1
|
Betts PC, Blakely SJ, Rutkowski BN, Bender B, Klingler C, Froese JT. Engineering of Rieske dioxygenase variants with improved cis-dihydroxylation activity for benzoates. Biotechnol Bioeng 2024; 121:3144-3154. [PMID: 38951963 DOI: 10.1002/bit.28786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Rieske dioxygenases have a long history of being utilized as green chemical tools in the organic synthesis of high-value compounds, due to their capacity to perform the cis-dihydroxylation of a wide variety of aromatic substrates. The practical utility of these enzymes has been hampered however by steric and electronic constraints on their substrate scopes, resulting in limited reactivity with certain substrate classes. Herein, we report the engineering of a widely used member of the Rieske dioxygenase class of enzymes, toluene dioxygenase (TDO), to produce improved variants with greatly increased activity for the cis-dihydroxylation of benzoates. Through rational mutagenesis and screening, TDO variants with substantially improved activity over the wild-type enzyme were identified. Homology modeling, docking studies, molecular dynamics simulations, and substrate tunnel analysis were applied in an effort to elucidate how the identified mutations resulted in improved activity for this polar substrate class. These analyses revealed modification of the substrate tunnel as the likely cause of the improved activity observed with the best-performing enzyme variants.
Collapse
Affiliation(s)
- Phillip C Betts
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Spencer J Blakely
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | | | - Brandon Bender
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Cole Klingler
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| | - Jordan T Froese
- Department of Chemistry, Ball State University, Muncie, Indiana, USA
| |
Collapse
|
2
|
Wang E, Jiang Y, Zhao C. Hydroxytyrosol isolation, comparison of synthetic routes and potential biological activities. Food Sci Nutr 2024; 12:6899-6912. [PMID: 39479663 PMCID: PMC11521723 DOI: 10.1002/fsn3.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Hydroxytyrosol (HT) is a polyphenol found in the olive plant (Olea europaea) that has garnered attention from the food, feed, supplement, and pharmaceutical industries. HT has evolved from basic separation and extraction to chemical and biocatalytic synthesis. The yield of HT can reach 1.93 g/L/h through chemical synthesis and 7.7 g/L/h through biocatalysis; however, both methods are subject to inherent limitations. Furthermore, the potential health benefits associated with HT have been highlighted, including its ability to act as an antioxidant, reduce inflammation, combat cancer and obesity, and exert antibacterial and antiviral effects. Its neuroprotective effects, skin protection, and wound healing capabilities are also discussed. Given these remarkable biological properties, HT stands out as one of the most extensively investigated natural phenols. This review highlights future methods and pathways for the synthesis of HT, providing insights based on its bioactivity characteristics, health benefits, and potential future applications.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| |
Collapse
|
3
|
Xu J, Li T, Huang WE, Zhou NY. Semi-rational design of nitroarene dioxygenase for catalytic ability toward 2,4-dichloronitrobenzene. Appl Environ Microbiol 2024; 90:e0143623. [PMID: 38709097 PMCID: PMC11218619 DOI: 10.1128/aem.01436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Rieske non-heme dioxygenase family enzymes play an important role in the aerobic biodegradation of nitroaromatic pollutants, but no active dioxygenases are available in nature for initial reactions in the degradation of many refractory pollutants like 2,4-dichloronitrobenzene (24DCNB). Here, we report the engineering of hotspots in 2,3-dichloronitrobenzene dioxygenase from Diaphorobacter sp. strain JS3051, achieved through molecular dynamic simulation analysis and site-directed mutagenesis, with the aim of enhancing its catalytic activity toward 24DCNB. The computationally predicted activity scores were largely consistent with the detected activities in wet experiments. Among them, the two most beneficial mutations (E204M and M248I) were obtained, and the combined mutant reached up to a 62-fold increase in activity toward 24DCNB, generating a single product, 3,5-dichlorocatechol, which is a naturally occurring compound. In silico analysis confirmed that residue 204 affected the substrate preference for meta-substituted nitroarenes, while residue 248 may influence substrate preference by interaction with residue 295. Overall, this study provides a framework for manipulating nitroarene dioxygenases using computational methods to address various nitroarene contamination problems.IMPORTANCEAs a result of human activities, various nitroaromatic