1
|
Conall Holohan B, Trego A, Keating C, Bressani-Ribeiro T, Chernicharo CL, Daigger G, Galdi SM, Knörle U, Paissoni E, Robles A, Rogalla F, Shin C, Soares A, Smith AL, Szczuka A, Hughes D, O'Flaherty V. Anaerobic microbial core for municipal wastewater treatment - the sustainable platform for resource recovery. Curr Opin Biotechnol 2025; 94:103317. [PMID: 40408931 DOI: 10.1016/j.copbio.2025.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/30/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025]
Abstract
The requirement for carbon neutrality and bioresource recovery has shifted our views on water treatment from health and pollution avoidance to one of sustainability with water and nutrient circularity. Despite progress, the current process of wastewater treatment is linear, based on core aerobic microbiology, which is unlikely to be carbon neutral due to its large use of energy and production of waste sludge. Here, we outline a shift from aerobic to anaerobic microbiology at the core of wastewater treatment and resource recovery, illustrating the state-of-the-art technologies available for this paradigm shift. Anaerobic metabolism primarily offers the benefit of minimal energy input (up to 50% reduction) and minimal biomass production, resulting in up to 95% less waste sludge compared with aerobic treatment, which is increasingly attractive, given dialogue surrounding emerging contaminants in biosolids. Recent innovative research solutions have made ambient (mainstream) anaerobic treatment a ready substitute for the aerobic processes for municipal wastewater in temperate regions. Moreover, utilising anaerobic treatment as the core carbon removal step allows for more biological downstream resource recovery with several opportunities to couple the process with (anaerobic) nitrogen and phosphorus recovery, namely, potential mainstream anaerobic ammonium oxidation (anammox) and methane oxidation (N-DAMO). Furthermore, these technologies can be mixed and matched with membranes and ion-exchange systems, high-value biochemical production, and/or water reuse installations. As such, we propose the reconfiguration of the wastewater treatment plant of the futurewith anaerobic microbiology. Mainstream anaerobic treatment at the core of a truly sustainable platform for modern municipal wastewater treatment, facilitating circular economy and net-zero carbon goals.
Collapse
Affiliation(s)
- Brian Conall Holohan
- Microbial Ecology Laboratory, Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland; Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen 6525 AJ, the Netherlands.
| | - Anna Trego
- Microbial Ecology Laboratory, Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Ciara Keating
- Department of Engineering, University of Durham, Durham DH1 3LE, United Kingdom
| | - Thiago Bressani-Ribeiro
- Chernicharo & Bressani Consulting and Training in Sanitation, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos L Chernicharo
- Chernicharo & Bressani Consulting and Training in Sanitation, Belo Horizonte, Minas Gerais, Brazil
| | - Glen Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen M Galdi
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States
| | - Ulrich Knörle
- Eliquo Technologies GmbH, Jahnstraße 36, DE-88214 Ravensburg, Germany
| | - Eleonora Paissoni
- Cranfield Water Science Institute, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, United Kingdom
| | - Angel Robles
- Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, 46100 València, Spain
| | - Frank Rogalla
- FCC Aqualia, Camino Santiago 40, E 28050 Madrid, Spain
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States
| | - Ana Soares
- Cranfield Water Science Institute, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, United Kingdom
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, United States
| | - Aleksandra Szczuka
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dermot Hughes
- Microbial Ecology Laboratory, Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
2
|
Zhao J, Zong Z, Zhang X, Luo C, Li Z. Bamboo: A neglected candidate for polyhydroxyalkanoate production-A review. Int J Biol Macromol 2025:144303. [PMID: 40409616 DOI: 10.1016/j.ijbiomac.2025.144303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
In light of growing concerns about climate change, energy crises, and waste management due to the excessive reliance on fossil resources, there is an increasing emphasis on sustainability and the circular economy. Polyhydroxyalkanoates (PHAs), microbial polyesters synthesized from various feedstocks, offer a promising alternative to conventional plastics due to their comparable physicochemical characteristics, biological degradability, and biocompatibility. Lignocellulosic biomass, known for its abundance, renewability, and affordability, represents a particularly suitable carbon source for commercial PHA production. This review provides a comprehensive overview of the bioconversion of lignocellulosic feedstocks into PHAs, encompassing pretreatment, hydrolysis, and fermentation strategies. It highlights biosynthetic pathways from cellulose and hemicellulose via reducing sugars and volatile fatty acids fermentation, and also evaluates the feasibility of utilizing lignin as a substrate for PHA biosynthesis. Additionally, the review underscores the advantages of bamboo-a rapid-growing, renewable plant with high biomass yield, rich lignocellulosic composition, and strong carbon sequestration capacity-as a promising yet underexplored feedstock for industrial-scale PHA production.
Collapse
Affiliation(s)
- Jiayue Zhao
- International Centre for Bamboo and Rattan, Beijing 100102, China; National Forestry and Grassland Administration/Beijing Co-Build Key Laboratory of Bamboo and Rattan Science Technology, Beijing 100102, China
| | - Zhijie Zong
- International Centre for Bamboo and Rattan, Beijing 100102, China; National Forestry and Grassland Administration/Beijing Co-Build Key Laboratory of Bamboo and Rattan Science Technology, Beijing 100102, China
| | - Xinyu Zhang
- International Centre for Bamboo and Rattan, Beijing 100102, China; National Forestry and Grassland Administration/Beijing Co-Build Key Laboratory of Bamboo and Rattan Science Technology, Beijing 100102, China
| | - Chaobing Luo
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 838099, China.
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Beijing 100102, China; National Forestry and Grassland Administration/Beijing Co-Build Key Laboratory of Bamboo and Rattan Science Technology, Beijing 100102, China.
| |
Collapse
|
3
|
Haraźna K, Guzik M, Sobczak-Kupiec A, Wojnarowska M, Nitkiewicz T. Managing life cycle impacts of poly(3-hydroxyoctanoate)-based nanocomposites intended for biomedical and packaging applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 195:55-68. [PMID: 39889390 DOI: 10.1016/j.wasman.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
The environmental pollution caused by post-consumer plastics and the associated health risks necessitate comprehensive life-cycle analyses of these materials, mainly focusing on their end-of-life impacts. This study presents an in-depth evaluation of the environmental implications of producing nanocomposites using poly(3-hydroxyoctanoate) (P(3HO)), a biodegradable and biocompatible polymer that holds great promise as an alternative to traditional plastics, in combination with calcium-, and zinc-based double-layered hydroxides (LDH) modified with the antioxidant α-tocopherol. Utilising the ReCiPe impact assessment method, we identified critical environmental impact categories, including fine particle formation, global warming potential, and toxicity. The analysis revealed that the biosynthesis of P(3HO) is the primary contributor to environmental impact, with electricity consumption accounting for approximately 95% of the overall effect. Purification processes significantly increase environmental impact, mainly due to the extra electricity used for freezing, centrifugation and evaporation. The preparation of nanoparticles contributes to the overall environmental impact, but its scale is reasonably differentiated and spans from 0,3% for Ca/Al nanoparticles to 9.9% for Zn/Al-toc variants, respectively. Although producing these eco-friendly polymers involves significant energy consumption, they present a viable long-term alternative to petroleum-based polymers. Specific life cycle management decisions, like recovering substrates, using renewable energy sources, or gaining overall process improvement, could bring significant environmental benefits. Investigated materials show substantial potential in biomedical coatings and active packaging applications.
