1
|
Wang J, Luo Y, Jiao T, Liu S, Liang T, Mei H, Cheng S, Yang Q, He J, Su J. Functional Differentiation and Regulatory Mechanisms of Ferrochelatases HemH1 and HemH2 in Bacillus thuringiensis Under Iron and Oxidative Stress. Int J Mol Sci 2025; 26:2911. [PMID: 40243518 PMCID: PMC11988928 DOI: 10.3390/ijms26072911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Ferrochelatase is the terminal enzyme in heme biosynthesis. Bacillus thuringiensis (Bt) 97-27 contains two ferrochelatases, HemH1 and HemH2, but their regulatory mechanisms and functional differences under virous environmental stimuli remain unclear. This study confirmed that the iron uptake regulator protein (Fur) bound to the promoters of hemH1 and hemH2, with Fe2+ or Fe3+ enhancing this binding. Heterologous expression of HemH1 and HemH2 in Escherichia coli showed that pEH2/BL grew better than pEH1/BL under different 2,2'-Bipyridyl, Fe2+, and Fe3+ concentrations. Under iron limitation, the heme precursor ALA production decreased significantly in both strains. The heme production of pEH2/BL decreased sharply under iron-limited conditions, while that of pEH1/BL decreased significantly under iron-rich conditions. The H2O2 sensitivity experiment revealed that E. coli pEH1/BL was more tolerant to H2O2 than pEH2/BL. In Bt, ΔhemH2 was most sensitive to H2O2 stress, but complementation of hemH1 or hemH2 partially restored H2O2 resistance, with the overexpressed strain pHH2/Bt being most tolerant. β-galactosidase assays indicated that Fur positively regulated hemH1 and negatively regulated hemH2 under normal conditions, but this regulation reversed with 2.5 mM Fe3+. qRT-PCR showed upregulation of genes related to heme synthesis, oxidative stress, and ferrous iron transport. This study reveals the functional differentiation of HemH1 and HemH2 under the joint regulation of Fur and environmental factors, highlighting their synergistic roles in heme synthesis, heavy metal detoxification, and oxidative stress resistance to maintain bacterial physiological homeostasis.
Collapse
Affiliation(s)
- Jianghan Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Yi Luo
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Tian Jiao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430062, China; (T.J.); (J.H.)
| | - Shizhen Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Ting Liang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Huiting Mei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Shuang Cheng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Qian Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430062, China; (T.J.); (J.H.)
| | - Jianmei Su
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (J.W.); (Y.L.); (S.L.); (T.L.); (H.M.); (S.C.); (Q.Y.)
| |
Collapse
|
2
|
Wang J, Cao Y, Shi D, Zhang Z, Li X, Chen C. Crucial Involvement of Heme Biosynthesis in Vegetative Growth, Development, Stress Response, and Fungicide Sensitivity of Fusarium graminearum. Int J Mol Sci 2024; 25:5268. [PMID: 38791308 PMCID: PMC11120706 DOI: 10.3390/ijms25105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (Y.C.); (D.S.); (Z.Z.); (X.L.)
| |
Collapse
|
3
|
Park J, Lee HH, Moon H, Lee N, Kim S, Kim JE, Lee Y, Min K, Kim H, Choi GJ, Lee YW, Seo YS, Son H. A combined transcriptomic and physiological approach to understanding the adaptive mechanisms to cope with oxidative stress in Fusarium graminearum. Microbiol Spectr 2023; 11:e0148523. [PMID: 37671872 PMCID: PMC10581207 DOI: 10.1128/spectrum.01485-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023] Open
Abstract
In plant-pathogen interactions, oxidative bursts are crucial for plants to defend themselves against pathogen infections. Rapid production and accumulation of reactive oxygen species kill pathogens directly and cause local cell death, preventing pathogens from spreading to adjacent cells. Meanwhile, the pathogens have developed several mechanisms to tolerate oxidative stress and successfully colonize plant tissues. In this study, we investigated the mechanisms responsible for resistance to oxidative stress by analyzing the transcriptomes of six oxidative stress-sensitive strains of the plant pathogenic fungus Fusarium graminearum. Weighted gene co-expression network analysis identified several pathways related to oxidative stress responses, including the DNA repair system, autophagy, and ubiquitin-mediated proteolysis. We also identified hub genes with high intramodular connectivity in key modules and generated deletion or conditional suppression mutants. Phenotypic characterization of those mutants showed that the deletion of FgHGG4, FgHGG10, and FgHGG13 caused sensitivity to oxidative stress, and further investigation on those genes revealed that transcriptional elongation and DNA damage responses play roles in oxidative stress response and pathogenicity. The suppression of FgHGL7 also led to hypersensitivity to oxidative stress, and we demonstrated that FgHGL7 plays a crucial role in heme biosynthesis and is essential for peroxidase activity. This study increases the understanding of the adaptive mechanisms to cope with oxidative stress in plant pathogenic fungi. IMPORTANCE Fungal pathogens have evolved various mechanisms to overcome host-derived stresses for successful infection. Oxidative stress is a representative defense system induced by the host plant, and fungi have complex response systems to cope with