pollutants continue to enter the biosphere with poor degradability, and dioxygenation is an important kickoff step to remove toxic nitro-groups and convert them into degradable products. The biodegradation of many nitroarenes has been reported over the decades; however, many others still lack corresponding enzymes to initiate their degradation. Although rieske non-heme dioxygenase family enzymes play extraordinarily important roles in the aerobic biodegradation of various nitroaromatic pollutants, prediction of their substrate specificity is difficult. This work greatly improved the catalytic activity of dioxygenase against 2,4-dichloronitrobenzene by computer-aided semi-rational design, paving a new way for the evolution strategy of nitroarene dioxygenase. This study highlights the potential for using enzyme structure-function information with computational pre-screening methods to rapidly tailor the catalytic functions of enzymes toward poorly biodegradable contaminants.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Mermigka G, Vavouraki AI, Nikolaou C, Cheiladaki I, Vourexakis M, Goumas D, Ververidis F, Trantas E. An Engineered Plant Metabolic Pathway Results in High Yields of Hydroxytyrosol Due to a Modified Whole-Cell Biocatalysis in Bioreactor. Metabolites 2023; 13:1126. [PMID: 37999222 PMCID: PMC10672836 DOI: 10.3390/metabo13111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Hydroxytyrosol (HT) is a phenolic substance primarily present in olive leaves and olive oil. Numerous studies have shown its advantages for human health, making HT a potentially active natural component with significant added value. Determining strategies for its low-cost manufacturing by metabolic engineering in microbial factories is hence still of interest. The objective of our study was to assess and improve HT production in a one-liter bioreactor utilizing genetically modified Escherichia coli strains that had previously undergone fed-batch testing. Firstly, we compared the induction temperatures in small-scale whole-cell biocatalysis studies and then examined the optimal temperature in a large volume bioreactor. By lowering the induction temperature, we were able to double the yield of HT produced thereby, reaching 82% when utilizing tyrosine or L-DOPA as substrates. Hence, without the need to further modify our original strains, we were able to increase the HT yield.
Collapse
Affiliation(s)
- Glykeria Mermigka
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Aikaterini I. Vavouraki
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Chrysoula Nikolaou
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Ioanna Cheiladaki
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Michail Vourexakis
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Dimitrios Goumas
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Filippos Ververidis
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Emmanouil Trantas
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| |
Collapse
|
5
|
Osifalujo EA, Preston‐Herrera C, Betts PC, Satterwhite LR, Froese JT. Improving Toluene Dioxygenase Activity for Ester‐Functionalized Substrates through Enzyme Engineering. ChemistrySelect 2022. [DOI: 10.1002/slct.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Cristina Preston‐Herrera
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
- Cristina Preston-Herrera Department of Chemistry and Chemical Biology Cornell University 122 Baker Laboratory Ithaca NY USA 14853
| | - Phillip C. Betts
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| | - Louis R. Satterwhite
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| | - Jordan T. Froese
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| |
Collapse
|
6
|
Li C, Jia P, Bai Y, Fan TP, Zheng X, Cai Y. Efficient Synthesis of Hydroxytyrosol from l-3,4-Dihydroxyphenylalanine Using Engineered Escherichia coli Whole Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6867-6873. [PMID: 31134807 DOI: 10.1021/acs.jafc.9b01856] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydroxytyrosol is a high-value-added compound with a variety of biological and pharmacological activities. In this study, a whole-cell catalytic method for the synthesis of hydroxytyrosol was developed: aromatic amino acid aminotransferase (TyrB), l-glutamate dehydrogenase (GDH), α-keto acid decarboxylase (PmKDC), and aldehyde reductase (YahK) were co-expressed in Escherichia coli to catalyze the synthesis of hydroxytyrosol from l-3,4-dihydroxyphenylalanine (l-DOPA). The plasmids with different copy numbers were used to balance the expression of the four enzymes, and the most appropriate strain (pRSF- yahK- tyrB and pCDF- gdh- Pmkdc) was identified. After determination of the optimum temperature (35 °C) and pH (7.5) for whole-cell catalysis, the yield of hydroxytyrosol reached 36.33 mM (5.59 g/L) and the space-time yield reached 0.70 g L-1 h-1.