Collapse
Affiliation(s)
- Katarzyna Haraźna
- Department of Materials Engineering, Cracow University of Technology, Jana Pawła II Av. 37, 31-864 Cracow, Poland
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Cracow University of Technology, Jana Pawła II Av. 37, 31-864 Cracow, Poland
| | - Magdalena Wojnarowska
- Department of Technology and Ecology of Product, Cracow University of Economics, Rakowicka 27, 31-510 Cracow, Poland
| | - Tomasz Nitkiewicz
- Life Cycle Modelling Centre, Faculty of Management, Częstochowa University of Technology, al. Armii Krajowej 19B, 42-200 Częstochowa, Poland.
| |
Collapse
|
4
|
Li D, Wang F, Zheng X, Zheng Y, Pan X, Li J, Ma X, Yin F, Wang Q. Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives. Biotechnol Adv 2025; 79:108512. [PMID: 39742901 DOI: 10.1016/j.biotechadv.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy. LB predominantly comprises cellulose, hemicellulose, and lignin, which can be converted into high-quality substrates for PHA production by various means. Future efforts should focus on maximizing the value derived from LB. This review highlights the momentous and valuable research breakthroughs in recent years, showcasing the biosynthesis of PHA using low-cost LB as a potential feedstock. The metabolic mechanism and pathways of PHA synthesis by microbes, as well as the key enzymes involved, are summarized, offering insights into improving microbial production capacity and fermentation metabolic engineering. Life cycle assessment and techno-economic analysis for sustainable and economical PHA production are introduced. Technological hurdles such as LB pretreatment, and performance limitations are highlighted for their impact on enhancing the sustainable production and application of PHA. Meanwhile, the development direction of co-substrate fermentation of LB and with other carbon sources, integrated processes development, and co-production strategies were also proposed to reduce the cost of PHA and effectively valorize wastes.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xuening Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yingying Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Fen Yin
- Engineering College, Qinghai Institute of Technology, Xining 810016, PR China.
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
5
|
Azizi N, Eslami R, Goudarzi S, Younesi H, Zarrin H. A Review of Current Achievements and Recent Challenges in Bacterial Medium-Chain-Length Polyhydroxyalkanoates: Production and Potential Applications. Biomacromolecules 2024; 25:2679-2700. [PMID: 38656151 DOI: 10.1021/acs.biomac.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Using petroleum-derived plastics has contributed significantly to environmental issues, such as greenhouse gas emissions and the accumulation of plastic waste in ecosystems. Researchers have focused on developing ecofriendly polymers as alternatives to traditional plastics to address these concerns. This review provides a comprehensive overview of medium-chain-length polyhydroxyalkanoates (mcl-PHAs), biodegradable biopolymers produced by microorganisms that show promise in replacing conventional plastics. The review discusses the classification, properties, and potential substrates of less studied mcl-PHAs, highlighting their greater ductility and flexibility compared to poly(3-hydroxybutyrate), a well-known but brittle PHA. The authors summarize existing research to emphasize the potential applications of mcl-PHAs in biomedicine, packaging, biocomposites, water treatment, and energy. Future research should focus on improving production techniques, ensuring economic viability, and addressing challenges associated with industrial implementation. Investigating the biodegradability, stability, mechanical properties, durability, and cost-effectiveness of mcl-PHA-based products compared to petroleum-based counterparts is crucial. The future of mcl-PHAs looks promising, with continued research expected to optimize production techniques, enhance material properties, and expand applications. Interdisciplinary collaborations among microbiologists, engineers, chemists, and materials scientists will drive progress in this field. In conclusion, this review serves as a valuable resource to understand mcl-PHAs as sustainable alternatives to conventional plastics. However, further research is needed to optimize production methods, evaluate long-term ecological impacts, and assess the feasibility and viability in various industries.
Collapse
Affiliation(s)
- Nahid Azizi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Reza Eslami
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Shaghayegh Goudarzi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University (TMU), Nour 64414-356, Iran
| | - Hadis Zarrin
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| |
Collapse
|
6
|
Serrano‐Aguirre L, Prieto MA. Can bioplastics always offer a truly sustainable alternative to fossil-based plastics? Microb Biotechnol 2024; 17:e14458. [PMID: 38568795 PMCID: PMC10990045 DOI: 10.1111/1751-7915.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Bioplastics, comprised of bio-based and/or biodegradable polymers, have the potential to play a crucial role in the transition towards a sustainable circular economy. The use of biodegradable polymers not only leads to reduced greenhouse gas emissions but also might address the problem of plastic waste persisting in the environment, especially when removal is challenging. Nevertheless, biodegradable plastics should not be considered as substitutes for proper waste management practices, given that their biodegradability strongly depends on environmental conditions. Among the challenges hindering the sustainable implementation of bioplastics in the market, the development of effective downstream recycling routes is imperative, given the increasing production volumes of these materials. Here, we discuss about the most advisable end-of-life scenarios for bioplastics. Various recycling strategies, including mechanical, chemical or biological (both enzymatic and microbial) approaches, should be considered. Employing enzymes as biocatalysts emerges as a more selective and environmentally friendly alternative to chemical recycling, allowing the production of new bioplastics and added value and high-quality products. Other pending concerns for industrial implementation of bioplastics include misinformation among end users, the lack of a standardised bioplastic labelling, unclear life cycle assessment guidelines and the need for higher financial investments. Although further research and development efforts are essential to foster the sustainable and widespread application of bioplastics, significant strides have already been made in this direction.
Collapse
Affiliation(s)
- Lara Serrano‐Aguirre
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Plant and Microbial Biotechnology, Biological Research Centre Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐CSIC (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
7
|
Kacanski M, Stelzer F, Walsh M, Kenny S, O'Connor K, Neureiter M. Pilot-scale production of mcl-PHA by Pseudomonas citronellolis using acetic acid as the sole carbon source. N Biotechnol 2023; 78:68-75. [PMID: 37827242 DOI: 10.1016/j.nbt.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biobased materials with promising properties for environmentally friendly applications. Due to high production costs, which are related to the cost of the carbon sources combined with conversion insufficiencies, currently only small quantities are produced. This results in a lack of reliable data on properties and application potential for the variety of polymers from different types of production strains. This study investigated the potential for the production of mcl-PHA from volatile fatty acids (VFA) at a larger scale, given their potential as low-cost and sustainable raw material within a carboxylate-platform based biorefinery. Pseudomonas citronellolis (DSMZ 50332) was chosen as the production strain, and acetic acid was selected as the main carbon and energy source. Nitrogen was limited to trigger polymer production, and a fed-batch process using a pH-stat feeding regime with concentrated acid was established. We report successful production, extraction, and characterization of mcl PHA, obtaining a total of 1.76 kg from two 500-litre scale fermentations. The produced polymer was identified as a copolymer of 3-hydroxydecanoate (60.7%), 3-hydroxyoctanoate (37.3%), and 3-hydroxyhexanoate (2.0%) with a weight average molecular weight (Mw) of 536 kDa. NMR analysis indicates the presence of unsaturated side chains, which may offer additional possibilities for modification. The results confirm that there is a potential to produce significant amounts of mcl-PHA with interesting rubber-like properties from waste-derived VFA.