it. Fusarium graminearum is one of the devastating plant pathogenic fungi, and understanding its pathosystem is crucial for disease control. In this study, we investigated adaptive mechanisms for coping with oxidative stress at the transcriptome level using oxidative stress-sensitive strains. In addition, by introducing genetic modification technique such as CRISPR-Cas9 and the conditional gene expression system, we identified pathways/genes required for resistance to oxidative stress and also for virulence. Overall, this study advances the understanding of the oxidative stress response and related mechanisms in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Nahyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sieun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Cai W, Chen Y, Zhang L, Fang X, Wang W. A three-gene cluster in Trichoderma reesei reveals a potential role of dmm2 in DNA repair and cellulase production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:34. [PMID: 35351200 PMCID: PMC8966179 DOI: 10.1186/s13068-022-02132-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/19/2022] [Indexed: 12/03/2022]
Abstract
Background The ascomycete Trichoderma reesei is one of the most efficient industrial producers of cellulase. Gene targeting by homologous recombination is a key technique for improving strains and constructing mutants. In T. reesei, tku70 (homologous to human KU70) was deleted to block non-homologous end-joining, which led to 95% of transformants exhibiting homologous recombination. Results Two genes located in close proximity to tku70 were identified: the ferrochelatase gene hem8 (tre78582, homologous to Aspergillus niger hemH and Cryptococcus neoformans HEM15) and a putative DNA methylation modulator-2 gene dmm2 (tre108087, homologous to Neurospora crassa dmm-2). Genome-wide surveys of 324 sequenced fungal genomes revealed that the homologues of the three genes of interest are encoded in tandem in most Sordariomycetes. The expression of this three-gene cluster is regulated by blue light. The roles of these three genes were analyzed via deletion and complementation tests. The gene hem8 was originally described as a novel and highly distinct auxotrophic marker in T. reesei and we found that the product protein, HEM8, catalyzes the final step in heme biosynthesis from highly photoreactive porphyrins. The lethal phenotype of the hem8 deletion could be overcome by hematin supplementation. We also studied the functions of tku70 and dmm2 in DNA repair using mutagen sensitivity experiments. We found that the Δtku70 strain showed increased sensitivity to bleomycin, which induces DNA double-strand breaks, and that the Δdmm2 strain was sensitive to bleomycin, camptothecin (an inhibitor of type I topoisomerases), and hydroxyurea (a deoxynucleotide synthesis inhibitor). The double-mutant Δtku70&dmm2 showed higher sensitivity to hydroxyurea, camptothecin, and bleomycin than either of the single mutants. Knockout of dmm2 significantly increased cellulase production. Conclusions Our data show, for the first time, that ferrochelatase encoded by hem8 catalyzes the final step in heme biosynthesis from highly photoreactive porphyrins and that dmm2 encodes a putative DNA methylation modulator-2 protein related to DNA repair and cellulase expression in T. reesei. Our data provide important insights into the roles of this three-gene cluster in T. reesei and other Sordariomycetes and show that the DNA methylation modulator DMM2 affects cellulase gene expression in T. reesei. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02132-y.
Collapse
|
5
|
Michels K, Solomon AL, Scindia Y, Sordo Vieira L, Goddard Y, Whitten S, Vaulont S, Burdick MD, Atkinson C, Laubenbacher R, Mehrad B. Aspergillus Utilizes Extracellular Heme as an Iron Source During Invasive Pneumonia, Driving Infection Severity. J Infect Dis 2022; 225:1811-1821. [PMID: 35267014 PMCID: PMC9113461 DOI: 10.1093/infdis/jiac079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Depriving microbes of iron is critical to host defense. Hemeproteins, the largest source of iron within vertebrates, are abundant in infected tissues in aspergillosis due to hemorrhage, but Aspergillus species have been thought to lack heme import mechanisms. We hypothesized that heme provides iron to Aspergillus during invasive pneumonia, thereby worsening the outcomes of the infection. METHODS We assessed the effect of heme on fungal phenotype in various in vitro conditions and in a neutropenic mouse model of invasive pulmonary aspergillosis. RESULTS In mice with neutropenic invasive aspergillosis, we found a progressive and compartmentalized increase in lung heme iron. Fungal cells cultured under low iron conditions took up heme, resulting in increased fungal iron content, resolution of iron starvation, increased conidiation, and enhanced resistance to oxidative stress. Intrapulmonary administration of heme to mice with neutropenic invasive aspergillosis resulted in markedly increased lung fungal burden, lung injury, and mortality, whereas administration of heme analogs or heme with killed Aspergillus did not. Finally, infection caused by fungal germlings cultured in the presence of heme resulted in a more severe infection. CONCLUSIONS Invasive aspergillosis induces local hemolysis in infected tissues, thereby supplying heme iron to the fungus, leading to lethal infection.