Collapse
Affiliation(s)
- Chaozhi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Pu Jia
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Yajun Bai
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Tai-Ping Fan
- Department of Pharmacology , University of Cambridge , Cambridge CB2 1PD , United Kingdom
| | - Xiaohui Zheng
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Yujie Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
7
|
Britton J, Davis R, O'Connor KE. Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol. Appl Microbiol Biotechnol 2019; 103:5957-5974. [PMID: 31177312 DOI: 10.1007/s00253-019-09914-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
Hydroxytyrosol (HT) is a polyphenol of interest to the food, feed, supplements and pharmaceutical sectors. It is one of the strongest known natural antioxidants and has been shown to confer other benefits such as anti-inflammatory and anti-carcinogenic properties, and it has the potential to act as a cardio- and neuroprotectant. It is known to be one of the compounds responsible for the health benefits of the Mediterranean diet. In nature, HT is found in the olive plant (Olea europaea) as part of the secoiridoid compound oleuropein, in its leaves, fruit, oil and oil production waste products. HT can be extracted from these olive sources, but it can also be produced by chemical synthesis or through the use of microorganisms. This review looks at the production of HT using plant extraction, chemical synthesis and biotechnological approaches.
Collapse
Affiliation(s)
- James Britton
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Reeta Davis
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland. .,Beacon Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Trudeau DL, Tawfik DS. Protein engineers turned evolutionists-the quest for the optimal starting point. Curr Opin Biotechnol 2019; 60:46-52. [PMID: 30611116 DOI: 10.1016/j.copbio.2018.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
The advent of laboratory directed evolution yielded a fruitful crosstalk between the disciplines of molecular evolution and bio-engineering. Here, we outline recent developments in both disciplines with respect to how one can identify the best starting points for directed evolution, such that highly efficient and robust tailor-made enzymes can be obtained with minimal optimization. Directed evolution studies have highlighted essential features of engineer-able enzymes: highly stable, mutationally robust enzymes with the capacity to accept a broad range of substrates. Robust, evolvable enzymes can be inferred from the natural sequence record. Broad substrate spectrum relates to conformational plasticity and can also be predicted by phylogenetic analyses and/or by computational design. Overall, an increasingly powerful toolkit is becoming available for identifying optimal starting points including network analyses of enzyme superfamilies and other bioinformatics methods.
Collapse
Affiliation(s)
- Devin L Trudeau
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| |
Collapse
|
9
|
Li X, Chen Z, Wu Y, Yan Y, Sun X, Yuan Q. Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. ACS Synth Biol 2018; 7:647-654. [PMID: 29281883 DOI: 10.1021/acssynbio.7b00385] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydroxytyrosol (HT) is a valuable natural phenolic compound with strong antioxidant activity and various physiological and pharmaceutical functions. In this study, we established an artificial pathway for HT biosynthesis. First, efficient enzymes were selected to construct a tyrosol biosynthetic pathway. Aro10 from Saccharomyces cerevisiae was shown to be a better ketoacid decarboxylase than Kivd from Lactococcus lactis for tyrosol production. While knockout of feaB significantly decreased accumulation of the byproduct 4-hydroxyphenylacetic acid, overexpression of alcohol dehydrogenase ADH6 further improved tyrosol production. The titers of tyrosol reached 1469 ± 56 mg/L from tyrosine and 620 ± 23 mg/L from simple carbon sources, respectively. The pathway was further extended for HT production by overexpressing Escherichia coli native hydroxylase HpaBC. To enhance transamination of tyrosine to 4-hydroxyphenylpyruvate, NH4Cl was removed from the culture media. To decrease oxidation of HT, ascorbic acid was added to the cell culture. To reduce the toxicity of HT, 1-dodecanol was selected as the extractant for in situ removal of HT. These efforts led to an additive increase in HT titer to 1243 ± 165 mg/L in the feeding experiment. Assembly of the full pathway resulted in 647 ± 35 mg/L of HT from simple carbon sources. This work provides a promising alternative for sustainable production of HT, which shows scale-up potential.
