen20 cells produced light in a concentration-dependent manner, inversely related to the amount of glucose present. Taken together, our measures of microbial response could provide new information regarding the responsiveness of S. pyogenes metabolism to acute changes in its local environments and cellular health.
Collapse
|
9
|
Tsai CJY, Loh JMS, Proft T. PilVax: A Novel Platform for the Development of Mucosal Vaccines. Methods Mol Biol 2022; 2412:399-410. [PMID: 34918257 DOI: 10.1007/978-1-0716-1892-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide vaccines offer an attractive strategy to induce highly specific immune responses while reducing potential side effects. However, peptides are often poorly immunogenic and unstable on their own, requiring the need for potentially toxic adjuvants or expensive chemical coupling. The novel peptide delivery platform PilVax utilizes the rigid pilus structure from Group A Streptococcus (GAS) to stabilize and amplify the peptide, and present it on the surface of the non-pathogenic food-grade bacterium Lactococcus lactis. Upon intranasal immunization, PilVax vaccines have proven to induce peptide-specific systemic and mucosal responses. PilVax provides an alternative method to develop mucosal vaccines that are inexpensive to produce and easy to administer.
Collapse
Affiliation(s)
- Catherine Jia-Yun Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, School of Medical Sciences and Maurice Wilkins Centre for Biomolecular Discovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
The Use of Galleria mellonella (Wax Moth) as an Infection Model for Group A Streptococcus. Methods Mol Biol 2021; 2136:279-286. [PMID: 32430829 DOI: 10.1007/978-1-0716-0467-0_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Recently, the use of Galleria mellonella larvae as a nonmammalian model to simulate bacterial infectious diseases has shown to be a rapid, simple, and cost-effective alternative. The insect's innate immune response is remarkably similar to that of the vertebrates, and consists of both the cellular and the humoral immune response. Here, we provide a protocol for using G. mellonella larvae to study virulence of GAS, including the use of a health score system for quantitative analysis and the methods for assessing post-infection bacterial burden in vivo.
Collapse
|
11
|
Williams JG, Ly D, Geraghty NJ, McArthur JD, Vyas HKN, Gorman J, Tsatsaronis JA, Sluyter R, Sanderson-Smith ML. Streptococcus pyogenes M1T1 Variants Induce an Inflammatory Neutrophil Phenotype Including Activation of Inflammatory Caspases. Front Cell Infect Microbiol 2021; 10:596023. [PMID: 33585270 PMCID: PMC7876443 DOI: 10.3389/fcimb.2020.596023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Invasive infections due to group A Streptococcus (GAS) advance rapidly causing tissue degradation and unregulated inflammation. Neutrophils are the primary immune cells that respond to GAS. The neutrophil response to GAS was characterised in response to two M1T1 isolates; 5448 and animal passaged variant 5448AP. Co-incubation of neutrophils with 5448AP resulted in proliferation of GAS and lowered the production of reactive oxygen species when compared with 5448. Infection with both strains invoked neutrophil death, however apoptosis was reduced in response to 5448AP. Both strains induced neutrophil caspase-1 and caspase-4 expression in vitro, with inflammatory caspase activation detected in vitro and in vivo. GAS infections involving strains such as 5448AP that promote an inflammatory neutrophil phenotype may contribute to increased inflammation yet ineffective bacterial eradication, contributing to the severity of invasive GAS infections.
