1
|
Zühlke MK, Schlüter R, Mikolasch A, Henning AK, Giersberg M, Lalk M, Kunze G, Schweder T, Urich T, Schauer F. Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidusbasilensis - a structure-biotransformation relationship. Appl Microbiol Biotechnol 2020; 104:3569-3583. [PMID: 32125477 PMCID: PMC8282568 DOI: 10.1007/s00253-020-10406-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
Abstract
Comparative analyses determined the relationship between the structure of bisphenol A (BPA) as well as of seven bisphenol analogues (bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bisphenol F (BPF), bisphenol Z (BPZ), bisphenol AP (BPAP), bisphenol PH (BPPH)) and their biotransformability by the biphenyl-degrading bacterium Cupriavidus basilensis SBUG 290. All bisphenols were substrates for bacterial transformation with conversion rates ranging from 6 to 98% within 216 h and 36 different metabolites were characterized. Transformation by biphenyl-grown cells comprised four different pathways: (a) formation of ortho-hydroxylated bisphenols, hydroxylating either one or both phenols of the compounds; (b) ring fission; (c) transamination followed by acetylation or dimerization; and (d) oxidation of ring substituents, such as methyl groups and aromatic ring systems, present on the 3-position. However, the microbial attack of bisphenols by C. basilensis was limited to the phenol rings and its substituents, while substituents on the carbon bridge connecting the rings were not oxidized. All bisphenol analogues with modifications at the carbon bridge could be oxidized up to ring cleavage, while substituents at the 3-position of the phenol ring other than hydroxyl groups did not allow this reaction. Replacing one methyl group at the carbon bridge of BPA by a hydrophobic aromatic or alicyclic ring system inhibited both dimerization and transamination followed by acetylation. While most of the bisphenol analogues exhibited estrogenic activity, four biotransformation products tested were not estrogenically active.
Collapse
Affiliation(s)
- Marie-Katherin Zühlke
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
- Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, Walter-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Rabea Schlüter
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany.
| | - Annett Mikolasch
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Ann-Kristin Henning
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Martin Giersberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, 06466, Seeland, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
- Institute of Marine Biotechnology, Walter-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| | - Frieder Schauer
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany
| |
Collapse
|
2
|
Denghel H, Leibold E, Göen T. Oxidative phase I metabolism of the UV absorber 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328) in an in vitro model with human liver microsomes. Toxicol In Vitro 2019; 60:313-322. [PMID: 31207346 DOI: 10.1016/j.tiv.2019.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328, CAS: 25973-55-1) is an ultraviolet light (UV) absorber which is used as an additive for plastics and other polymeric substances to prevent the host material from light induced degradation reactions. However, no information about human exposure, metabolism and kinetics is available for this substance so far. Therefore, in vitro experiments with human liver microsomes were performed to derive oxidative phase I metabolites of UV 328 in an explorative approach using liquid-chromatography coupled with tandem mass spectrometry. Initially, a suspect screening mode was applied to the incubated samples. Six metabolites with hydroxy or oxo groups as well as a metabolite carrying both hydroxy and carbonyl moieties at the alkyl side chains were postulated and custom synthesized as reference standards. Afterwards, the results were verified in a target screening approach. Thereby, five of the six investigated analyte structures were confirmed. Quantitative estimations of the generated transformation products revealed 2-(2H-benzotriazol-2-yl)-6-(3-hydroxy-2-methylbutan-2-yl)-4-(tert-pentyl)phenol (UV 328-6/3-OH), 2-(2H-benzotriazol-2-yl)-4-(3-hydroxy-2-methylbutan-2-yl)-6-(tert-pentyl)phenol (UV 328-4/3-OH) and 2-(2H-benzotriazol-2-yl)-4-(2-methylbutan-3-on-2-yl)-6-(3-hydroxy-2-methylbutan-2-yl)phenol (UV 328-4/3-CO-6/3-OH) as most promising parameters. In summary, oxidation of both alkyl side chains at the phenol moiety was proven, but no metabolic transformations at the benzotriazole moiety were observed.
Collapse
Affiliation(s)
- Heike Denghel
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany.
| | - Edgar Leibold
- BASF SE, Product Safety, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany.
| |
Collapse
|
3
|
Fungal biotransformation of short-chain n-alkylcycloalkanes. Appl Microbiol Biotechnol 2019; 103:4137-4151. [PMID: 30941461 DOI: 10.1007/s00253-019-09749-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
The cycloalkanes, comprising up to 45% of the hydrocarbon fraction, occur in crude oil or refined oil products (e.g., gasoline) mainly as alkylated cyclohexane derivatives and have been increasingly found in environmental samples of soil and water. Furthermore, short-chain alkylated cycloalkanes are components of the so-called volatile organic compounds (VOCs). This study highlights the biotransformation of methyl- and ethylcyclohexane by the alkane-assimilating yeast Candida maltosa and the phenol- and benzoate-utilizing yeast Trichosporon mucoides under laboratory conditions. In the course of this biotransformation, we detected 25 different metabolites, which were analyzed by HPLC and GC-MS. The biotransformation process of methylcyclohexane in both yeasts involve (A) ring hydroxylation at different positions (C2, C3, and C4) and subsequent oxidation to ketones as well as (B) oxidation of the alkyl side chain to hydroxylated and acid products. The yeast T. mucoides additionally performs ring hydroxylation at the C1-position and (C) oxidative decarboxylation and (D) aromatization of cyclohexanecarboxylic acid. Both yeasts also oxidized the saturated ring system and the side chain of ethylcyclohexane. However, the cyclohexylacetic acid, which was formed, seemed not to be substrate for aromatization. This is the first report of several new transformation reactions of alkylated cycloalkanes for eukaryotic microorganisms.
Collapse
|
4
|
Abstract
Fermentation with filamentous fungi is known for the ability to convert bioactive compounds. The aim of this research was to investigate the metabolism of glycosidic derivatives of kaempferol and quercetin during fungal fermentation of extracts from cauliflower outer leaves and onion by Rhizopus oryzae and R. azygosporus. The highest release of kaempferol and quercetin was observed after 2 days and 1 day of fermentation with R. oryzae, respectively. It was proposed that glycosidic compounds were initially deglycosylated to form kaempferol-3-glucoside and quercetin-3-glucoside and then further metabolized into their aglycones. Clear differences in conversion efficiency towards the aglycones were observed between the two Rhizopus strains. Although both flavonoids only differ in one hydroxyl group, the metabolism of the glycosides towards their respective aglycones, kaempferol or quercetin, was different. It is concluded that the fermentation with R. oryzae and R. azygosporus could be considered as a way to produce kaempferol and quercetin aglycone from their glycosidic derivatives.
Collapse
|
5
|
Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis. Appl Microbiol Biotechnol 2017; 101:3743-3758. [PMID: 28050635 DOI: 10.1007/s00253-016-8061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.
Collapse
|
6
|
Wang MZ, Wang T, Yuan K, Du J. Preparation of water dispersible poly(methyl methacrylate)-based vesicles for facile persistent antibacterial applications. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-016-1725-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|