1
|
Kaur H, Rode S, Lonare S, Demiwal P, Narasimhappa P, Arun E, Kumar R, Das J, Ramamurthy PC, Sircar D, Sharma AK. Heterologous expression, biochemical characterization and prospects for insecticide biosensing potential of carboxylesterase Ha006a from Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105844. [PMID: 38582571 DOI: 10.1016/j.pestbp.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 μM, 0.15 μM, and 0.025 μM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore 560012, India
| | - Etisha Arun
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur 440010, Maharashtra, India
| | - Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur 440010, Maharashtra, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore 560012, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
2
|
Isakova A, Artykov A, Vorontsova Y, Dolgikh D, Kirpichnikov M, Gasparian M, Yagolovich A. Application of an Autoinduction Strategy to Optimize the Heterologous Production of an Antitumor Bispecific Fusion Protein Based on the TRAIL Receptor-Selective Mutant Variant in Escherichia coli. Mol Biotechnol 2023; 65:581-589. [PMID: 36094644 DOI: 10.1007/s12033-022-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Autoinduction is a simple approach for heterologous protein expression that helps to achieve the high-level production of recombinant proteins in soluble form. In this work, we investigated if the application of an autoinduction strategy could help to optimize the production of bifunctional protein SRH-DR5-B, the DR5-specific TRAIL variant DR5-B fused to a VEGFR2-specific peptide SRHTKQRHTALH for dual antitumor and antiangiogenic activity. The protein was expressed in Escherichia coli SHuffle B T7, BL21(DE3), and BL21(DE3)pLysS strains. By IPTG induction, the highest expression level was in SHuffle B T7, while by autoinduction, the similar expression level was achieved in BL21(DE3)pLysS. However, in SHuffle B T7, only 45% of IPTG-induced SRH-DR5-B was expressed in soluble form, in contrast to 75% autoinduced in BL21(DE3)pLysS. The yield of purified SRH-DR5-B protein expressed by autoinduction in BL21(DE3)pLysS was 28 ± 4.5 mg per 200 ml of cell culture, which was 1.4 times higher than the yield from IPTG-induced SHuffle B T7. Regardless of the production method, SRH-DR5-B was equally cytotoxic to BxPC-3 human tumor cells expressing DR5 and VEGFR2 receptors. Thus, the production of SRH-DR5-B by autoinduction in the E. coli BL21(DE3)pLysS strain is an efficient, technologically simple, and economical technique that allows to obtain a large amount of active protein from the cytoplasmic cell fraction. Our work demonstrates that the strategy of induction of protein expression is no less important than the strain selection.
Collapse
Affiliation(s)
- Alina Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
| | - Artem Artykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
| | - Yekaterina Vorontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
| | - Dmitry Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Mikhail Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Marine Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
| | - Anne Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia. .,Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
3
|
Cárdenas-Fernández M, Sinclair O, Ward JM. Novel transaminases from thermophiles: from discovery to application. Microb Biotechnol 2021; 15:305-317. [PMID: 34713952 PMCID: PMC8719814 DOI: 10.1111/1751-7915.13940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/26/2023] Open
Abstract
Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I–II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d‐sorbitol. Kinetic and end‐point colorimetric assays with different amino donors–acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non‐stereoselective serine‐TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non‐stereoselective serine‐TAs, whilst two stereoselective serine‐TAs showed significantly higher yields. Coupling serine‐TA reactions to a transketolase to yield l‐erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine‐TAs and transketolase using the inexpensive racemic D/L‐serine led to high Ery yield (82%). Thermal characterization of stereoselective serine‐TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK.,School of Biosciences, University of Kent, CT2 7NJ, Kent, UK
| | - Oliver Sinclair
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| |
Collapse
|
4
|
Ju D, Mota-Sanchez D, Fuentes-Contreras E, Zhang YL, Wang XQ, Yang XQ. Insecticide resistance in the Cydia pomonella (L): Global status, mechanisms, and research directions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104925. [PMID: 34446201 DOI: 10.1016/j.pestbp.2021.104925] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/17/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
The codling moth, Cydia pomonella (Lepidoptera: Tortricidae) is a major pest of pome fruit and walnuts worldwide. Although environmentally compatible integrated control strategies, such as mating disruption, attract-kill strategy, and sterile insect technique have been conducted for management of this notorious pest, effects to control of codling moth have mainly relied on insecticides. In consequence, different levels of insecticide resistance towards organophosphates, neonicotinoids, hydrazines, benzoylureas, pyrethroids, diamides, spinosyns, avermectins, JH mimics, carbamates, oxadiazines and C. pomonella granulovirus (CpGVs) have developed in codling moth in different countries and areas. Both metabolic and target-site mechanisms conferring resistance have been revealed in the codling moth. In this review, we summarize the current global status of insecticide resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.