Collapse
Affiliation(s)
- Jonathan G. Williams
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas J. Geraghty
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jason D. McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Heema K. N. Vyas
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jody Gorman
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - James A. Tsatsaronis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Martina L. Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
12
|
Soh KY, Loh JMS, Hall C, Proft T. Functional Analysis of Two Novel Streptococcus iniae Virulence Factors Using a Zebrafish Infection Model. Microorganisms 2020; 8:E1361. [PMID: 32899555 PMCID: PMC7564053 DOI: 10.3390/microorganisms8091361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Streptococcus iniae is a major fish pathogen that contributes to large annual losses in the aquaculture industry, exceeding US$100 million. It is also reported to cause opportunistic infections in humans. We have recently identified two novel S. iniae virulence factors, an extracellular nuclease (SpnAi) and a secreted nucleotidase (S5nAi), and verified their predicted enzymatic activities using recombinant proteins. Here, we report the generation of green fluorescent S. iniae spnAi and s5nAi deletion mutants and their evaluation in a transgenic zebrafish infection model. Our results show nuclease and nucleotidase activities in S. iniae could be attributed to SpnAi and S5nAi, respectively. Consistent with this, larvae infected with the deletion mutants demonstrated enhanced survival and bacterial clearance, compared to those infected with wild-type (WT) S. iniae. Deletion of spnAi and s5nAi resulted in sustained recruitment of neutrophils and macrophages, respectively, to the site of infection. We also show that recombinant SpnAi is able to degrade neutrophil extracellular traps (NETs) isolated from zebrafish kidney tissue. Our results suggest that both enzymes play an important role in S. iniae immune evasion and might present potential targets for the development of therapeutic agents or vaccines.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher Hall
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Fedorec AJH, Ozdemir T, Doshi A, Ho YK, Rosa L, Rutter J, Velazquez O, Pinheiro VB, Danino T, Barnes CP. Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of Synthetic Gene Networks in Escherichia coli. iScience 2019; 14:323-334. [PMID: 30954530 PMCID: PMC6489366 DOI: 10.1016/j.isci.2019.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/29/2018] [Accepted: 03/18/2019] [Indexed: 11/03/2022] Open
Abstract
Plasmids are the workhorse of both industrial biotechnology and synthetic biology, but ensuring they remain in bacterial cells is a challenge. Antibiotic selection cannot be used to stabilize plasmids in most real-world applications, and inserting dynamical gene networks into the genome remains challenging. Plasmids have evolved several mechanisms for stability, one of which, post-segregational killing (PSK), ensures that plasmid-free cells do not survive. Here we demonstrate the plasmid-stabilizing capabilities of the axe/txe toxin-antitoxin system and the microcin-V bacteriocin system in the probiotic bacteria Escherichia coli Nissle 1917 and show that they can outperform the commonly used hok/sok. Using plasmid stability assays, automated flow cytometry analysis, mathematical models, and Bayesian statistics we quantified plasmid stability in vitro. Furthermore, we used an in vivo mouse cancer model to demonstrate plasmid stability in a real-world therapeutic setting. These new PSK systems, plus the developed Bayesian methodology, will have wide applicability in clinical and industrial biotechnology.
Collapse
Affiliation(s)
- Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK.
| | - Tanel Ozdemir
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Anjali Doshi
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA
| | - Yan-Kay Ho
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Luca Rosa
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jack Rutter
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Oscar Velazquez
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA
| | - Vitor B Pinheiro
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; KU Leuven Rega Institute for Medical Research, Herestraat, 49 Box 1030, 3000 Leuven, Belgium
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York City, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Broglia L, Materne S, Lécrivain AL, Hahnke K, Le Rhun A, Charpentier E. RNase Y-mediated regulation of the streptococcal pyrogenic exotoxin B. RNA Biol 2018; 15:1336-1347. [PMID: 30290721 PMCID: PMC6284565 DOI: 10.1080/15476286.2018.1532253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endoribonuclease Y (RNase Y) is a crucial regulator of virulence in Gram-positive bacteria. In the human pathogen Streptococcus pyogenes, RNase Y is required for the expression of the major secreted virulence factor streptococcal pyrogenic exotoxin B (SpeB), but the mechanism involved in this regulation remains elusive. Here, we demonstrate that the 5′ untranslated region of speB mRNA is processed by several RNases including RNase Y. In particular, we identify two RNase Y cleavage sites located downstream of a guanosine (G) residue. To assess whether this nucleotide is required for RNase Y activity in vivo, we mutated it and demonstrate that the presence of this G residue is essential for the processing of the speB mRNA 5′ UTR by RNase Y. Although RNase Y directly targets and processes speB, we show that RNase Y-mediated regulation of speB expression occurs primarily at the transcriptional level and independently of the processing in the speB mRNA 5′ UTR. To conclude, we demonstrate for the first time that RNase Y processing of an mRNA target requires the presence of a G. We also provide new insights on the speB 5′ UTR and on the role of RNase Y in speB regulation.
