1
|
Chánique AM, Polidori N, Sovic L, Kracher D, Assil-Companioni L, Galuska P, Parra LP, Gruber K, Kourist R. A Cold-Active Flavin-Dependent Monooxygenase from Janthinobacterium svalbardensis Unlocks Applications of Baeyer–Villiger Monooxygenases at Low Temperature. ACS Catal 2023; 13:3549-3562. [PMID: 36970468 PMCID: PMC10028610 DOI: 10.1021/acscatal.2c05160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Cold-active enzymes maintain a large part of their optimal activity at low temperatures. Therefore, they can be used to avoid side reactions and preserve heat-sensitive compounds. Baeyer-Villiger monooxygenases (BVMO) utilize molecular oxygen as a co-substrate to catalyze reactions widely employed for steroid, agrochemical, antibiotic, and pheromone production. Oxygen has been described as the rate-limiting factor for some BVMO applications, thereby hindering their efficient utilization. Considering that oxygen solubility in water increases by 40% when the temperature is decreased from 30 to 10 °C, we set out to identify and characterize a cold-active BVMO. Using genome mining in the Antarctic organism Janthinobacterium svalbardensis, a cold-active type II flavin-dependent monooxygenase (FMO) was discovered. The enzyme shows promiscuity toward NADH and NADPH and high activity between 5 and 25 °C. The enzyme catalyzes the monooxygenation and sulfoxidation of a wide range of ketones and thioesters. The high enantioselectivity in the oxidation of norcamphor (eeS = 56%, eeP > 99%, E > 200) demonstrates that the generally higher flexibility observed in the active sites of cold-active enzymes, which compensates for the lower motion at cold temperatures, does not necessarily reduce the selectivity of these enzymes. To gain a better understanding of the unique mechanistic features of type II FMOs, we determined the structure of the dimeric enzyme at 2.5 Å resolution. While the unusual N-terminal domain has been related to the catalytic properties of type II FMOs, the structure shows a SnoaL-like N-terminal domain that is not interacting directly with the active site. The active site of the enzyme is accessible only through a tunnel, with Tyr-458, Asp-217, and His-216 as catalytic residues, a combination not observed before in FMOs and BVMOs.
Collapse
Affiliation(s)
- Andrea M. Chánique
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7810000, Chile
| | - Nakia Polidori
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Lucija Sovic
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Daniel Kracher
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Leen Assil-Companioni
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- ACIB GmbH, Petersgasse 14/1, Graz 8010, Austria
| | - Philipp Galuska
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7810000, Chile
| | - Karl Gruber
- NAWI Graz, BioTechMed Graz, Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Robert Kourist
- NAWI Graz, BioTechMed-Graz, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- ACIB GmbH, Petersgasse 14/1, Graz 8010, Austria
| |
Collapse
|
2
|
Willetts A. Inter-Species Redox Coupling by Flavin Reductases and FMN-Dependent Two-Component Monooxygenases Undertaking Nucleophilic Baeyer-Villiger Biooxygenations. Microorganisms 2022; 11:microorganisms11010071. [PMID: 36677363 PMCID: PMC9864536 DOI: 10.3390/microorganisms11010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Using highly purified enzyme preparations throughout, initial kinetic studies demonstrated that the isoenzymic 2,5- and 3,6-diketocamphane mono-oxygenases from Pseudomonas putida ATCC 17453 and the LuxAB luciferase from Vibrio fischeri ATCC 7744 exhibit commonality in being FMN-dependent two-component monooxygenases that promote redox coupling by the transfer of flavin reductase-generated FMNH2 by rapid free diffusion. Subsequent studies confirmed the comprehensive inter-species compatibility of both native and non-native flavin reductases with each of the tested monooxygenases. For all three monooxygenases, non-native flavin reductases from Escherichia coli ATCC 11105 and Aminobacter aminovorans ATCC 29600 were confirmed to be more efficient donators of FMNH2 than the corresponding tested native flavin reductases. Some potential practical implications of these outcomes are considered for optimising FMNH2-dependent biooxygenations of recognised practical and commercial value.
Collapse
|
3
|
Zhou Q, Peng SY, Zhang K, Luo GC, Han L, He QL, Tang GL. A Flavin-Dependent Monooxygenase Mediates Divergent Oxidation of Rifamycin. Org Lett 2021; 23:2342-2346. [PMID: 33683897 DOI: 10.1021/acs.orglett.1c00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rifamycins have been clinically utilized against mycobacterial infections for more than 50 years; however, their biosynthesis has not been fully elucidated. Here, on the basis of in vivo gene deletions, in vitro enzyme assays, isotope labeling, and site-directed mutations, we found that a flavin-dependent monooxygenase encoded by a rifamycin biosynthetic gene cluster, Rif-Orf17, not only converted the naphthoquinone chromophore of rifamycin S into benzo-γ-pyrone but also linearized rifamycin SV through phenolic hydroxylation. Both oxidation routes lead to inactivation of rifamycins.