Collapse
Affiliation(s)
- Kathryn Michels
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Angelica L Solomon
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Luis Sordo Vieira
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yana Goddard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Spencer Whitten
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, Paris, France
| | - Marie D Burdick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Carl Atkinson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Reinhard Laubenbacher
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Salloum T, Moussa R, Rahy R, Al Deek J, Khalifeh I, El Hajj R, Hall N, Hirt RP, Tokajian S. Expanded genome-wide comparisons give novel insights into population structure and genetic heterogeneity of Leishmania tropica complex. PLoS Negl Trop Dis 2020; 14:e0008684. [PMID: 32946436 PMCID: PMC7526921 DOI: 10.1371/journal.pntd.0008684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/30/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania tropica is one of the main causative agents of cutaneous leishmaniasis (CL). Population structures of L. tropica appear to be genetically highly diverse. However, the relationship between L. tropica strains genomic diversity, protein coding gene evolution and biogeography are still poorly understood. In this study, we sequenced the genomes of three new clinical L. tropica isolates, two derived from a recent outbreak of CL in camps hosting Syrian refugees in Lebanon and one historical isolate from Azerbaijan to further refine comparative genome analyses. In silico multilocus microsatellite typing (MLMT) was performed to integrate the current diversity of genome sequence data in the wider available MLMT genetic population framework. Single nucleotide polymorphism (SNPs), gene copy number variations (CNVs) and chromosome ploidy were investigated across the available 18 L. tropica genomes with a main focus on protein coding genes. MLMT divided the strains in three populations that broadly correlated with their geographical distribution but not populations defined by SNPs. Unique SNPs profiles divided the 18 strains into five populations based on principal component analysis. Gene ontology enrichment analysis of the protein coding genes with population specific SNPs profiles revealed various biological processes, including iron acquisition, sterols synthesis and drug resistance. This study further highlights the complex links between L. tropica important genomic heterogeneity and the parasite broad geographic distribution. Unique sequence features in protein coding genes identified in distinct populations reveal potential novel markers that could be exploited for the development of more accurate typing schemes to further improve our knowledge of the evolution and epidemiology of the parasite as well as highlighting protein variants of potential functional importance underlying L. tropica specific biology.
Collapse
Affiliation(s)
- Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Rim Moussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Ryan Rahy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Jospin Al Deek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Neil Hall
- Earlham Institute, Norwich research Park, University of East Anglia, Norwich, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (RPH); (ST)
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
- * E-mail: (RPH); (ST)
| |
Collapse
|
7
|
Kornitzer D, Roy U. Pathways of heme utilization in fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118817. [PMID: 32777371 DOI: 10.1016/j.bbamcr.2020.118817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Iron acquisition is challenging in most environments. As an alternative to elemental iron, organisms can take up iron-protoporphyrin IX, or heme. Heme can be found in decaying organic matter and is particularly prevalent in animal hosts. Fungi have evolved at least three distinct endocytosis-mediated heme uptake systems, which have been studied in detail in the organisms Candida albicans, Cryptococcus neoformans and Schizosaccharomyces pombe. Here we summarize the known molecular details of these three uptake systems that enable parasitic and saprophytic fungi to take advantage of external heme as either cellular iron or heme sources.