Collapse
Affiliation(s)
- Laura Broglia
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Solange Materne
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anne-Laure Lécrivain
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Karin Hahnke
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anaïs Le Rhun
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Emmanuelle Charpentier
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| |
Collapse
|
15
|
Lamb LE, Zhi X, Alam F, Pyzio M, Scudamore CL, Wiles S, Sriskandan S. Modelling invasive group A streptococcal disease using bioluminescence. BMC Microbiol 2018; 18:60. [PMID: 29921240 PMCID: PMC6006931 DOI: 10.1186/s12866-018-1200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of animals in infection modelling and refine the information that can be obtained, however the range of bioluminescent GAS strains available is limited. In this study we set out to develop bioluminescent iGAS strains for use in in vivo pneumonia and soft tissue disease models. RESULTS Using clinical emm1, emm3, and emm89 GAS strains that were transformed with constructs carrying the luxABCDE operon, growth and bioluminescence of transformed strains were characterised in vitro and in vivo. Emm3 and emm89 strains expressed detectable bioluminescence when transformed with a replicating plasmid and light production correlated with viable bacterial counts in vitro, however plasmid instability precluded use in the absence of antimicrobial pressure. Emm89 GAS transformed with an integrating construct demonstrated stable bioluminescence that was maintained in the absence of antibiotics. Bioluminescence of the emm89 strain correlated with viable bacterial counts both in vitro and immediately following infection in vivo. Although bioluminescence conferred a detectable fitness burden to the emm89 strain during soft tissue infection in vivo, it did not prevent dissemination to distant tissues. CONCLUSION Development of stably bioluminescent GAS for use in vitro and in vivo models of infection should facilitate development of novel therapeutics and vaccines while also increasing our understanding of infection progression and transmission routes.
Collapse
Affiliation(s)
- L E Lamb
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK.,Royal Centre Defence Medicine, Academia and Research, University of Birmingham, Birmingham, B15 2SQ, UK
| | - X Zhi
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - F Alam
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - M Pyzio
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK
| | - C L Scudamore
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK
| | - S Wiles
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK.,Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - S Sriskandan
- Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
16
|
Wagachchi D, Tsai JYC, Chalmers C, Blanchett S, Loh JMS, Proft T. PilVax - a novel peptide delivery platform for the development of mucosal vaccines. Sci Rep 2018; 8:2555. [PMID: 29416095 PMCID: PMC5803258 DOI: 10.1038/s41598-018-20863-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/25/2018] [Indexed: 02/02/2023] Open
Abstract
Peptide vaccines are an attractive strategy to engineer the induction of highly targeted immune responses and avoid potentially allergenic and/or reactogenic protein regions. However, peptides by themselves are often unstable and poorly immunogenic, necessitating the need for an adjuvant and a specialised delivery system. We have developed a novel peptide delivery platform (PilVax) that allows the presentation of a stabilised and highly amplified peptide as part of the group A streptococcus serotype M1 pilus structure (PilM1) on the surface of the non-pathogenic bacterium Lactococcus lactis. To show proof of concept, we have successfully inserted the model peptide Ova324–339 into 3 different loop regions of the backbone protein Spy0128, which resulted in the assembly of the pilus containing large numbers of peptide on the surface of L. lactis. Intranasal immunisation of mice with L. lactis PilM1-Ova generated measurable Ova-specific systemic and mucosal responses (IgA and IgG). Furthermore, we show that multiple peptides can be inserted into the PilVax platform and that peptides can also be incorporated into structurally similar, but antigenically different pilus structures. PilVax may be useful as a cost-effective platform for the development of peptide vaccines against a variety of important human pathogens.
Collapse
Affiliation(s)
- Dasun Wagachchi
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, 1023, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1023, New Zealand
| | - Jia-Yun C Tsai
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, 1023, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1023, New Zealand
| | - Callum Chalmers
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Sam Blanchett
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, 1023, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1023, New Zealand.
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, 1023, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1023, New Zealand.
| |
Collapse
|
17
|
Streptococcus pyogenes nuclease A (SpnA) mediated virulence does not exclusively depend on nuclease activity. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 53:42-48. [PMID: 29158081 DOI: 10.1016/j.jmii.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human pathogen that causes a wide range of diseases, including pharyngitis, necrotizing fasciitis and toxic shock syndrome. The bacterium produces a large arsenal of virulence factors, including the cell wall-anchored Streptococcus pyogenes nuclease A (SpnA), which facilitates immune evasion by degrading the DNA backbone of neutrophil extracellular traps. SpnA consists of a C-terminal endo/exonuclease domain and a N-terminal domain of unknown function. METHODS Recombinant SpnA mutants were generated by alanine conversion of selected residues that were predicted to play a role in the enzymatic activity and tested for their ability to degrade DNA. A GAS spnA deletion mutant was complemented with a plasmid-borne catalytic site mutant and analyzed for virulence in a Galleria mellonella (wax moth) infection model. RESULTS Several predicted residues were experimentally confirmed to play a role in SpnA enzymatic activity. These include Glu592, Arg696, His716, Asp767, Asn769, Asp810 and Asp842. Complementation of a GAS spnA deletion mutant with a spnA H716A mutant gene partially restored virulence in wax moth larvae, whereas complementation with the spnA wt gene completely restored activity. Furthermore, complementation with a secreted form of SpnA showed reduced virulence. CONCLUSION Our results show that abolishing the enzymatic activity of SpnA only partially reduces virulence suggesting that SpnA has an additional virulence function, which might be located on the N-terminal domain. Furthermore, cell wall-anchoring of SpnA results in higher virulence compared to secreted SpnA, probably due to a higher local density of the enzyme.