Collapse
Affiliation(s)
- Di Ju
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Eduardo Fuentes-Contreras
- Center in Molecular and Functional Ecology, Facultad de Ciencias Agrarias, Universidad de Talca, Casilla 747, Talca, Chile
| | - Ya-Lin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Xiao-Qi Wang
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue-Qing Yang
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China..
| |
Collapse
|
5
|
Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol 2021; 9:630551. [PMID: 33644021 PMCID: PMC7902521 DOI: 10.3389/fbioe.2021.630551] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Recombinant proteins are becoming increasingly important for industrial applications, where Escherichia coli is the most widely used bacterial host for their production. However, the formation of inclusion bodies is a frequently encountered challenge for producing soluble and functional recombinant proteins. To overcome this hurdle, different strategies have been developed through adjusting growth conditions, engineering host strains of E. coli, altering expression vectors, and modifying the proteins of interest. These approaches will be comprehensively highlighted with some of the new developments in this review. Additionally, the unique features of protein inclusion bodies, the mechanism and influencing factors of their formation, and their potential advantages will also be discussed.
Collapse
Affiliation(s)
- Arshpreet Bhatwa
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Weijun Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Nadine Abraham
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
6
|
Bhatt P, Bhatt K, Huang Y, Lin Z, Chen S. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. CHEMOSPHERE 2020; 244:125507. [PMID: 31835049 DOI: 10.1016/j.chemosphere.2019.125507] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Agricultural and household applications of pyrethroid insecticides have significantly increased residual concentrations in living cells and environments. The enhanced concentration is toxic for living beings. Pyrethroid hydrolase enzyme (pyrethroid catalyzing esterase) regulates pyrethroid degradation, and has been well reported in various organisms (bacteria, fungi, insects and animals). Hydrolysis mechanisms of these esterases are different from others and properly function at factors viz., optimum temperature, pH and physicochemical environment. Active site of the enzyme contains common amino acids that play important role in pyrethroid catalysis. Immobilization technology emphasizes the development of better reusable efficiency of pyrethroid hydrolases to carry out large-scale applications for complete degradation of pyrethroids from the environments. In this review we have attempted to provide insights of pyrethroid-degrading esterases in different living systems along with complete mechanisms.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar 249404, Uttarakhand, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
7
|
Bai LS, Zhao CX, Xu JJ, Feng C, Li YQ, Dong YL, Ma ZQ. Identification and biochemical characterization of carboxylesterase 001G associated with insecticide detoxification in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:69-79. [PMID: 31153479 DOI: 10.1016/j.pestbp.2019.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/03/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Carboxylesterases (CarEs) are a major class of detoxification enzymes involved in insecticide resistance in various insect species. In this study, a novel CarE 001G was isolated from the cotton bollworm Helicoverpa armigera, one of the most destructive agricultural insect pests. The open reading frame of 001G has 2244 nucleotides and putatively encodes 747 amino acid residues. The deduced CarE possessed the highly conserved catalytic triads(Ser-Glu-His) and pentapeptide motifs (Gly-X-Ser-X-Gly), suggesting 001G is biologically active. The truncated 001G was successfully expressed in Escherichia coli, and the recombinant proteins were purified and tested. The enzyme kinetic assay showed the purified proteins could catalyze two model substrates, α-naphthyl acetate and β-naphthyl acetate, with a kcat of 8.8 and 2.3 s-1, a Km of 9.6 and 16.2 μM, respectively. The inhibition study with pyrethroid, organophosphate and neonicotinoid insecticides showed different inhibition profile against the purified CarE. The HPLC assay demonstrated that the purified proteins were able to metabolize β-cypermethrin, λ-cyhalothrin and fenvalerate insecticides, exhibiting respective specific activities of 1.7, 1.4 and 0.5 nM/min/mg protein. However, the purified proteins were not able to metabolize the chlorpyrifos, parathion-methyl, paraoxon-ethyl and imidacloprid. The modeling and docking analyses consistently demonstrated that the pyrethroid molecule fits snugly into the catalytic pocket of the CarE 001G. Collectively, our results suggest that 001G may play a role in pyrethroids detoxification in H. armigera.