Collapse
Affiliation(s)
- Milos Kacanski
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria
| | - Franz Stelzer
- Graz University of Technology, Institute for Chemistry and Technology of Materials, Graz, Austria
| | | | | | | | - Markus Neureiter
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Tulln, Austria.
| |
Collapse
|
8
|
Gaffey J, Rajuaria G, McMahon H, Ravindran R, Dominguez C, Jensen MA, Souza MF, Meers E, Aragonés MM, Skunca D, Sanders JPM. Green Biorefinery systems for the production of climate-smart sustainable products from grasses, legumes and green crop residues. Biotechnol Adv 2023; 66:108168. [PMID: 37146921 DOI: 10.1016/j.biotechadv.2023.108168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Grasses, legumes and green plant wastes represent a ubiquitous feedstock for developing a bioeconomy in regions across Europe. These feedstocks are often an important source of ruminant feed, although much remains unused or underutilised. In addition to proteins, these materials are rich in fibres, sugars, minerals and other components that could also be used as inputs for bio-based product development. Green Biorefinery processes and initiatives are being developed to better capitalise on the potential of these feedstocks to produce sustainable food, feed, materials and energy in an integrated way. Such systems may support a more sustainable primary production sector, enable the valorisation of green waste streams, and provide new business models for farmers. This review presents the current developments in Green Biorefining, focusing on a broad feedstock and product base to include different models of Green Biorefinery. It demonstrates the potential and wide applicability of Green Biorefinery systems, the range of bio-based product opportunities and highlights the way forward for their broader implementation. While the potential for new products is extensive, quality control approval will be required prior to market entry.
Collapse
Affiliation(s)
- James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; Dept. of Environmental Engineering, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland.
| | - Gaurav Rajuaria
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rajeev Ravindran
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carmen Dominguez
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Morten Ambye Jensen
- Aarhus University, Department of Biological and Chemical Engineering, Nørregade 44, 8000 Aarhus C, Denmark
| | - Macella F Souza
- Laboratory of Bioresource Recovery (RE-SOURCE LAB), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Erik Meers
- Laboratory of Bioresource Recovery (RE-SOURCE LAB), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marta Macias Aragonés
- Technological Corporation of Andalusia (CTA), C Albert Einstein S/N, INSUR building, 4th floor, 41092 Seville, Spain
| | - Dubravka Skunca
- Faculty of Business and Law, MB University, Teodora Drajzera 27, 11040 Belgrade, Serbia
| | - Johan P M Sanders
- Grassa BV, Villafloraweg 1, 5928, SZ Venlo, the Netherlands; Valorization of Plant Production Chains, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
9
|
de Vrije T, Nagtegaal RM, Veloo RM, Kappen FHJ, de Wolf FA. Medium chain length polyhydroxyalkanoate produced from ethanol by Pseudomonas putida grown in liquid obtained from acidogenic digestion of organic municipal solid waste. BIORESOURCE TECHNOLOGY 2023; 375:128825. [PMID: 36878376 DOI: 10.1016/j.biortech.2023.128825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Production of medium chain length polyhydroxyalkanoate (mcl-PHA) up to about 6 g.L-1 was obtained by feeding ethanol to Pseudomonas putida growing in liquid obtained from acidogenic digestion of organic municipal solid waste. Washing the wet, heat-inactivated Pseudomonas cells at the end of the fermentation with ethanol obviated the need of drying the biomass and enabled the removal of contaminating lipids before solvent-mediated extraction of PHA. Using 'green' solvents, 90 to near 100% of the mcl-PHA was extracted and purities of 71-78% mcl-PHA were reached already by centrifugation and decantation without further filtration for biomass removal. The mcl-PHA produced in this way consists of 10-18% C8, 72-78% C10 and 8-12% C12 chains (entirely medium chain length), has a crystallinity and melting temperature of ∼13% and ∼49 °C, respectively, and is a stiff rubberlike, colourless material at room temperature.
Collapse
Affiliation(s)
- Truus de Vrije
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands.
| | - Ricardo M Nagtegaal
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Ruud M Veloo
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Frans H J Kappen
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, Bornse Weilanden 9, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
10
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
11
|
Efficient production of poly-3-hydroxybutyrate from acetate and butyrate by halophilic bacteria Salinivibrio spp. TGB4 and TGB19. Int J Biol Macromol 2022; 221:1365-1372. [PMID: 36126806 DOI: 10.1016/j.ijbiomac.2022.09.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
Abstract
Volatile fatty acids (VFAs) derived from biomass are considered to be economical and environmentally friendly feedstocks for microbial fermentation. Converting VFAs to polyhydroxyalkanoate (PHA) could reduce the substrate cost and provide an economically viable route for the commercialization of PHA. The halophilic bacteria Salinivibrio spp. TGB4 and TGB19, newly isolated from salt fields, were found to accumulate poly-3-hydroxybutyrate (PHB) using acetate or butyrate as the substrate. Both strains exhibited considerable cell growth (OD600 of ~8) even at acetate concentration of 100 g/L. In shake flask cultures, TGB4 produced PHB titers of 0.90 and 1.34 g/L, while TGB19 produced PHB titers of 0.25 and 2.53 g/L with acetate and butyrate, respectively. When acetate and butyrate were both applied, PHB production was significantly increased, and the PHB titer of TGB4 and TGB19 reached 6.14 and 6.84 g/L, respectively. After optimizing the culture medium, TGB19 produced 8.42 g/L PHB, corresponding to 88.55 wt% of cell dry weight. During fed-batch cultivation, TGB19 produced a PHB titer of 53.23 g/L. This is the highest reported PHB titer using acetate and butyrate by pure microbial cultures and would provide promising hosts for the industrial production of PHA from VFAs.
Collapse
|
12
|
Current Trends in Biological Valorization of Waste-Derived Biomass: The Critical Role of VFAs to Fuel A Biorefinery. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The looming climate and energy crises, exacerbated by increased waste generation, are driving research and development of sustainable resource management systems. Research suggests that organic materials, such as food waste, grass, and manure, have potential for biotransformation into a range of products, including: high-value volatile fatty acids (VFAs); various carboxylic acids; bioenergy; and bioplastics. Valorizing these organic residues would additionally reduce the increasing burden on waste management systems. Here, we review the valorization potential of various sustainably sourced feedstocks, particularly food wastes and agricultural and animal residues. Such feedstocks are often micro-organism-rich and well-suited to mixed culture fermentations. Additionally, we touch on the technologies, mainly biological systems including anaerobic digestion, that are being developed for this purpose. In particular, we provide a synthesis of VFA recovery techniques, which remain a significant technological barrier. Furthermore, we highlight a range of challenges and opportunities which will continue to drive research and discovery within the field. Analysis of the literature reveals growing interest in the development of a circular bioeconomy, built upon a biorefinery framework, which utilizes biogenic VFAs for chemical, material, and energy applications.
Collapse
|
13
|
Szacherska K, Moraczewski K, Czaplicki S, Oleskowicz-Popiel P, Mozejko-Ciesielska J. Effect of short- and medium-chain fatty acid mixture on polyhydroxyalkanoate production by Pseudomonas strains grown under different culture conditions. Front Bioeng Biotechnol 2022; 10:951583. [PMID: 35957637 PMCID: PMC9358023 DOI: 10.3389/fbioe.2022.951583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Short- and medium-chain fatty acids (SMCFAs) derived from the acidogenic anaerobic mixed culture fermentation of acid whey obtained from a crude cheese production line and their synthetic mixture that simulates a real SMCFA-rich stream were evaluated for polyhydroxyalkanoate (PHA) production. Three individual Pseudomonas sp. strains showed different capabilities of growing and producing PHAs in the presence of a synthetic mixture of SMCFAs. Pseudomonas sp. GL06 exhibited the highest SMCFA tolerance and produced PHAs with the highest productivity (2.7 mg/L h). Based on these observations, this strain was selected for further investigations on PHA production in a fed-batch bioreactor with a SMCFA-rich stream extracted from the effluent. The results showed that PHA productivity reached up to 4.5 mg/L h at 24 h of fermentation together with the ammonium exhaustion in the growth medium. Moreover, the PHA monomeric composition varied with the bacterial strain and the type of the growth medium used. Furthermore, a differential scanning calorimetric and thermogravimetric analysis showed that a short- and medium-chain-length PHA copolymer made of 3-hydroxybutyric, -hexanoic, -octanoic, -decanoic, and -dodecanoic has promising properties. The ability of Pseudomonas sp. to produce tailored PHA copolymers together with the range of possible applications opens new perspectives in the development of PHA bioproduction as a part of an integrated valorization process of SMCFAs derived from waste streams.
