1
|
Jiang W, Liu S, Wang G. Response of endophytic fungi communities with high antioxidant capacity in riparian plants Salix variegate to water flooding. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:320. [PMID: 39982643 DOI: 10.1007/s10661-025-13740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Riparian plants exhibit strong antioxidant capacity due to the constant periodic flooding and the resulted oxidative stress. The aim of this study was to determine whether the endophytes are involved in oxidative stress pathway of the host. In the study, we isolated the endophytic fungi from a shrub of Salix variegate before and after natural flooding, and characterized through taxonomical characterization of 18S ITS sequences. By means of total antioxidant capacity (TAC) method, we assessed the antioxidant activity of all isolates. Under different oxygen supply levels, a total of 115 culturable fungi were obtained from various tissues, grouped into 6 classes and 26 genera, showing abundant biodiversity. Aspergillus spp. and Penicillium spp. constituted the dominant population. However, the endophyte community was significantly affected by flooding stress. The fungi in post-flooding population were more numerous and biodiverse, especially the genus Aspergillus. The dominant genera had relatively higher activity than others whether in means or maxima, especially in the genera of Aspergillus after flooding. Our results indicated that flooding would change the population composition of endophyte strains with high antioxidant activity and enhance the antioxidant capacity of Aspergillus, which maybe conversely participate the oxidative pathway in the host.
Collapse
Affiliation(s)
- Wei Jiang
- Urban Vocational College of Sichuan, Chengdu, 610000, People's Republic of China
| | - Shiping Liu
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443000, People's Republic of China.
| | - Guangxi Wang
- Faculty of Agriculture, Meijo University, Aichi, 468-8502, Japan.
| |
Collapse
|
2
|
Nazir A, Puthuveettil AR, Hussain FHN, Hamed KE, Munawar N. Endophytic fungi: nature's solution for antimicrobial resistance and sustainable agriculture. Front Microbiol 2024; 15:1461504. [PMID: 39726956 PMCID: PMC11669676 DOI: 10.3389/fmicb.2024.1461504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
The growing threat of antimicrobial resistance (AMR) has underlined the need for a sustained supply of novel antimicrobial agents. Endophyte microorganism that reside within plant tissues as symbionts have been the source of potential antimicrobial substances. However, many novel and potent antimicrobials are yet to be discovered from these endophytes. The present study investigates the potential of endophytic fungi as a source of novel bioactive chemicals with antibacterial capabilities. These fungi synthesize secondary metabolites such as polyketides and peptides via polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways. Notable substances, like prenylated indole alkaloids and fumaric acid, have shown promising antibacterial and antifungal properties against multidrug-resistant infectious agents. This review also emphasizes the symbiotic link between endophytes and their host plants, which is critical for secondary metabolite production. The study focuses on the significance of isolation methods for endophytes and proposes their use in for sustainable agriculture, bioremediation, and medicine. Future research combining endophytic biodiversity analysis with next-generation sequencing (NGS) and nanotechnology could provide novel techniques for combating AMR and contributing to sustainability across multiple industries.
Collapse
Affiliation(s)
- Asiya Nazir
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Abdul R. Puthuveettil
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | - Khalid E. Hamed
- Department of Plant Protection, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Nayla Munawar
- College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Araújo KS, Alves JL, Pereira OL, de Queiroz MV. Five new species of endophytic Penicillium from rubber trees in the Brazilian Amazon. Braz J Microbiol 2024; 55:3051-3074. [PMID: 39384703 PMCID: PMC11711848 DOI: 10.1007/s42770-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/28/2024] [Indexed: 10/11/2024] Open
Abstract
The Amazon rainforest is the world's most diverse ecosystem, full of fauna and flora. Among the trees that make up the forest are the rubber trees of the genus Hevea (H. brasiliensis and H. guianensis), which stand out for the industrial use of latex. It was previously shown that endophytic fungi colonize the leaves, stems, and roots of Hevea spp. In this study, 47 Penicillium spp. and three Talaromyces spp. isolates were analyzed using specific DNA barcodes: internal transcribed spacers region (ITS), β-tubulin (BenA), calmodulin (CaM), and the DNA-dependent RNA polymerase II second largest subunit (RPB2) genes and additionally, for species delimitation, the genealogical concordance phylogenetic species recognition (GCPSR) criteria were applied. The phylogenetic analyses placed the Penicillium isolates into four sections Lanata-Divaricata, Sclerotiora, Citrina, and Fasciculata. The morphological and molecular characteristics resulted in the discovery of five new species (P. heveae sp. nov., P. acrean sp. nov., P. aquiri sp. nov., P. amazonense sp. nov., and P. pseudomellis sp. nov.). The five new species were also compared to closely related species, with observations on morphologically distinguishing features and colony appearances. Bayesian inference and maximum likelihood analysis have supported the placement of P. heveae sp. nov. as a sister group to P. globosum; P. acrean sp. nov. and P. aquiri sp. nov. as sister groups to P. sumatrense; P. amazonense sp. nov. closely related to isolates of P. rolfsii, and P. pseudomellis sp. nov. closely related to P. mellis. The study of endophytic Penicillium species of rubber trees and the description of five new taxa of Penicillium sect. Citrina, Lanata-Divaricata, and Sclerotiora as endophytes add to the fungal biodiversity knowledge in native rubber trees. Reports of fungi in native tropical plants may reveal taxonomic novelties, potential pathogen control agents, and producers of molecular bioactive compounds of medical and agronomic interest.