Collapse
Affiliation(s)
- Qiang Zhou
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shu-Ya Peng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Kai Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guang-Cai Luo
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gong-Li Tang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
4
|
Röllig R, Paul CE, Claeys-Bruno M, Duquesne K, Kara S, Alphand V. Divorce in the two-component BVMO family: the single oxygenase for enantioselective chemo-enzymatic Baeyer-Villiger oxidations. Org Biomol Chem 2021; 19:3441-3450. [PMID: 33899864 DOI: 10.1039/d1ob00015b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-component flavoprotein monooxygenases consist of a reductase and an oxygenase enzyme. The proof of functionality of the latter without its counterpart as well as the mechanism of flavin transfer remains unanswered beyond doubt. To tackle this question, we utilized a reductase-free reaction system applying purified 2,5-diketocamphane-monooxygenase I (2,5-DKCMO), a FMN-dependent type II Baeyer-Villiger monooxygenase, and synthetic nicotinamide analogues (NCBs) as dihydropyridine derivatives for FMN reduction. This system demonstrated the stand-alone quality of the oxygenase, as well as the mechanism of FMNH2 transport by free diffusion. The efficiency of this reductase-free system strongly relies on the balance of FMN reduction and enzymatic (re)oxidation, since reduced FMN in solution causes undesired side reactions, such as hydrogen peroxide formation. Design of experiments allowed us to (i) investigate the effect of various reaction parameters, underlining the importance to balance the FMN/FMNH2 cycle, (ii) optimize the reaction system for the enzymatic Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one, rac-camphor, and rac-norcamphor. Finally, this study not only demonstrates the reductase-independence of 2,5-DKCMO, but also revisits the terminology of two-component flavoprotein monooxygenases for this specific case.
Collapse
Affiliation(s)
- Robert Röllig
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France. and Aarhus University, Denmark
| | | | | | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| | | | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, Marseille, France.
| |
Collapse
|
5
|
Willetts A, Masters P, Steadman C. Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007. Microorganisms 2018; 6:E41. [PMID: 29735926 PMCID: PMC6027186 DOI: 10.3390/microorganisms6020041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022] Open
Abstract
For the first time, the differential rates of synthesis of all the key monooxygenases involved in the catabolism by Pseudomonas putida NCIMB 10007 of bicyclic (rac)-camphor to ∆2,5-3,4,4-trimethylpimelyl-CoA, the first aliphatic pathway intermediate, have been determined to help establish the relevant induction profile of each of the oxygen-dependent enzymes. The efficacy of both relevant substrates and pathway metabolites as inducers has been established. Further, inhibitors with characterised functionality have been used to indicate that the pertinent regulatory controls operate at the level of transcription of the corresponding genes.
Collapse
Affiliation(s)
- Andrew Willetts
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK.
- Curnow Consultancies, Helston TR13 9PQ, UK.
| | | | | |
Collapse
|
6
|
Beier A, Bordewick S, Genz M, Schmidt S, van den Bergh T, Peters C, Joosten HJ, Bornscheuer UT. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase. Chembiochem 2016; 17:2312-2315. [PMID: 27735116 DOI: 10.1002/cbic.201600484] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 11/05/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to esters or lactones by using molecular oxygen and a cofactor. Type I BVMOs display a strong preference for NADPH. However, for industrial purposes NADH is the preferred cofactor, as it is ten times cheaper and more stable. Thus, we created a variant of the cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMOAcineto ); this used NADH 4200-fold better than NADPH. By combining structure analysis, sequence alignment, and literature data, 21 residues in proximity of the cofactor were identified and targeted for mutagenesis. Two combinatorial variants bearing three or four mutations showed higher conversions of cyclohexanone with NADH (79 %) compared to NADPH (58 %) as well as specificity. The structural reasons for this switch in cofactor specificity of a type I BVMO are especially a hydrogen-bond network coordinating the two hydroxy groups of NADH through direct interactions and bridging water molecules.
Collapse
Affiliation(s)
- Andy Beier
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Sven Bordewick
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Maika Genz
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Sandy Schmidt
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Tom van den Bergh
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA, Nijmegen, The Netherlands
| | - Christin Peters
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Henk-Jan Joosten
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA, Nijmegen, The Netherlands
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
7
|
Baeyer-Villiger oxidations: biotechnological approach. Appl Microbiol Biotechnol 2016; 100:6585-6599. [DOI: 10.1007/s00253-016-7670-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
8
|
A fusion protein consisting of the exopeptidases PepN and PepX—production, characterization, and application. Appl Microbiol Biotechnol 2016; 100:7499-515. [DOI: 10.1007/s00253-016-7478-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
9
|
Isupov MN, Schröder E, Gibson RP, Beecher J, Donadio G, Saneei V, Dcunha SA, McGhie EJ, Sayer C, Davenport CF, Lau PC, Hasegawa Y, Iwaki H, Kadow M, Balke K, Bornscheuer UT, Bourenkov G, Littlechild JA. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2344-53. [PMID: 26527149 PMCID: PMC4631483 DOI: 10.1107/s1399004715017939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022]
Abstract
The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.