Collapse
Affiliation(s)
- Li-Sha Bai
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Cai-Xia Zhao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jing-Jing Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chuan Feng
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong-Qiang Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yan-Ling Dong
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhi-Qing Ma
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Wang ZG, Jiang SS, Mota-Sanchez D, Wang W, Li XR, Gao YL, Lu XP, Yang XQ. Cytochrome P450-Mediated λ-Cyhalothrin-Resistance in a Field Strain of Helicoverpa armigera from Northeast China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3546-3553. [PMID: 30882220 DOI: 10.1021/acs.jafc.8b07308] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Resistance to pyrethroid and organophosphate insecticides has been a growing problem in the management of cotton bollworm Helicoverpa armigera (Hübner) populations in the Yangtze River and Yellow River valleys of China, but resistance status and mechanisms of H. armigera populations from northeast China are less documented. In this study, a field strain collected from Shenyang in northeast China (SYR) is up to 16-fold more resistant than a susceptible strain (SS) to λ-cyhalothrin, while the resistance level to phoxim remained low (2.6-fold). Synergist tests and enzymatic assays show that increased cytochrome P450 monooxygenase (P450) activity is the main mechanism for λ-cyhalothrin resistance. Eight out of 10 genes from CYP6 and CYP9 subfamilies were significantly overexpressed in the SYR strain, and CYP6AE11 was the mostly overexpressed P450 (59-fold). These results suggest that overexpression of multiple P450 enzymes contributes to λ-cyhalothrin resistance in the SYR strain of H. armigera from northeast China.
Collapse
Affiliation(s)
- Zi-Guo Wang
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| | - Shan-Shan Jiang
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| | - David Mota-Sanchez
- Department of Entomology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Wei Wang
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| | - Xin-Ru Li
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| | - Yu-Lin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Xu-Peng Lu
- Green Agricultural Technology Center of Liaoning Province , Shenyang , 110034 , Liaoning China
| | - Xue-Qing Yang
- College of Plant Protection , Shenyang Agricultural University , Shenyang , 110866 , Liaoning China
| |
Collapse
|
9
|
Hou CL, Wang JB, Wu H, Liu JY, Ma ZQ, Feng JT, Zhang X. Molecular cloning and expression analysis of cytochrome c oxidase subunit II from Sitophilus zeamais. Biochem Biophys Res Commun 2016; 478:1660-6. [PMID: 27614312 DOI: 10.1016/j.bbrc.2016.08.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Cytochrome c oxidase subunit II (COX II) containing a dual core CuA active site is one of the core subunits of mitochondrial Cytochrome c oxidase (Cco), which plays a significant role in the physiological process. In this report, the full-length cDNA of COXII gene was cloned from Sitophilus zeamais, which had an open reading frame (ORF) of 684 bp encoding 227 amino acids residues. The predicted COXII protein had a molecular mass of 26.2 kDa with pI value of 6.37. multiple sequence alignment and phylogenetic analysis indicated that Sitophilus zeamais COXII had high sequence identity with the COXII of other insect species. The gene was subcloned into the expression vector pET-32a, and induced by isopropyl β-d-thiogalactopyranoside (IPTG) in E. coli Transetta (DE3) expression system. Finally the recombinant COXII with 6-His tag was purified using affinity chromatography with Ni(2+)-NTA agarose. Western Blotting (WB) showed the recombinant protein was about 44 kD, and the concentration of fusion protein was 50 μg/mL. UV-spectrophotometer and infrared spectrometer analysis showed that recombinant COXII could catalyze the oxidation of substrate Cytochrome C (Cyt c), and influenced by allyl isothiocyanate (AITC). By using molecular docking method, It was found that a sulfur atom of AITC structure could form a length of 2.9 Å hydrogen bond with Leu-31. These results suggested that tag-free COXII was functional and one of the action sites of AITC, which will be helpful to carry out a point mutation in binding sites for the future research.