Collapse
Affiliation(s)
- Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Udita Roy
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
8
|
Seok J, Ko YJ, Lee ME, Hyeon JE, Han SO. Systems metabolic engineering of Corynebacterium glutamicum for the bioproduction of biliverdin via protoporphyrin independent pathway. J Biol Eng 2019; 13:28. [PMID: 30976317 PMCID: PMC6441180 DOI: 10.1186/s13036-019-0156-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Background Biliverdin, a prospective recyclable antioxidant and one of the most important precursors for optogenetics, has received growing attention. Biliverdin is currently produced by oxidation of bilirubin from mammalian bile using chemicals. However, unsustainable procedures of extraction, chemical oxidation, and isomer separation have prompted bio-based production using a microbial cell factory. Results In vitro thermodynamic analysis was performed to show potential candidates of bottleneck enzymes in the pathway to produce biliverdin. Among the candidates, hemA and hemL were overexpressed in Corynebacterium glutamicum to produce heme, precursor of biliverdin. To increase precursor supply, we suggested a novel hemQ-mediated coproporphyrin dependent pathway rather than noted hemN-mediated protoporphyrin dependent pathway in C. glutamicum. After securing precursors, hmuO was overexpressed to pull the carbon flow to produce biliverdin. Through modular optimization using gene rearrangements of hemA, hemL, hemQ, and hmuO, engineered C. glutamicum BV004 produced 11.38 ± 0.47 mg/L of biliverdin at flask scale. Fed-batch fermentations performed in 5 L bioreactor with minimal medium using glucose as a sole carbon source resulted in the accumulation of 68.74 ± 4.97 mg/L of biliverdin, the highest titer to date to the best of our knowledge. Conclusions We developed an eco-friendly microbial cell factory to produce biliverdin using C. glutamicum as a biosystem. Moreover, we suggested that C. glutamicum has the thermodynamically favorable coproporphyrin dependent pathway. This study indicated that C. glutamicum can work as a powerful platform to produce biliverdin as well as heme-related products based on the rational design with in vitro thermodynamic analysis. Electronic supplementary material The online version of this article (10.1186/s13036-019-0156-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiho Seok
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Young Jin Ko
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Myeong-Eun Lee
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jeong Eun Hyeon
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea.,2Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, 01133 Republic of Korea.,3Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul, 01133 Republic of Korea
| | - Sung Ok Han
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
9
|
Lu Y, Liu G, Jiang H, Chi Z, Chi Z. An insight into the iron acquisition and homeostasis in Aureobasidium melanogenum HN6.2 strain through genome mining and transcriptome analysis. Funct Integr Genomics 2018; 19:137-150. [PMID: 30251029 DOI: 10.1007/s10142-018-0633-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 11/26/2022]
Abstract
Aureobasidium melanogenum HN6.2 is a unique yeast strain who can produce the siderophore of fusigen under iron starvation to guarantee its survival. However, a comprehensive understanding of mechanisms involved in iron acquisition and homeostasis for it is still vacant. In this study, genome sequencing and mining revealed that A. melanogenum HN6.2 strain was the first yeast species that exclusively possessed all the four known mechanisms for the iron acquisition: (i) the siderophore-mediated iron uptake; (ii) reductive iron assimilation; (iii) low-affinity ferrous uptake; and (iv) heme utilization, which suggested its stronger adaptability than Aspergillus fumigatus and Saccharomyces cerevisiae. This HN6.2 strain also employed the vacuolar iron storage for immobilizing the excessive iron to avoid its cellular toxicity. Specially, genome mining indicated that A. melanogenum HN6.2 strain could also synthesize ferricrocin siderophore. Further HPLC and Q-Tof-MS analysis confirmed that the siderophores synthesized by this strain consisted of cyclic fusigen, linear fusigen, ferricrocin, and hydroxyferricrocin and they played parallel roles as both intracellular and extracellular siderophores. Also, the heme utilization for this strain was experimentally verified by the knock-out of heme oxygenase gene. For iron homeostasis, the transcriptome analysis revealed that this strain mainly employed two central regulators of SreA/HapX to tune iron uptake and storage at the transcriptional level. It was also noted that mitogen-activated protein kinase C gene (MpkC) exhibited a transcriptional up-regulation under iron sufficiency, suggesting that it may serve as another factor involved in the repression of siderophore biosynthesis. This is the first genetic blueprint of iron acquisition and homeostasis for A. melanogenum.