Collapse
Affiliation(s)
- Karolina Szacherska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
| | - Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- *Correspondence: Justyna Mozejko-Ciesielska,
| |
Collapse
|
14
|
Szacherska K, Moraczewski K, Czaplicki S, Oleskowicz-Popiel P, Mozejko-Ciesielska J. Conversion of Short and Medium Chain Fatty Acids into Novel Polyhydroxyalkanoates Copolymers by Aeromonas sp. AC_01. MATERIALS 2022; 15:ma15134482. [PMID: 35806607 PMCID: PMC9267140 DOI: 10.3390/ma15134482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) production by Aeromonas sp. AC_01 was investigated using synthetic and waste derived short and medium chain fatty acids (SMCFAs). The obtained results revealed that the analyzed bacterial strain was able to grow and synthesize PHAs using SMCFAs. The highest PHA productivity was observed in the cultivation supplemented with a mixture of acetic acid and butyric acid (3.89 mg/L·h). Furthermore, SMCFAs-rich stream, derived from acidogenic mixed culture fermentation of acid whey, was found to be less beneficial for PHA productivity than its synthetic mixture, however the PHA production was favored by the nitrogen-limited condition. Importantly, Aeromonas sp. AC_01 was capable of synthesizing novel scl-mcl copolymers of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxytridecanoate (3HtriD) and/or 3-hydroxytetradecaonate (3HTD) with high 3HB and 3HV fractions. They were identified with alterable monomers composition depending on the culture conditions used. Moreover, in-depth thermal analyses proved that they are highly resistant to thermal degradation regardless of their monomeric composition. The obtained results confirm that Aeromonas sp. AC_01 is a promising candidate for the biotechnological production of PHAs from SMCFAs with thermal properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.
Collapse
Affiliation(s)
- Karolina Szacherska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Krzysztof Moraczewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland;
| | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn, Poland;
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Correspondence:
| |
Collapse
|
15
|
Szacherska K, Moraczewski K, Rytlewski P, Czaplicki S, Ciesielski S, Oleskowicz-Popiel P, Mozejko-Ciesielska J. Polyhydroxyalkanoates production from short and medium chain carboxylic acids by Paracoccus homiensis. Sci Rep 2022; 12:7263. [PMID: 35508573 PMCID: PMC9068790 DOI: 10.1038/s41598-022-11114-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to evaluate an effect of short and medium chain carboxylic acids (CAs) rich stream derived from acidogenic mixed culture fermentation of acid whey on polyhydroxyalkanoates (PHAs) synthesis by Paracoccus homiensis and compare it with the impact of individual synthetic CAs. The obtained results confirmed that the analyzed bacterium is able to metabolize synthetic CAs as the only carbon sources in the growth medium with maximum PHAs production yields of 26% of cell dry mass (CDM). The replacement of the individual CAs by a CAs-rich residual stream was found to be beneficial for the Paracoccus homiensis growth. The highest biomass concentration reached about 2.5 g/L with PHAs content of 17% of CDM. The purified PHAs were identified as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by applying gas chromatography coupled with mass spectrometry, Fourier transform infrared spectroscopic spectra and UV-Vis spectra. Furthermore, a differential scanning calorimetric, thermogravimetric and water contact angle analysis proved that the extracted copolymers have useful properties. The obtained data are promising in the perspective of developing a microbial PHAs production as a part of an integrated valorization process of high CAs content waste-derived streams.
Collapse
Affiliation(s)
- Karolina Szacherska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Krzysztof Moraczewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85-064, Bydgoszcz, Poland
| | - Piotr Rytlewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85-064, Bydgoszcz, Poland
| | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726, Olsztyn, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965, Poznan, Poland
| | - Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| |
Collapse
|
16
|
Kacanski M, Pucher L, Peral C, Dietrich T, Neureiter M. Cell Retention as a Viable Strategy for PHA Production from Diluted VFAs with Bacillus megaterium. Bioengineering (Basel) 2022; 9:bioengineering9030122. [PMID: 35324811 PMCID: PMC8945770 DOI: 10.3390/bioengineering9030122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
The production of biodegradable and biocompatible materials such as polyhydroxyalkanoates (PHAs) from waste-derived volatile fatty acids (VFAs) is a promising approach towards implementing a circular bioeconomy. However, VFA solutions obtained via acidification of organic wastes are usually too diluted for direct use in standard batch or fed-batch processes. To overcome these constraints, this study introduces a cell recycle fed-batch system using Bacillus megaterium uyuni S29 for poly(3-hydroxybutyrate) (P3HB) production from acetic acid. The concentrations of dry cell weight (DCW), P3HB, acetate, as well as nitrogen as the limiting substrate component, were monitored during the process. The produced polymer was characterized in terms of molecular weight and thermal properties after extraction with hypochlorite. The results show that an indirect pH-stat feeding regime successfully kept the strain fed without prompting inhibition, resulting in a dry cell weight concentration of up to 19.05 g/L containing 70.21% PHA. After appropriate adaptations the presented process could contribute to an efficient and sustainable production of biopolymers.
Collapse
Affiliation(s)
- Milos Kacanski
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
| | - Lukas Pucher
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
| | - Carlota Peral
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnólogico de Álava, Leonardo Da Vinci 1, 01510 Minano, Spain; (C.P.); (T.D.)
| | - Thomas Dietrich
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnólogico de Álava, Leonardo Da Vinci 1, 01510 Minano, Spain; (C.P.); (T.D.)
| | - Markus Neureiter
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.K.); (L.P.)
- Correspondence: ; Tel.: +43-1-47654-97441
| |
Collapse
|
17
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
18
|
Bellary S, Patil M, Mahesh A, Lali A. Microbial conversion of lignin rich biomass hydrolysates to medium chain length polyhydroxyalkanoates (mcl-PHA) using Pseudomonas putida KT2440. Prep Biochem Biotechnol 2022; 53:54-63. [PMID: 35266860 DOI: 10.1080/10826068.2022.2036999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As world moves toward increasing number of products being produced from renewable lignocellulosic agricultural and forest residues, the major classes of products that will shift to greener routes on priority are energy, fuels, and materials in that order. In materials segment, polyhydroxyalkanoates are an emerging class of biopolyesters with several potential industrial uses. The present work investigates medium chain length polyhydroxyalkanoates (mcl-PHA) producing capabilities of Pseudomonas putida KT2440 from a mixture of compounds produced from lignocellulosic biomass deconstruction. The hydrolysates obtained from nitric acid pretreatment of lignin rich cotton stalk (CS) and palm empty fruit bunch (EFB) were used as substrates for production of mcl-PHA. Presence of 3-hydroxydecanoate and 3-hydroxyocytanoate observed on GC-MS confirmed PHA accumulation in the cells. PHA accumulation was estimated between 20% and 35% of cell dry weight when grown on both model substrates as well as biomass hydrolysates. PHA titers obtained on hydrolysates of CS and EFB were 0.24 g/L and 0.21 g/L, respectively.