Collapse
|
18
|
Loh J, Tsai JY, Proft T. The ability of Group A streptococcus to adhere to immortalized human skin versus throat cell lines does not reflect their predicted tissue tropism. Clin Microbiol Infect 2017; 23:677.e1-677.e3. [DOI: 10.1016/j.cmi.2017.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/22/2017] [Accepted: 03/14/2017] [Indexed: 12/01/2022]
|
19
|
Mucosal vaccination with pili from Group A Streptococcus expressed on Lactococcus lactis generates protective immune responses. Sci Rep 2017; 7:7174. [PMID: 28775292 PMCID: PMC5543120 DOI: 10.1038/s41598-017-07602-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/28/2017] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Group A Streptococcus (GAS) produces pili that are involved in adhesion and colonisation of the host. These surface-exposed pili are immunogenic and therefore represent an attractive target for vaccine development. The pilus is encoded in the genomic region known as the fibronectin-collagen-T-antigen (FCT)-region, of which at least nine different types have been identified. In this study we investigate expressing two of the most common FCT-types (FCT-3 and FCT-4) in the food-grade bacteria Lactococcus lactis for use as a mucosal vaccine. We show that mucosally delivered L. lactis expressing GAS pili generates specific antibody responses in rabbits. Rabbit anti-pilus antibodies were shown to have both a neutralising effect on bacterial adhesion, and immunised rabbit antiserum was able to facilitate immune-mediated killing of bacteria via opsonophagocytosis. Furthermore, intranasal immunisation of mice improved clearance rates of GAS after nasopharyngeal challenge. These results demonstrate the potential for a novel, pilus-based vaccine to protect against GAS infections.
Collapse
|
20
|
Lorenz N, Loh JMS, Moreland NJ, Proft T. Development of a high-throughput opsonophagocytic assay for the determination of functional antibody activity against Streptococcus pyogenes using bioluminescence. J Microbiol Methods 2017; 134:58-61. [PMID: 28115206 DOI: 10.1016/j.mimet.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
The lack of standardised protocols for the assessment of functional antibodies has hindered Streptococcus pyogenes research and the development of vaccines. A robust, high throughput opsonophagocytic bactericidal assay to determine protective antibodies in human and rabbit serum has been developed that utilises bioluminescence as a rapid read out.
Collapse
Affiliation(s)
- Natalie Lorenz
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Nicole J Moreland
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
21
|
Tsai JYC, Loh JMS, Clow F, Lorenz N, Proft T. The Group A Streptococcus serotype M2 pilus plays a role in host cell adhesion and immune evasion. Mol Microbiol 2016; 103:282-298. [PMID: 27741558 DOI: 10.1111/mmi.13556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 01/22/2023]
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a human pathogen that causes diseases ranging from skin and soft tissue infections to severe invasive diseases, such as toxic shock syndrome. Each GAS strain carries a particular pilus type encoded in the variable fibronectin-binding, collagen-binding, T antigen (FCT) genomic region. Here, we describe the functional analysis of the serotype M2 pilus encoded in the FCT-6 region. We found that, in contrast to other investigated GAS pili, the ancillary pilin 1 lacks adhesive properties. Instead, the backbone pilin is important for host cell adhesion and binds several host factors, including fibronectin and fibrinogen. Using a panel of recombinant pilus proteins, GAS gene deletion mutants and Lactococcus lactis gain-of-function mutants we show that, unlike other GAS pili, the FCT-6 pilus also contributes to immune evasion. This was demonstrated by a delay in blood clotting, increased intracellular survival of the bacteria in macrophages, higher bacterial survival rates in human whole blood and greater virulence in a Galleria mellonella infection model in the presence of fully assembled FCT-6 pili.