Collapse
Affiliation(s)
- Chang-Liang Hou
- Research and Development Centre of Biorational Pesticides, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China
| | - Jing-Bo Wang
- Research and Development Centre of Biorational Pesticides, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China
| | - Hua Wu
- Research and Development Centre of Biorational Pesticides, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China; Research Center of Biopesticide Technology and Engineering, Yangling, Shaanxi Province, 712100, China.
| | - Jia-Yu Liu
- Research and Development Centre of Biorational Pesticides, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China
| | - Zhi-Qing Ma
- Research and Development Centre of Biorational Pesticides, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China; Research Center of Biopesticide Technology and Engineering, Yangling, Shaanxi Province, 712100, China
| | - Jun-Tao Feng
- Research and Development Centre of Biorational Pesticides, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China; Research Center of Biopesticide Technology and Engineering, Yangling, Shaanxi Province, 712100, China
| | - Xing Zhang
- Research and Development Centre of Biorational Pesticides, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China; Research Center of Biopesticide Technology and Engineering, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
10
|
Huang X, Liu L, Fang Y, Feng J. Expression of a Sensory Neuron Membrane Protein SNMP2 in Olfactory Sensilla of Codling Moth Cydia pomonella (Lepidoptera: Tortricidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1907-1913. [PMID: 27329623 DOI: 10.1093/jee/tow098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
In insects, sensory neuron membrane proteins (SNMPs) are critical peripheral olfactory proteins and highly promote the sensitivity of pheromone detection. In this study, we cloned an SNMP transcript (CpomSNMP2, GenBank KU302714) from the antennae of the codling moth Cydia pomonella (L.) Its open reading frame is 1,575 bp and it encodes a protein with 524 amino acids. CpomSNMP2 contains two putative transmembrane domains and has a large extracellular loop. Phylogenetic analysis showed that CpomSNMP2 is clustered into the group of previously characterized lepidopteron SNMP2s. Expression levels of CpomSNMP2 were significantly higher in antennae of both males and females than in tissues from the thoraxes, abdomens, legs, and wings. CpomSNMP2 was distributed in sensilla trichodea of both males and females, but only in sensilla chaetica of males. This study provides evidence for olfactory roles of CpomSNMP2 in this moth.
Collapse
Affiliation(s)
- Xinglong Huang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China (; ; ; )
| | - Lu Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China (; ; ; )
| | - Yiqing Fang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China (; ; ; )
| | - Jinian Feng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China (; ; ; ),
| |
Collapse
|
11
|
Yang XQ. Gene expression analysis and enzyme assay reveal a potential role of the carboxylesterase gene CpCE-1 from Cydia pomonella in detoxification of insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 129:56-62. [PMID: 27017882 DOI: 10.1016/j.pestbp.2015.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin.
Collapse
Affiliation(s)
- Xue-Qing Yang
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
12
|
Bacterial Expression and Kinetic Analysis of Carboxylesterase 001D from Helicoverpa armigera. Int J Mol Sci 2016; 17:493. [PMID: 27049381 PMCID: PMC4848949 DOI: 10.3390/ijms17040493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 11/18/2022] Open
Abstract
Carboxylesterasesare an important class of detoxification enzymes involved in insecticide resistance in insects. A subgroup of Helicoverpa armigera esterases, known as Clade 001, was implicated in organophosphate and pyrethroid insecticide resistance due to their overabundance in resistant strains. In this work, a novel carboxylesterasegene 001D of H. armigera from China was cloned, which has an open reading frame of 1665 nucleotides encoding 554 amino acid residues. We used a series of fusion proteins to successfully express carboxylesterase 001D in Escherichia coli. Three different fusion proteins were generated and tested. The enzyme kinetic assay towards 1-naphthyl acetate showed all three purified fusion proteins are active with a Kcat between 0.35 and 2.29 s−1, and a Km between 7.61 and 19.72 μM. The HPLC assay showed all three purified fusion proteins had low but measurable hydrolase activity towards β-cypermethrin and fenvalerate insecticides (specific activities ranging from 0.13 to 0.67 μM·min−1·(μM−1·protein)). The enzyme was stable up to 40 °C and at pH 6.0–11.0. The results imply that carboxylesterase 001D is involved in detoxification, and this moderate insecticide hydrolysis may suggest that overexpression of the gene to enhance insecticide sequestration is necessary to allow carboxylesterases to confer resistance to these insecticides in H. armigera.