Collapse
Affiliation(s)
- Suveera Bellary
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Mallikarjun Patil
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Aruna Mahesh
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Arvind Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
19
|
Idris S, Abdul Rahim R, Abdullah Amirul AA. Bioprospecting and Molecular Identification of Used Transformer Oil-Degrading Bacteria for Bioplastics Production. Microorganisms 2022; 10:583. [PMID: 35336158 PMCID: PMC8953411 DOI: 10.3390/microorganisms10030583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
One of the major impediments to the commercialization of biodegradable plastic is the high cost of substrate. Consequently, there is a continuous search for effective microorganisms and cheaper carbon substrates to reduce the high production cost. In this study, waste transformer oil-degrading bacteria were isolated from soil, wastewater, and sediment samples, using a mineral salt medium (MSM) supplemented with 1% waste transformer oil as the sole carbon source. The isolates were screened for polyhydroxyalkanoates (PHA) production using Nile red staining and fluorescence microscopy. PHA granules accumulation was confirmed using transmission electron microscopy. Oil degradation analysis was accomplished using solvent extraction and gravimetric methods whereas, the bacteria were identified using 16S DNA sequence homology. A total of 62 transformer oil-degrading bacteria were isolated, out of which 16 (26%) showed positive results for Nile red fluorescence microscopy. The identified organisms belong to four different taxonomic genera of Acinetobacter, Bacillus, Proteus, and Serratia. The percentage of oil degradation observed among the different isolates ranged between 19.58% and 57.51%. Analysis of the PHA extracted from the selected isolate revealed the presence of medium chain length polyhydroxyalkanoates (mcl-PHA). The findings of this work have further highlighted the diversity of the bacteria capable of utilizing waste streams such as waste transformer oil. Consequently, the isolates can be explored as agents of converting waste transformer oil into bioplastics.
Collapse
Affiliation(s)
- Shehu Idris
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (S.I.); (R.A.R.)
- Department of Microbiology, Kaduna State University, Kaduna PMB 2339, Nigeria
| | - Rashidah Abdul Rahim
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (S.I.); (R.A.R.)
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (S.I.); (R.A.R.)
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia
| |
Collapse
|
20
|
Yoon J, Oh MK. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. BIORESOURCE TECHNOLOGY 2022; 344:126307. [PMID: 34767907 DOI: 10.1016/j.biortech.2021.126307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Biosynthesis of polyhydroxyalkanoates (PHAs) from C1 gases is highly desirable in solving problems such as climate change and microplastic pollution. PHAs are biopolymers synthesized in microbial cells and can be used as alternatives to petroleum-based plastics because of their biodegradability. Because 50% of the cost of PHA production is due to organic carbon sources and salts, the utilization of costless C1 gases as carbon sources is expected to be a promising approach for PHA production. In this review, strategies for PHA production using C1 gases through fermentation and metabolic engineering are discussed. In particular, autotrophs, acetogens, and methanotrophs are strains that can produce PHA from CO2, CO, and CH4. In addition, integrated bioprocesses for the efficient utilization of C1 gases are introduced. Biorefinery processes from C1 gas into bioplastics are prospective strategies with promising potential and feasibility to alleviate environmental issues.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
21
|
Guo W, Yang K, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue repair and regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
22
|
Bhola S, Arora K, Kulshrestha S, Mehariya S, Bhatia RK, Kaur P, Kumar P. Established and Emerging Producers of PHA: Redefining the Possibility. Appl Biochem Biotechnol 2021; 193:3812-3854. [PMID: 34347250 DOI: 10.1007/s12010-021-03626-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
The polyhydroxyalkanoate was discovered almost around a century ago. Still, all the efforts to replace the traditional non-biodegradable plastic with much more environmentally friendly alternative are not enough. While the petroleum-based plastic is like a parasite, taking over the planet rapidly and without any feasible cure, its perennial presence has made the ocean a floating island of life-threatening debris and has flooded the landfills with toxic towering mountains. It demands for an immediate solution; most resembling answer would be the polyhydroxyalkanoates. The production cost is yet one of the significant challenges that various corporate is facing to replace the petroleum-based plastic. To deal with the economic constrain better strain, better practices, and a better market can be adopted for superior results. It demands for systems for polyhydroxyalkanoate production namely bacteria, yeast, microalgae, and transgenic plants. Solely strains affect more than 40% of overall production cost, playing a significant role in both upstream and downstream processes. The highly modifiable nature of the biopolymer provides the opportunity to replace the petroleum plastic in almost all sectors from food packaging to medical industry. The review will highlight the recent advancements and techno-economic analysis of current commercial models of polyhydroxyalkanoate production. Bio-compatibility and the biodegradability perks to be utilized highly efficient in the medical applications gives ample reason to tilt the scale in the favor of the polyhydroxyalkanoate as the new conventional and sustainable plastic.
Collapse
Affiliation(s)
- Shivam Bhola
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Kanika Arora
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | | | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Parneet Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
23
|
Li D, Ma X, Yin F, Qiu Y, Yan X. Creating biotransformation of volatile fatty acids and octanoate as co-substrate to high yield medium-chain-length polyhydroxyalkanoate. BIORESOURCE TECHNOLOGY 2021; 331:125031. [PMID: 33798859 DOI: 10.1016/j.biortech.2021.125031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Using mixed microbial consortium (MMC) to accumulate polyhydroxyalkanoate (PHA) is an effective strategy to solve high production cost and reduce the amount of excess sludge. In this study, a process for the production of short-chain-length and medium-chain-length PHA using volatile fatty acids (VFAs) from pretreated wood hydrolysate synergistic with octanoate as co-substrate was proposed. The effects of co-substrate ratios on PHA accumulation ability and physical properties were investigated. The incorporation of co-substrate accelerated the time of PHA and 3-hydroxyoctanoate reaching the maximum production (1834 and 280 mg COD/L). The highest PHA content was 53.0% (w/w), which was equivalent to that reported previously. The biopolymer films possessed high tensile strength, Young's modulus, and could be used in the field of water vapor barrier requirements. The accumulation strategy applied for converting fermentation products VFAs and octanoate co-substrate into high value and yield PHA could potentially demonstrate the valuable for low-cost large-scale production.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China.
| | - Fen Yin
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xu Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| |
Collapse
|
24
|
Szacherska K, Oleskowicz-Popiel P, Ciesielski S, Mozejko-Ciesielska J. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers (Basel) 2021; 13:polym13030321. [PMID: 33498279 PMCID: PMC7863920 DOI: 10.3390/polym13030321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Waste of industrial origin produced from synthetic materials are a serious threat to the natural environment. The ending resources of fossil raw materials and increasingly restrictive legal standards for the management of plastic waste have led to research on the use of biopolymers, which, due to their properties, may be an ecological alternative to currently used petrochemical polymers. Polyhydroxyalkanoates (PHAs) have gained much attention in recent years as the next generation of environmentally friendly materials. Currently, a lot of research is being done to reduce the costs of the biological process of PHA synthesis, which is the main factor limiting the production of PHAs on the industrial scale. The volatile fatty acids (VFAs) produced by anaerobic digestion from organic industrial and food waste, and various types of wastewater could be suitable carbon sources for PHA production. Thus, reusing the organic waste, while reducing the future fossil fuel, originated from plastic waste. PHA production from VFAs seem to be a good approach since VFAs composition determines the constituents of PHAs polymer and is of great influence on its properties. In order to reduce the overall costs of PHA production to a more reasonable level, it will be necessary to design a bioprocess that maximizes VFAs production, which will be beneficial for the PHA synthesis. Additionally, a very important factor that affects the profitable production of PHAs from VFAs is the selection of a microbial producer that will effectively synthesize the desired bioproduct. PHA production from VFAs has gained significant interest since VFAs composition determines the constituents of PHA polymer. Thus far, the conversion of VFAs into PHAs using pure bacterial cultures has received little attention, and the majority of studies have used mixed microbial communities for this purpose. This review discusses the current state of knowledge on PHAs synthesized by microorganisms cultured on VFAs.