Collapse
Affiliation(s)
- Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
4
|
Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022; 10:microorganisms10020360. [PMID: 35208814 PMCID: PMC8876476 DOI: 10.3390/microorganisms10020360] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Plant-associated endophytes define an important symbiotic association in nature and are established bio-reservoirs of plant-derived natural products. Endophytes colonize the internal tissues of a plant without causing any disease symptoms or apparent changes. Recently, there has been a growing interest in endophytes because of their beneficial effects on the production of novel metabolites of pharmacological significance. Studies have highlighted the socio-economic implications of endophytic fungi in agriculture, medicine, and the environment, with considerable success. Endophytic fungi-mediated biosynthesis of well-known metabolites includes taxol from Taxomyces andreanae, azadirachtin A and B from Eupenicillium parvum, vincristine from Fusarium oxysporum, and quinine from Phomopsis sp. The discovery of the billion-dollar anticancer drug taxol was a landmark in endophyte biology/research and established new paradigms for the metabolic potential of plant-associated endophytes. In addition, endophytic fungi have emerged as potential prolific producers of antimicrobials, antiseptics, and antibiotics of plant origin. Although extensively studied as a “production platform” of novel pharmacological metabolites, the molecular mechanisms of plant–endophyte dynamics remain less understood/explored for their efficient utilization in drug discovery. The emerging trends in endophytic fungi-mediated biosynthesis of novel bioactive metabolites, success stories of key pharmacological metabolites, strategies to overcome the existing challenges in endophyte biology, and future direction in endophytic fungi-based drug discovery forms the underlying theme of this article.
Collapse
|
5
|
Hussain H, Mamadalieva NZ, Ali I, Elizbit, Green IR, Wang D, Zou L, Simal-Gandara J, Cao H, Xiao J. Fungal glycosides: Structure and biological function. Trends Food Sci Technol 2021; 110:611-651. [DOI: 10.1016/j.tifs.2021.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020; 10:107. [PMID: 32095421 DOI: 10.1007/s13205-020-2081-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Penicillium genus constituted by over 200 species is one of the largest and fascinating groups of fungi, particularly well established as a source of antibiotics. Endophytic Penicillium has been reported to colonize their ecological niches and protect their host plant against multiples stresses by exhibiting diverse biological functions that can be exploited for countless applications including agricultural, biotechnological, and pharmaceutical. Over the past 2 decades, endophytic Penicillium species have been investigated beyond their antibiotic potential and numerous applications have been reported. We comprehensively summarized in this review available data (2000-2019) regarding bioactive compounds isolated from endophytic Penicillium species as well as the application of these fungi in multiple agricultural and biotechnological processes. This review has shown that a very large number (131) of endophytes from this genus have been investigated so far and more than 280 compounds exhibiting antimicrobial, anticancer, antiviral, antioxidants, anti-inflammatory, antiparasitics, immunosuppressants, antidiabetic, anti-obesity, antifibrotic, neuroprotective effects, and insecticidal and biocontrol activities have been reported. Moreover, several endophytic Penicillium spp. have been characterized as biocatalysts, plant growth promoters, phytoremediators, and enzyme producers. We hope that this review summarizes the status of research on this genus and will stimulate further investigations.
Collapse
|
7
|
Yang RX, Zhang SW, Xue D, Xuan JH, Zhang YB, Peng BB. Culturable Endophytes Diversity Isolated from Paeonia ostii and the Genetic Basis for Their Bioactivity. Pol J Microbiol 2018; 67:441-454. [PMID: 30550230 PMCID: PMC7256872 DOI: 10.21307/pjm-2018-052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 11/11/2022] Open
Abstract
Paeonia ostii is known for its excellent medicinal values as Chinese traditional plant. To date, the diversity of culturable endophytes associated with P. ostii is in its initial phase of exploration. In this study, 56 endophytic bacteria and 51 endophytic fungi were isolated from P. ostii roots in China. Subsequent characterization of 56 bacterial strains by 16S rDNA gene sequence analysis revealed that nine families and 13 different genera were represented. All the fungal strains were classed into six families and 12 genera based on ITS gene sequence. The biosynthetic potential of all the endophytes was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. The PCR screens were successful in targeting thirteen bacterial PKS, five bacterial NRPS, ten fungal PKS and nine fungal NRPS gene fragments. Bioinformatic analysis of these detected endophyte gene fragments facilitated inference of the potential bioactivity of endophyte bioactive products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. These results suggest that endophytes isolated from P. ostii had abundant population diversity and biosynthetic potential, which further proved that endophytes are valuable reservoirs of novel bioactive compounds.