Collapse
|
13
|
Yang XQ, Zhang YL. Investigation of insecticide-resistance status of Cydia pomonella in Chinese populations. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:316-325. [PMID: 25779221 DOI: 10.1017/s0007485315000115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The codling moth Cydia pomonella (L.) is an economically important fruit pest and it has been directly targeted by insecticides worldwide. Serious resistance to insecticides has been reported in many countries. As one of the most serious invasive pest, the codling moth has populated several areas in China. However, resistance to insecticides has not been reported in China. We investigated the insecticide-resistance status of four field populations from Northwestern China by applying bioassays, enzyme activities, and mutation detections. Diagnostic concentrations of lambda-cyhalothrin, chlorpyrifos-ethyl, carbaryl, and imidacloprid were determined and used in bioassays. Field populations were less susceptible to chlorpyrifos-ethyl and carbaryl than laboratory strain. Insensitive populations displayed an elevated glutathione S-transferases (GSTs) activity. Reduced carboxylesterase (CarE) activity was observed in some insecticide insensitive populations and reduced acetylcholinesterase activity was observed only in the Wuw population. The cytochrome P450 polysubstrate monooxygenases activities in four field populations were not found to be different from susceptible strains. Neither the known-resistance mutation F399V in the acetylcholinesterase (AChE) gene, ace1, nor mutations in CarE gene CpCE-1 were found in adult individuals from our field populations. Native-PAGE revealed that various CarE isozymes and AChE insensitivity were occurring among Chinese populations. Our results indicate that codling moth populations from Northwestern China were insensitivity to chlorpyrifos-ethyl and carbaryl. Increased GST activity was responsible for insecticides insensitivity. Decreased CarE activity, as well as the presence of CarE and AChE polymorphisms might also be involved in insecticides insensitivity. New management strategies for managing this pest are discussed.
Collapse
Affiliation(s)
- X-Q Yang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education,College of Plant Protection,Northwest A & F University,Yangling712100,Shaanxi,China
| | - Y-L Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education,College of Plant Protection,Northwest A & F University,Yangling712100,Shaanxi,China
| |
Collapse
|
14
|
Yang XQ, Zhang YL. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin. Enzyme Microb Technol 2015; 69:1-9. [PMID: 25640718 DOI: 10.1016/j.enzmictec.2014.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs.
Collapse
Affiliation(s)
- Xue-Qing Yang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Ya-Lin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Wu ZW, Yang XQ, Zhang YL. The Toxicology and Biochemical Characterization of Cantharidin on Cydia pomonella. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:237-244. [PMID: 26470125 DOI: 10.1093/jee/tou031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 10/28/2014] [Indexed: 06/05/2023]
Abstract
Cantharidin, a natural toxin produced by beetles in the families Meloidae and Oedemeridae, reported to be toxic to some pests, is being developed as a biopesticide in China. This study evaluates the toxicity and biochemical characterization of cantharidin on the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), an economically important fruit pest, under both laboratory and field conditions. Laboratory dose response bioassays showed that the LC50 value of cantharidin against neonate larvae was 0.057 mg ml(-1). Exposure of the larvae to 0.024 and 0.057 mg ml(-1) of cantharidin resulted in significant reduction in larval body weight. Neonate larvae exposed to LC10 of cantharidin showed increased glutathione S-transferase activity and significantly reduced the carboxylesterase and cytochrome P450-dependent mixed-function oxidase activities. Results also showed 16 and 25% ovicidal activity at concentrations of 0.057 and 0.14 mg ml(-1) of cantharidin, respectively. Field trials demonstrated cantharidin has a significant effect on both the first and second generations of C. pomonella larvae, but it exhibits a lower control efficiency than the chemical reference emamectin benzoate. Cantharidin may be considered a valuable tool for the control of codling moth.
Collapse
Affiliation(s)
- Zheng-Wei Wu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China. These authors contributed equally to this work
| | - Xue-Qing Yang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China. These authors contributed equally to this work. College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Ya-Lin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
16
|
Characterization of a lambda-cyhalothrin metabolizing glutathione S-transferase CpGSTd1 from Cydia pomonella (L.). Appl Microbiol Biotechnol 2014; 98:8947-62. [DOI: 10.1007/s00253-014-5786-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
|
17
|
Yang XQ, Liu JY, Li XC, Chen MH, Zhang YL. Key Amino Acid Associated with Acephate Detoxification by Cydia pomonella Carboxylesterase Based on Molecular Dynamics with Alanine Scanning and Site-Directed Mutagenesis. J Chem Inf Model 2014; 54:1356-70. [DOI: 10.1021/ci500159q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Xian Chun Li
- Department
of Entomology, The University of Arizona, Tucson, Arizona 85721, United States
| | | | | |
Collapse
|