Collapse
Affiliation(s)
- Michail N. Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Ewald Schröder
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Robert P. Gibson
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Jean Beecher
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Giuliana Donadio
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Vahid Saneei
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Stephlina A. Dcunha
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Emma J. McGhie
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Christopher Sayer
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Colin F. Davenport
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Peter C. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Yoshie Hasegawa
- Department of Biotechnology, Faculty of Engineering, Kansai University, Japan
| | - Hiroaki Iwaki
- Department of Biotechnology, Faculty of Engineering, Kansai University, Japan
| | - Maria Kadow
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Kathleen Balke
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jennifer A. Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| |
Collapse
|
10
|
Engelmark Cassimjee K, Kadow M, Wikmark Y, Svedendahl Humble M, Rothstein ML, Rothstein DM, Bäckvall JE. A general protein purification and immobilization method on controlled porosity glass: biocatalytic applications. Chem Commun (Camb) 2015; 50:9134-7. [PMID: 24989793 DOI: 10.1039/c4cc02605e] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A general combined purification and immobilization method to facilitate biocatalytic process development is presented. The support material, EziG™, is based on controlled porosity glass (CPG) or polymer-coated versions thereof (HybCPG) and binds protein affinity tags. Biocatalytic reactions in aqueous and organic media with seven enzymes of biocatalytic interest are shown.
Collapse
Affiliation(s)
- K Engelmark Cassimjee
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
11
|
Willetts A, Kelly DR. Multiple native flavin reductases in camphor-metabolizing Pseudomonas putida NCIMB 10007: functional interaction with two-component diketocamphane monooxygenase isoenzymes. MICROBIOLOGY-SGM 2014; 160:1783-1794. [PMID: 24836624 DOI: 10.1099/mic.0.079913-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although they have been studied for nearly 50 years, the source of the FMNH2 needed for effective biooxidation by the 2,5- and 3,6-diketocamphane monooxygenase (DKCMO) isoenzymes induced by the growth of Pseudomonas putida NCIMB 10007 (ATCC 17453) on camphor remains incompletely characterized. Prior studies have focussed exclusively on enzymes present in cells harvested during late-exponential-phase growth despite considerable circumstantial evidence that the flavin reductase (FR) component of these multicomponent monooxygenases is subject to growth-phase-dependent variation. In this study, a number of alternative FMNH2-generating activities, including both conventional FRs and enzymes also able to serve as ferric reductases, were isolated from camphor-grown cells, and the relative level, and hence potential contribution, of these various proteins shown to vary considerably depending on the point of harvest of NCIMB 10007 within exponential-phase growth. While two constitutive monomeric ferric reductases (molecular masses 27.0 and 28.5 kDa) were found to be the major relevant sources of FMNH2 during the initial stages of growth on camphor-based media, a significant subsequent contribution throughout the mid- to late-exponential phases of growth was also made by the camphor-induced homodimeric 37.0 kDa FR Fred, recently reported to serve such a role exclusively. The possible involvement of camphor-induced putidaredoxin reductase (51.0 kDa) as a contributory activity was also investigated and considered. Studies with highly purified preparations of the isofunctional DKCMOs confirmed the potential of the various reductases to function effectively as sources of the requisite FMNH2 to both monooxygenases at different times throughout growth on camphor.
Collapse
Affiliation(s)
- Andrew Willetts
- Department of Biological Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - David R Kelly
- Department of Chemistry, University of Wales College of Cardiff, Cardiff CF1 3TB, UK
| |
Collapse
|
12
|
Ceccoli RD, Bianchi DA, Rial DV. Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications. Front Microbiol 2014; 5:25. [PMID: 24567729 PMCID: PMC3915288 DOI: 10.3389/fmicb.2014.00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022] Open
Abstract
External flavoprotein monooxygenases comprise a group of flavin-dependent oxidoreductases that catalyze the insertion of one atom of molecular oxygen into an organic substrate and the second atom is reduced to water. These enzymes are involved in a great number of metabolic pathways both in prokaryotes and eukaryotes. Flavoprotein monooxygenases have attracted the attention of researchers for several decades and the advent of recombinant DNA technology caused a great progress in the field. These enzymes are subjected to detailed biochemical and structural characterization and some of them are also regarded as appealing oxidative biocatalysts for the production of fine chemicals and valuable intermediates toward active pharmaceutical ingredients due to their high chemo-, stereo-, and regioselectivity. Here, we review the most representative reactions catalyzed both in vivo and in vitro by prototype flavoprotein monooxygenases, highlighting the strategies employed to produce them recombinantly, to enhance the yield of soluble proteins, and to improve cofactor regeneration in order to obtain versatile biocatalysts. Although we describe the most outstanding features of flavoprotein monooxygenases, we mainly focus on enzymes that were cloned, expressed and used for biocatalysis during the last years.
Collapse
Affiliation(s)
- Romina D Ceccoli
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario CONICET, Rosario, Argentina
| | - Dario A Bianchi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Área Análisis de Medicamentos, Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Argentina
| | - Daniela V Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario CONICET, Rosario, Argentina
| |
Collapse
|