Collapse
Affiliation(s)
- Karolina Szacherska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Correspondence:
| |
Collapse
|
25
|
Bayon-Vicente G, Zarbo S, Deutschbauer A, Wattiez R, Leroy B. Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by Rhodospirillum rubrum. Appl Environ Microbiol 2020; 86:e00901-20. [PMID: 32651203 PMCID: PMC7480388 DOI: 10.1128/aem.00901-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Purple nonsulfur bacteria are increasingly recognized for industrial applications in bioplastics, pigment, and biomass production. In order to optimize the yield of future biotechnological processes, the assimilation of different carbon sources by Rhodospirillum rubrum has to be understood. As they are released from several fermentation processes, volatile fatty acids (VFAs) represent a promising carbon source in the development of circular industrial applications. To obtain an exhaustive characterization of the photoheterotrophic metabolism of R. rubrum in the presence of valerate, we combined phenotypic, proteomic, and genomic approaches. We obtained evidence that valerate is cleaved into acetyl coenzyme A (acetyl-CoA) and propionyl-CoA and depends on the presence of bicarbonate ions. Genomic and enzyme inhibition data showed that a functional methylmalonyl-CoA pathway is essential. Our proteomic data showed that the photoheterotrophic assimilation of valerate induces an intracellular redox stress which is accompanied by an increased abundance of phasins (the main proteins present in polyhydroxyalkanoate [PHA] granules). Finally, we observed a significant increase in the production of the copolymer P(HB-co-HV), accounting for a very high (>80%) percentage of HV monomer. Moreover, an increase in the PHA content was obtained when bicarbonate ions were progressively added to the medium. The experimental conditions used in this study suggest that the redox imbalance is responsible for PHA production. These findings also reinforce the idea that purple nonsulfur bacteria are suitable for PHA production through a strategy other than the well-known feast-and-famine process.IMPORTANCE The use and the littering of plastics represent major issues that humanity has to face. Polyhydroxyalkanoates (PHAs) are good candidates for the replacement of oil-based plastics, as they exhibit comparable physicochemical properties but are biobased and biodegradable. However, the current industrial production of PHAs is curbed by the production costs, which are mainly linked to the carbon source. Volatile fatty acids issued from the fermentation processes constitute interesting carbon sources, since they are inexpensive and readily available. Among them, valerate is gaining interest regarding the ability of many bacteria to produce a copolymer of PHAs. Here, we describe the photoheterotrophic assimilation of valerate by Rhodospirillum rubrum, a purple nonsulfur bacterium mainly known for its metabolic versatility. Using a knowledge-based optimization process, we present a new strategy for the improvement of PHA production, paving the way for the use of R. rubrum in industrial processes.
Collapse
Affiliation(s)
- Guillaume Bayon-Vicente
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sarah Zarbo
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
26
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
27
|
Cerrone F, Pozner T, Siddiqui A, Ceppi P, Winner B, Rajendiran M, Babu R, Ibrahim HS, Rodriguez BJ, Winkler J, Murphy KJ, O'Connor KE. Polyhydroxyphenylvalerate/polycaprolactone nanofibers improve the life-span and mechanoresponse of human IPSC-derived cortical neuronal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110832. [DOI: 10.1016/j.msec.2020.110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
28
|
Efficacy of medium chain-length polyhydroxyalkanoate biosynthesis from different biochemical pathways under oxygen-limited conditions using Pseudomonas putida LS46. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Liu C, Qi L, Yang S, He Y, Jia X. Increased sedimentation of a Pseudomonas–Saccharomyces microbial consortium producing medium chain length polyhydroxyalkanoates. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Grigore ME, Grigorescu RM, Iancu L, Ion RM, Zaharia C, Andrei ER. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:695-712. [DOI: 10.1080/09205063.2019.1605866] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mădălina Elena Grigore
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
| | - Ramona Marina Grigorescu
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
| | - Lorena Iancu
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
| | - Rodica-Mariana Ion
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
- Valahia University, Materials Engineering Department, 13th Aleey Sinaia, Targoviste, Romania
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Elena Ramona Andrei
- "Evaluation and Conservation of Cultural Heritage” Research Group, National Institute for Research and Development in Chemistry and Petrochemistry, ICECHIM, Bucharest, Romania
| |
Collapse
|
31
|
Thomas T, Elain A, Bazire A, Bruzaud S. Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. World J Microbiol Biotechnol 2019; 35:50. [PMID: 30852675 DOI: 10.1007/s11274-019-2627-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
A halophilic Gram-negative eubacterium was isolated from the Iroise Sea and identified as an efficient producer of polyhydroxyalkanoates (PHA). The strain, designated SF2003, was found to belong to the Halomonas genus on the basis of 16S rRNA gene sequence similarity. Previous biochemical tests indicated that the Halomonas sp. strain SF2003 is capable of supporting various culture conditions which sometimes can be constraining for marine strains. This versatility could be of great interest for biotechnological applications. Therefore, a complete bacterial genome sequencing and de novo assembly were performed using a PacBio RSII sequencer and Hierarchical Genome Assembly Process software in order to predict Halomonas sp. SF2003 metabolisms, and to identify genes involved in PHA production and stress tolerance. This study demonstrates the complete genome sequence of Halomonas sp. SF2003 which contains a circular 4,36 Mbp chromosome, and replaces the strain in a phylogenetic tree. Genes related to PHA metabolism, carbohydrate metabolism, fatty acid metabolism and stress tolerance were identified and a comparison was made with metabolisms of relative species. Genes annotation highlighted the presence of typical genes involved in PHA biosynthesis such as phaA, phaB and phaC and enabled a preliminary analysis of their organization and characteristics. Several genes of carbohydrates and fatty acid metabolisms were also identified which provided helpful insights into both a better knowledge of the intricacies of PHA biosynthetic pathways and of production purposes. Results show the strong versatility of Halomonas sp. SF2003 to adapt to various temperatures and salinity which can subsequently be exploited for industrial applications such as PHA production.
Collapse
Affiliation(s)
- Tatiana Thomas
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France
| | - Anne Elain
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France.
| |
Collapse
|
32
|
Wróbel-Kwiatkowska M, Kropiwnicki M, Żebrowski J, Beopoulos A, Dymińska L, Hanuza J, Rymowicz W. Effect of mcl-PHA synthesis in flax on plant mechanical properties and cell wall composition. Transgenic Res 2018; 28:77-90. [PMID: 30484148 PMCID: PMC6353814 DOI: 10.1007/s11248-018-0105-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/21/2018] [Indexed: 01/10/2023]
Abstract
The high demand for new biomaterials makes synthesis of polyhydroxyalkanoates (PHA) in plants an interesting and desirable achievement. Production of polymers in plants is an example of application of biotechnology for improving the properties of plants, e.g. industrial properties, but it can also provide knowledge about plant physiology and metabolism. The subject of the present study was an industrially important plant: flax, Linum usitatissimum L., of a fibre cultivar (cv Nike). In the study the gene encoding PHA synthase from Pseudomonas aeruginosa, fused to a peroxisomal targeting signal, was expressed in flax plants with the aim of modifying the mechanical properties of plants. Medium-chain-length (mcl) hydroxy acids in flax plants from tissue cultures were detected by GC-FID and FTIR method. The introduced changes did not affect fatty acid content and composition in generated flax plants. Since mcl-PHA are known as elastomers, the mechanical properties of created plants were examined. Modified plants showed increases in the values of all measured parameters (except strain at break evaluated for one modified line). The largest increase was noted for tensile stiffness, which was 2- to 3-fold higher than in wild-type plants. The values estimated for another parameter, Young's modulus, was almost at the same level in generated flax plants, and they were about 2.7-fold higher when compared to unmodified plants. The created plants also exhibited up to about 2.4-fold higher tensile strength. The observed changes were accompanied by alterations in the expression of selected genes, related to cell wall metabolism in line with the highest expression of phaC1 gene. Biochemical data were confirmed by spectroscopic methods, which also revealed that crystallinity index values of cellulose in modified flax plants were increased in comparison to wild-type flax plants and correlated with biomechanical properties of plants.