Collapse
Affiliation(s)
- Rui-Xian Yang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology , Luoyang , P.R.China
| | - Shao-Wen Zhang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology , Luoyang , P.R.China
| | - Dong Xue
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology , Luoyang , P.R.China
| | - Jun-Hao Xuan
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology , Luoyang , P.R.China
| | - Yuan-Bo Zhang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology , Luoyang , P.R.China
| | - Biao-Biao Peng
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology , Luoyang , P.R.China
| |
Collapse
|
8
|
Oliveira KDS, Martins Queiroz PR, Marques Fensterseifer IC, Migliolo L, Oliveira AL, Franco OL. Purified citritin in combination with vancomycin inhibits VRE in vitro and in vivo. MICROBIOLOGY-SGM 2017; 163:1525-1531. [PMID: 29043959 DOI: 10.1099/mic.0.000547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) have been frequently associated with bacterial resistance mechanisms. These mechanisms, in turn, restrict a range of therapeutic opportunities for the treatment of infections caused by these micro-organisms. Faced with this problem, the present study aims to isolate and characterize molecules with antimicrobial activity derived from the fungus Penicillium citrinum isolated from Cerrado soil. Furthermore, we also tested possible antibacterial potential alone and in combination with commercial antimicrobial agents. In this context, citrinin was isolated and characterized by nuclear magnetic resonance and electrospray ionization. Functional analyses showed MIC of 128 µg ml-1 against S. aureus ATCC 25923, E. faecalis ATCC 29212 and a clinical isolate of vancomycin-resistant E. faecium (VRE01). However, for a clinical strain of methicillin-resistant S. aureus (MRSA01), the MIC was 256 µg ml-1. In order to avoid such high concentrations and reduce the collateral effects, additive effects were evidenced by combining citrinin with cefoxitin against MRSA01 (FIC index=0.5) and also citrinin with vancomycin toward VRE01 (FIC index=0.5). In vivo studies with BALB/c-tipe mice (MRSA assay) demonstrated a clinical ineffectiveness of cefoxitin associated with citrinin (9.8 mg kg-1 of cefoxitin +0.2 mg kg-1 of citrinin), with this combination being inefficient to increase animal survival. However, the combination used in the treatment of VRE (23.5 mg kg-1 of citrinin +1.5 mg kg-1 of vancomycin) sepsis model was extremely promising, leading to an animal survival rate of 80 percent. In summary, our data show, for the first time, the possible successful use of citrinin associated with vancomycin for pathogenic bacteria control.
Collapse
Affiliation(s)
- Kléber de Sousa Oliveira
- Centro de Analises Proteômicas e Bioquímicas, Curso de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | - Isabel Cristina Marques Fensterseifer
- Centro de Analises Proteômicas e Bioquímicas, Curso de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
- Molecular Pathology Post-Graduate Program, University of Brasília, Brasília, DF, Brazil
| | - Ludovico Migliolo
- Centro de Analises Proteômicas e Bioquímicas, Curso de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Aline Lima Oliveira
- Laboratory of Nuclear Magnetic Ressonance, Chemistry Institute, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Centro de Analises Proteômicas e Bioquímicas, Curso de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
9
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
10
|
Tafuketide, a phylogeny-guided discovery of a new polyketide from Talaromyces funiculosus Salicorn 58. Appl Microbiol Biotechnol 2016; 100:5323-38. [DOI: 10.1007/s00253-016-7311-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 01/16/2023]
|
11
|
Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q. Antibacterial and antifungal compounds from marine fungi. Mar Drugs 2015; 13:3479-513. [PMID: 26042616 PMCID: PMC4483641 DOI: 10.3390/md13063479] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/17/2015] [Accepted: 05/20/2015] [Indexed: 12/23/2022] Open
Abstract
This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review.
Collapse
Affiliation(s)
- Lijian Xu
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| | - Wei Meng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Cong Cao
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| | - Jian Wang
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| | - Wenjun Shan
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| | - Qinggui Wang
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
12
|
Chagas FO, Caraballo-Rodriguez AM, Pupo MT. Endophytic Fungi as a Source of Novel Metabolites. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Wang W, Guo J, Zhang J, Liu T, Xin Z. New screw lactam and two new carbohydrate derivatives from the methanol extract of rice bran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10744-10751. [PMID: 25307293 DOI: 10.1021/jf5037273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new screw lactam and two new carbohydrate derivatives, oryzalactam (1), oryzasaccharide A (2), and oryzasaccharide B (3), have been isolated from the methanol extract of rice bran together with four other known compounds, including momilactone A (4), butyl β-d-xylopyranose (5), ethyl β-d-xylopyranose (6), and methyl β-d-xylopyranose (7). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. This work represents the first recorded example of the isolation of compounds 1, 2, 3, 5, 6, and 7 from rice bran. The antioxidant experiments revealed that compound 1 possessed strong ABTS(+) (ABTS = 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)) and DPPH (DPPH = diphenyl(2,4,6-trinitrophenyl) iminoazanium) radical scavenging with IC50 values of 33.38 ± 1.58 and 40.20 ± 1.34 μM, respectively. Antimicrobial assays revealed that compound 4 showed high levels of selectivity toward Escherichia coli with a minimal inhibitory concentration value of 5 μM.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | | | | | | | | |
Collapse
|