Collapse
Affiliation(s)
- Yi Lu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Guanglei Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Hong Jiang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Zhenming Chi
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Genetic analyses of reddish-brown polyoxin-resistant mutants of Bipolaris maydis. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Röhrig J, Yu Z, Chae KS, Kim JH, Han KH, Fischer R. TheAspergillus nidulansVelvet-interacting protein, VipA, is involved in light-stimulated heme biosynthesis. Mol Microbiol 2017; 105:825-838. [DOI: 10.1111/mmi.13739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Julian Röhrig
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| | - Zhenzhong Yu
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| | - Keon-Sang Chae
- Department of Molecular Biology; Chonbuk National University; Jeonju South Korea
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering; Woosuk University; Wanju Jeonbuk 565-701 South Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering; Woosuk University; Wanju Jeonbuk 565-701 South Korea
| | - Reinhard Fischer
- Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus; Fritz-Haber-Weg 4 Karlsruhe D-76131 Germany
| |
Collapse
|
12
|
Ben Yaakov D, Rivkin A, Mircus G, Albert N, Dietl AM, Kovalerchick D, Carmeli S, Haas H, Kontoyiannis DP, Osherov N. Identification and characterization of haemofungin, a novel antifungal compound that inhibits the final step of haem biosynthesis. J Antimicrob Chemother 2016; 71:946-52. [PMID: 26747101 DOI: 10.1093/jac/dkv446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/20/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES During recent decades, the number of invasive fungal infections among immunosuppressed patients has increased significantly, whereas the number of effective systemic antifungal drugs remains low and unsatisfactory. The aim of this study was to characterize a novel antifungal compound, CW-8/haemofungin, which we previously identified in a screen for compounds affecting fungal cell wall integrity. METHODS The in vitro characteristics of haemofungin were investigated by MIC evaluation against a panel of pathogenic and non-pathogenic fungi, bacteria and mammalian cells in culture. Haemofungin mode-of-action studies were performed by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring plasmids and biochemical validation of the target. In vivo efficacy was tested in the Galleria mellonella and Drosophila melanogaster insect models of infection. RESULTS We demonstrate that haemofungin causes swelling and lysis of growing fungal cells. It inhibits the growth of pathogenic Aspergillus, Candida, Fusarium and Rhizopus isolates at micromolar concentrations, while only weakly affecting the growth of mammalian cell lines. Genetic and biochemical analyses in A. nidulans and Aspergillus fumigatus indicate that haemofungin primarily inhibits ferrochelatase (HemH), the last enzyme in the haem biosynthetic pathway. Haemofungin was non-toxic and significantly reduced mortality rates of G. mellonella and D. melanogaster infected with A. fumigatus and Rhizopus oryzae, respectively. CONCLUSIONS Further development and in vivo validation of haemofungin is warranted.
Collapse
Affiliation(s)
- Dafna Ben Yaakov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Rivkin
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Mircus
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathaniel Albert
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna-Maria Dietl
- Biocenter-Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dimitry Kovalerchick
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Hubertus Haas
- Biocenter-Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Krainer FW, Capone S, Jäger M, Vogl T, Gerstmann M, Glieder A, Herwig C, Spadiut O. Optimizing cofactor availability for the production of recombinant heme peroxidase in Pichia pastoris. Microb Cell Fact 2015; 14:4. [PMID: 25586641 PMCID: PMC4299804 DOI: 10.1186/s12934-014-0187-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/26/2014] [Indexed: 02/08/2023] Open
Abstract
Background Insufficient incorporation of heme is considered a central impeding cause in the recombinant production of active heme proteins. Currently, two approaches are commonly taken to overcome this bottleneck; metabolic engineering of the heme biosynthesis pathway in the host organism to enhance intracellular heme production, and supplementation of the growth medium with the desired cofactor or precursors thereof to allow saturation of recombinantly produced apo-forms of the target protein. In this study, we investigated the effect of both, pathway engineering and medium supplementation, to optimize the recombinant production of the heme protein horseradish peroxidase in the yeast Pichia pastoris. Results In contrast to studies with other hosts, co-overexpression of genes of the endogenous heme biosynthesis pathway did not improve the recombinant production of active heme protein. However, medium supplementation with hemin proved to be an efficient strategy to increase the yield of active enzyme, whereas supplementation with the commonly used precursor 5-aminolevulinic acid did not affect target protein yield. Conclusions The yield of active recombinant heme peroxidase from P. pastoris can be easily enhanced by supplementation of the cultivation medium with hemin. Thereby, secreted apo-species of the target protein are effectively saturated with cofactor, maximizing the yield of target enzyme activity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian W Krainer
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Simona Capone
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Martin Jäger
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Thomas Vogl
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Michaela Gerstmann
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Anton Glieder
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|
14
|
Franken ACW, Lechner BE, Werner ER, Haas H, Lokman BC, Ram AFJ, van den Hondel CAMJJ, de Weert S, Punt PJ. Genome mining and functional genomics for siderophore production in Aspergillus niger. Brief Funct Genomics 2014; 13:482-92. [DOI: 10.1093/bfgp/elu026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|