Collapse
Affiliation(s)
- Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 51-630, Wrocław, Poland.
| | - Mateusz Kropiwnicki
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 51-630, Wrocław, Poland
| | - Jacek Żebrowski
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszów, Rzeszów, Poland
| | - Athanasios Beopoulos
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economics, Wrocław University of Economics, Komandorska Str. 118/120, Wrocław, Poland
| | - Jerzy Hanuza
- Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, Okólna Str.2, Wrocław, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 51-630, Wrocław, Poland
| |
Collapse
|
33
|
Chen Z, Zhang C, Shen L, Li H, Peng Y, Wang H, He N, Li Q, Wang Y. Synthesis of Short-Chain-Length and Medium-Chain-Length Polyhydroxyalkanoate Blends from Activated Sludge by Manipulating Octanoic Acid and Nonanoic Acid as Carbon Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11043-11054. [PMID: 30265532 DOI: 10.1021/acs.jafc.8b04001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effects of octanoic acid/nonanoic acid and acclimation time on the synthesis of short-chain-length and medium-chain-length PHA blends from activated sludge were investigated. An increased concentration (847-1366 mg/L) of PHAs resulted from 4-month acclimation compared with the concentration derived from 2-month acclimation (450-1126 mg/L). The content of octanoic acid had a positive linear relationship with the content of even-numbered carbon monomers among the PHAs. The blending products were identified mainly with scl-PHAs during the 2-month acclimation period and were thereafter dominated by mcl-PHAs until 4 months of acclimation. Thermal properties analysis demonstrated that the products derived from 4-month acclimation were a mixture of scl-PHAs and mcl-PHAs rather than a copolymer of scl-PHAs and mcl-PHAs. High-throughput sequencing results indicated that Pseudofulvimonas, Paracoccus, and Blastocatella were the dominant genera that might be responsible for scl-PHAs production during the 2-month acclimation period, whereas Comamonas and Pseudomonas that were responsible for mcl-PHAs production then became the dominant genera after 4-months acclimation.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
- Department of Environmental Science, School of Environmental Science and Engineering, Tan Kah Kee College , Xiamen University , Zhangzhou 363105 , People's Republic of China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health , Wenzhou Medical University , Wenzhou 325035 , People's Republic of China
- Key Laboratory of Measurement and Control System for Coastal Environment , Fuqing Branch of Fujian Normal University , Fuqing 350300 , People's Republic of China
| | - Chuanpan Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Heng Li
- Department of Environmental Science, School of Environmental Science and Engineering, Tan Kah Kee College , Xiamen University , Zhangzhou 363105 , People's Republic of China
| | - Yajuan Peng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
- College of Food and Biological Engineering , Jimei University , Xiamen 361021 , People's Republic of China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| |
Collapse
|
34
|
Joyce A, Ijaz UZ, Nzeteu C, Vaughan A, Shirran SL, Botting CH, Quince C, O’Flaherty V, Abram F. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass. Front Microbiol 2018; 9:540. [PMID: 29619022 PMCID: PMC5871674 DOI: 10.3389/fmicb.2018.00540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates). In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3) prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins). Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to Clostridia in the bioreactor leachates. Numerous glycolytic enzymes and carbohydrate transporters were detected throughout the bioreactors in addition to proteins involved in butanol and lactate production. Finally, evidence of the prevalence of stressful conditions within the bioreactors and particularly impacting Clostridia was observed in the metaproteomes. Taken together, this study highlights the functional importance of Clostridia during the anaerobic digestion of grass and thus research avenues allowing members of this taxon to thrive should be explored.
Collapse
Affiliation(s)
- Aoife Joyce
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Umer Z. Ijaz
- Environmental Omics Laboratory, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Corine Nzeteu
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Vaughan
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Catherine H. Botting
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Christopher Quince
- Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
35
|
Freches A, Lemos PC. Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: Effect of OLR and cycle length. N Biotechnol 2017; 39:22-28. [DOI: 10.1016/j.nbt.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/06/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
36
|
Poblete-Castro I, Borrero-de Acuña JM, Nikel PI, Kohlstedt M, Wittmann C. Host Organism: Pseudomonas putida. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ignacio Poblete-Castro
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - José M. Borrero-de Acuña
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program; National Spanish Center for Biotechnology (CNB-CSIC); Calle Darwin, 3 28049 Madrid, Spain
| | - Michael Kohlstedt
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| |
Collapse
|
37
|
Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Appl Environ Microbiol 2016; 82:6132-6140. [PMID: 27520812 DOI: 10.1128/aem.01744-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022] Open
Abstract
The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO2-containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter PcooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHAMCL), enhanced gene expression through the PcooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the Plac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHAMCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. IMPORTANCE Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The utilization of cheap substrates for the microbial production of PHAs is crucial to lower production costs. Feedstock not competing with human nutrition is highly favorable. Syngas, a mixture of carbon monoxide, carbon dioxide, and hydrogen, can be obtained by pyrolysis of organic waste and can be utilized for PHA synthesis by several kinds of bacteria. Up to now, the biosynthesis of PHAs from syngas has been limited to short-chain-length PHAs, which results in a stiff and brittle material. In this study, the syngas-utilizing bacterium Rhodospirillum rubrum was genetically modified to synthesize a polymer which consisted of medium-chain-length constituents, resulting in a rubber-like material. This study reports the establishment of a microbial synthesis of these so-called medium-chain-length PHAs from syngas and therefore potentially extends the applications of syngas-derived PHAs.
Collapse
|
38
|
Pan C, Tan GYA, Ge L, Chen CL, Wang JY. Microbial removal of carboxylic acids from 1,3-propanediol in glycerol anaerobic digestion effluent by PHAs-producing consortium. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Biological System as Reactor for the Production of Biodegradable Thermoplastics, Polyhydroxyalkanoates. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
40
|
Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol 2016; 89:161-74. [PMID: 27126172 DOI: 10.1016/j.ijbiomac.2016.04.069] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 02/02/2023]
Abstract
Traditional mineral oil based plastics are important commodity to enhance the comfort and quality of life but the accumulation of these plastics in the environment has become a major universal problem due to their low biodegradation. Solution to the plastic waste management includes incineration, recycling and landfill disposal methods. These processes are very time consuming and expensive. Biopolymers are important alternatives to the petroleum-based plastics due to environment friendly manufacturing processes, biodegradability and biocompatibility. Therefore use of novel biopolymers, such as polylactide, polysaccharides, aliphatic polyesters and polyhydroxyalkanoates is of interest. PHAs are biodegradable polyesters of hydroxyalkanoates (HA) produced from renewable resources by using microorganisms as intracellular carbon and energy storage compounds. Even though PHAs are promising candidate for biodegradable polymers, however, the production cost limit their application on an industrial scale. This article provides an overview of various substrates, microorganisms for the economical production of PHAs and its copolymers. Recent advances in PHAs to reduce the cost and to improve the performance of PHAs have also been discussed.