Collapse
Affiliation(s)
- Xianglai Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenya Chen
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifei Wu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- College
of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xinxiao Sun
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Goldsmith M, Tawfik DS. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr Opin Struct Biol 2017; 47:140-150. [PMID: 29035814 DOI: 10.1016/j.sbi.2017.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/04/2017] [Accepted: 09/20/2017] [Indexed: 01/01/2023]
Abstract
The practical need for highly efficient enzymes presents new challenges in enzyme engineering, in particular, the need to improve catalytic turnover (kcat) or efficiency (kcat/KM) by several orders of magnitude. However, optimizing catalysis demands navigation through complex and rugged fitness landscapes, with optimization trajectories often leading to strong diminishing returns and dead-ends. When no further improvements are observed in library screens or selections, it remains unclear whether the maximal catalytic efficiency of the enzyme (the catalytic 'fitness peak') has been reached; or perhaps, an alternative combination of mutations exists that could yield additional improvements. Here, we discuss fundamental aspects of the process of catalytic optimization, and offer practical solutions with respect to overcoming optimization plateaus.
Collapse
Affiliation(s)
- Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Hydroxytyrosol Protects against Myocardial Ischemia/Reperfusion Injury through a PI3K/Akt-Dependent Mechanism. Mediators Inflamm 2016; 2016:1232103. [PMID: 26966340 PMCID: PMC4757717 DOI: 10.1155/2016/1232103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 11/22/2022] Open
Abstract
Objective. To investigate the effects and mechanisms of hydroxytyrosol (HT) during the pathogenesis of myocardial ischemia reperfusion (I/R) in rat hearts. Methods. The rats were randomized into five groups: sham group, I/R group, HT+I/R group, HT+LY294002+I/R group, and LY+I/R group. Myocardial infarct size, markers of oxidative stress, extent of myocardial apoptosis, echocardiographically assessed cardiac function, and expression of Akt and GSK 3β were measured in each group. Results. Prereperfusion administration of HT was associated with a significantly smaller area of myocardial infarction and remarkably decreased level of myocardial apoptosis and necrosis, as evidenced by a lower apoptotic index, reduced cleaved caspase-3, and the serum activities of lactate dehydrogenase and creatinine kinase MB. Moreover, HT also attenuated the impairment of cardiac systolic function. However, cotreatment with LY294002 and HT completely abolished the above cardioprotective effects of HT. A subsequent mechanistic study revealed that the cardioprotective effects of HT during the process of I/R of the myocardium were dependent on the activation of the Akt/GSK3β pathway. Conclusion. Pretreatment with HT may have antiapoptotic and cardioprotective effects against myocardial I/R injury, and these effects seem to be related to the activation of the Akt/GSK3β pathway in the myocardium.
Collapse
|
12
|
Ricken B, Kolvenbach BA, Corvini PFX. Ipso-substitution — the hidden gate to xenobiotic degradation pathways. Curr Opin Biotechnol 2015; 33:220-7. [DOI: 10.1016/j.copbio.2015.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
|
13
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
14
|
Achmon Y, Fishman A. The antioxidant hydroxytyrosol: biotechnological production challenges and opportunities. Appl Microbiol Biotechnol 2014; 99:1119-30. [PMID: 25547836 DOI: 10.1007/s00253-014-6310-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Hydroxytyrosol (HT) is a highly potent antioxidant originating in nature as a second metabolite of plants, most abundantly in olives (Olea europaea). In the last decade, numerous research studies showed the health benefits of antioxidants in general and those of HT in particular. As olive oil is a prime constituent of the health-promoting Mediterranean diet, HT has obtained recognition for its attributes, supported by a recent health claim of the European Food Safety Authority. HT is already used as a food supplement and in cosmetic products, but it has the potential to be used as a food additive and drug, based on its anticarcinogenic, anti-inflammatory, antiapoptotic and neuroprotective activity. Nevertheless, there is a large gap between the potential of HT and its current availability in the market due to its high price tag. In this review, the challenges of producing HT using biotechnological methods are described with an emphasis on the substrate source, the biocatalyst and the process parameters, in order to narrow the gap towards an efficient bio-based industrial process.
Collapse
Affiliation(s)
- Yigal Achmon
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | | |
Collapse
|