Collapse
Affiliation(s)
- Jia-Yun C Tsai
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine & Pathology, School of Medical Sciences
| | - Natalie Lorenz
- Department of Molecular Medicine & Pathology, School of Medical Sciences
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections. Appl Microbiol Biotechnol 2015; 100:3197-206. [PMID: 26685857 DOI: 10.1007/s00253-015-7229-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 11/27/2022]
Abstract
In vivo imaging of bioluminescent bacteria permits their visualization in infected mice, allowing spatial and temporal evaluation of infection progression. Most available bioluminescent strains were obtained by integration of the luciferase genes into the bacterial chromosome, a challenging and time-consuming approach. Recently, episomal plasmids were used, which were introduced in bacteria and expressed all genes required for bioluminescence emission. However, the plasmid was progressively lost in vitro and in vivo, if bacteria were not maintained under antibiotic selective pressure. Increased stability could be obtained inserting into the plasmid backbone sequences that assured plasmid partition between daughter bacterial cells, or caused death of bacteria that had lost the plasmid. So far, no detailed analysis was performed of either plasmid stability in vivo or contribution of different stabilizing sequence types. Here we report the construction of a plasmid, which includes the Photorhabdus luminescens lux cassette expressed under the control of a Staphylococcus aureus specific gene promoter, and toxin/antitoxin (T/A) and partition sequences (Par) conferring stability and transmissibility of the plasmid. Following infection of mice with S. aureus carrying this plasmid, we demonstrated that the promoter-lux fusion was functional in vivo, that the plasmid was retained by 70-100% of bacterial cells 7 days post-infection, and that both stabilizing sequence types were required to maximize plasmid retention. These data suggest that the plasmid can be a valuable tool to study gene expression and bacterial spread in small laboratory animals infected with S. aureus or possibly other Gram-positive human pathogens.
Collapse
|
23
|
Loh JMS, Proft T. Stabilized plasmid-based system for bioluminescent labeling of multiple streptococcal species. Biotechnol Lett 2015; 38:139-43. [PMID: 26410784 DOI: 10.1007/s10529-015-1967-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine if multiple streptococcal species can be easily labeled for biophotonic imaging using a toxin-antitoxin stabilized reporter plasmid containing the native firefly luciferase gene, originally developed for use in Group A Streptococcus. RESULTS A number of streptococcal species including Group B Streptococcus, Group C Streptococcus, Group G Streptococcus, S. iniae, S. vestibularis, and S. salivarius were successfully transformed with the reporter plasmid. In absence of antibiotic selection, the plasmid had variable stability amongst the six strains. The expression of firefly luciferase was highest in Group B Streptococcus and S. iniae, as observed by the brightest signal and lowest detection limits in vitro. CONCLUSION Multiple streptococcal species can be easily transformed with our toxin-antitoxin stabilized bioluminescent reporter plasmid. However, this plasmid shows variable stability and signal in different species, restricting its use for certain applications.
Collapse
Affiliation(s)
- Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences and the Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences and the Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
24
|
Abstract
Group A streptococci (GAS) express soluble and surface-bound virulence factors. Secreted streptokinase (SK) allelic variants exhibit varying abilities to activate host plasminogen (Pg), and GAS pathogenicity is associated with Pg activation and localization of the resulting plasmin (Pm) on the bacterial surface to promote dissemination. The various mechanisms by which GAS usurp the host proteolytic system are discussed, including the molecular sexuality mechanism of conformational activation of the Pg zymogen (Pg*) and subsequent proteolytic activation of substrate Pg by the S•KPg* and SK•Pm catalytic complexes. Substantial progress has been made to delineate both processes in a unified mechanism. Pm coats the bacteria by direct and indirect binding pathways involving plasminogen-binding group A streptococcal M-like (PAM) protein and host fibrin(ogen). Transgenic mouse models using human Pg are being optimized to mimic infections by SK variants in humans and to define in vivo combined mechanisms of these variants and PAM.
Collapse
Affiliation(s)
- I M Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - P R Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - P E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
25
|
Bigger is not always better: Transmission and fitness burden of ∼1MB Pseudomonas syringae megaplasmid pMPPla107. Plasmid 2014; 73:16-25. [DOI: 10.1016/j.plasmid.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/24/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022]
|
26
|
Loh JMS, Proft T. Comparison of firefly luciferase and NanoLuc luciferase for biophotonic labeling of group A Streptococcus. Biotechnol Lett 2013; 36:829-34. [DOI: 10.1007/s10529-013-1423-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 02/02/2023]
|