Collapse
Affiliation(s)
- Anbreen Anjum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| |
Collapse
|
41
|
Yao H, Wei D, Che X, Cai L, Tao L, Liu L, Wu L, Chen GQ. Comb-like temperature-responsive polyhydroxyalkanoate-graft-poly(2-dimethylamino-ethylmethacrylate) for controllable protein adsorption. Polym Chem 2016. [DOI: 10.1039/c6py01235c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhydroxyalkanoates (PHA) are a family of diverse biopolyesters produced by many bacteria grown on sustainable bio-resources such as glucose or fatty acids.
Collapse
Affiliation(s)
- Hui Yao
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| | - Daixu Wei
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| | - Xuemei Che
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| | - Longwei Cai
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| | - Lei Tao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Linping Wu
- Department of Pharmacy
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Copenhagen 2100
- Denmark
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Science
- Tsinghua University
- Beijing 100084
| |
Collapse
|
42
|
Cerrone F, Davis R, Kenny ST, Woods T, O'Donovan A, Gupta VK, Tuohy M, Babu RP, O'Kiely P, O'Connor K. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. BIORESOURCE TECHNOLOGY 2015; 191:45-52. [PMID: 25978856 DOI: 10.1016/j.biortech.2015.04.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
This study demonstrates the use of a mannitol rich ensiled grass press juice (EGPJ) as a renewable carbon substrate for polyhydroxyalkanoates (PHA) production in shaking flask experiments and fed-batch stirred tank reactor cultivations. Fed-batch cultivations of Burkholderia sacchari IPT101 using EGPJ as sole carbon source produced 44.5 g/L CDW containing 33% polyhydroxybutyrate (PHB) in 36 h, while Pseudomonas chlororaphis IMD555 produced a CDW of 37 g/L containing 10% of medium chain length polyhydroxyalkanoates (mcl-PHA) in 34 h. PHB and mcl-PHA extracted from B. sacchari IPT101 and P. chlororaphis IMD555, grown on EGPJ, had a molecular weight of 548 kg/mol and 115.4 kg/mol, respectively. While mcl-PHA can be produced from EGPJ, PHB production is more interesting as there is a 4-fold higher volumetric productivity compared to mcl-PHA.
Collapse
Affiliation(s)
- Federico Cerrone
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland
| | - Reeta Davis
- Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland; Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland
| | - Shane T Kenny
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trevor Woods
- Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland; School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Anthonia O'Donovan
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Vijai Kumar Gupta
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Maria Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Ramesh P Babu
- Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland; Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland; School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Padraig O'Kiely
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Kevin O'Connor
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland.
| |
Collapse
|
43
|
Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Cerrone F, Duane G, Casey E, Davis R, Belton I, Kenny ST, Guzik MW, Woods T, Babu RP, O'Connor K. Fed-batch strategies using butyrate for high cell density cultivation of Pseudomonas putida and its use as a biocatalyst. Appl Microbiol Biotechnol 2014; 98:9217-28. [PMID: 25104034 DOI: 10.1007/s00253-014-5989-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022]
Abstract
A mathematically based fed-batch bioprocess demonstrated the suitability of using a relatively cheap and renewable substrate (butyric acid) for Pseudomonas putida CA-3 high cell density cultivation. Butyric acid fine-tuned addition is critical to extend the fermentation run and avoid oxygen consumption while maximising the biomass volumetric productivity. A conservative submaximal growth rate (μ of 0.25 h(-1)) achieved 71.3 g L(-1) of biomass after 42 h of fed-batch growth. When a more ambitious feed rate was supplied in order to match a μ of 0.35 h(-1), the volumetric productivity was increased to 2.0 g L(-1) h(-1), corresponding to a run of 25 h and 50 g L(-1) of biomass. Both results represent the highest biomass and the best biomass volumetric productivity with butyrate as a sole carbon source. However, medium chain length polyhydroxyalkanoate (mcl-PHA) accumulation with butyrate grown cells is low (4 %). To achieve a higher mcl-PHA volumetric productivity, decanoate was supplied to butyrate grown cells. This strategy resulted in a PHA volumetric productivity of 4.57 g L(-1) h(-1) in the PHA production phase and 1.63 g L(-1) h(-1)over the lifetime of the fermentation, with a maximum mcl-PHA accumulation of 65 % of the cell dry weight.
Collapse
Affiliation(s)
- Federico Cerrone
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guzik MW, Narancic T, Ilic-Tomic T, Vojnovic S, Kenny ST, Casey WT, Duane GF, Casey E, Woods T, Babu RP, Nikodinovic-Runic J, O'Connor KE. Identification and characterization of an acyl-CoA dehydrogenase from Pseudomonas putida KT2440 that shows preference towards medium to long chain length fatty acids. MICROBIOLOGY-SGM 2014; 160:1760-1771. [PMID: 24794972 DOI: 10.1099/mic.0.078758-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (β-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 °C and pH 6.5-7.
Collapse
Affiliation(s)
- Maciej W Guzik
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Tanja Narancic
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Tatjana Ilic-Tomic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Shane T Kenny
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - William T Casey
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| | - Gearoid F Duane
- School of Chemical and Bioprocess Engineering, Engineering and Materials Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, Engineering and Materials Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trevor Woods
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Ramesh Padamati Babu
- Centre for Research, Adoptive Nano Structures and Nanodevices, Trinity College Dublin, Dublin 2, Ireland.,School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Jasmina Nikodinovic-Runic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Kevin E O'Connor
- School of Biomolecular and Biomedical Sciences, University College Dublin, Ardmore House, Belfield, Dublin 4, Ireland
| |
Collapse
|
46
|
Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Appl Microbiol Biotechnol 2014; 98:3965-74. [PMID: 24477383 DOI: 10.1007/s00253-014-5524-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
In spite of numerous advantages on operating fermentation at elevated temperatures, very few thermophilic bacteria with polyhydroxyalkanoates (PHAs)-accumulating ability have yet been found in contrast to the tremendous mesophiles with the same ability. In this study, a thermophilic poly(3-hydroxybutyrate) (PHB)-accumulating bacteria (Chelatococcus daeguensis TAD1), isolated from the biofilm of a biotrickling filter used for NOx removal, was extensively investigated and compared to other PHB-accumulating bacteria. The results demonstrate that C. daeguensis TAD1 is a growth-associated PHB-accumulating bacterium without obvious nutrient limitation, which was capable of accumulating PHB up to 83.6 % of cell dry weight (CDW, w/w) within just 24 h at 45 °C from glucose. Surprisingly, the PHB production of C. daeguensis TAD1 exhibited strong tolerance to high heat stress as well as nitrogen loads compared to that of other PHB-accumulating bacterium, while the optimal PHB amount (3.44 ± 0.3 g l(-1)) occurred at 50 °C and C/N = 30 (molar) with glucose as the sole carbon source. In addition, C. daeguensis TAD1 could effectively utilize various cheap substrates (starch or glycerol) for PHB production without pre-hydrolyzed, particularly the glycerol, exhibiting the highest product yield (Y P/S, 0.26 g PHB per gram substrate used) as well as PHB content (80.4 % of CDW, w/w) compared to other carbon sources. Consequently, C. daeguensis TAD1 is a viable candidate for large-scale production of PHB via utilizing starch or glycerol as the raw materials.
Collapse
|