1
|
Severino A, Lauro C, Calvanese M, Riccardi C, Colarusso A, Fondi M, Parrilli E, Tutino ML. Engineering the Marine Pseudoalteromonas haloplanktis TAC125 via the pMEGA Plasmid Targeted Curing Using PTasRNA Technology. Microorganisms 2025; 13:324. [PMID: 40005691 PMCID: PMC11858219 DOI: 10.3390/microorganisms13020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Marine bacteria that have adapted to thrive in extreme environments, such as Pseudoalteromonas haloplanktis TAC125 (PhTAC125), offer a unique biotechnological potential. The discovery of an endogenous megaplasmid (pMEGA) raises questions about its metabolic impact and functional role in that strain. This study aimed at streamlining the host genetic background by curing PhTAC125 of the pMEGA plasmid using a sequential genetic approach. We combined homologous recombination by exploiting a suicide vector, with the PTasRNA gene-silencing technology interfering with pMEGA replication machinery. This approach led to the construction of the novel PhTAC125 KrPL2 strain, cured of the pMEGA plasmid, which exhibited no significant differences in growth behavior, though showcasing enhanced resistance to oxidative stress and a reduced capacity for biofilm formation. These findings represent a significant achievement in developing our understanding of the role of the pMEGA plasmid and the biotechnological applications of PhTAC125 in recombinant protein production. This opens up the possibility of exploiting valuable pMEGA genetic elements and further advancing the genetic tools for PhTAC125.
Collapse
Affiliation(s)
- Angelica Severino
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Università degli Studi di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy; (A.S.); (M.C.); (E.P.)
| | - Concetta Lauro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Università degli Studi di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy; (A.S.); (M.C.); (E.P.)
| | - Marzia Calvanese
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Università degli Studi di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy; (A.S.); (M.C.); (E.P.)
| | - Christopher Riccardi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019 Firenze, Italy; (C.R.); (M.F.)
| | - Andrea Colarusso
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA 92037, USA;
| | - Marco Fondi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019 Firenze, Italy; (C.R.); (M.F.)
| | - Ermenegilda Parrilli
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Università degli Studi di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy; (A.S.); (M.C.); (E.P.)
| | - Maria Luisa Tutino
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Università degli Studi di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy; (A.S.); (M.C.); (E.P.)
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B., Via dei Carpegna, 19, 00165 Roma, Italy
| |
Collapse
|
2
|
Lauro C, Colarusso A, Calvanese M, Parrilli E, Tutino ML. Conditional gene silencing in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Res Microbiol 2022; 173:103939. [DOI: 10.1016/j.resmic.2022.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
3
|
Colarusso A, Lauro C, Calvanese M, Parrilli E, Tutino ML. Improvement of Pseudoalteromonas haloplanktis TAC125 as a Cell Factory: IPTG-Inducible Plasmid Construction and Strain Engineering. Microorganisms 2020; 8:microorganisms8101466. [PMID: 32987756 PMCID: PMC7598627 DOI: 10.3390/microorganisms8101466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Our group has used the marine bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) as a platform for the successful recombinant production of “difficult” proteins, including eukaryotic proteins, at low temperatures. However, there is still room for improvement both in the refinement of PhTAC125 expression plasmids and in the bacterium’s intrinsic ability to accumulate and handle heterologous products. Here, we present an integrated approach of plasmid design and strain engineering finalized to increment the recombinant expression and optimize the inducer uptake in PhTAC125. To this aim, we developed the IPTG-inducible plasmid pP79 and an engineered PhTAC125 strain called KrPL LacY+. This mutant was designed to express the E. coli lactose permease and to produce only a truncated version of the endogenous Lon protease through an integration-deletion strategy. In the wild-type strain, pP79 assured a significantly better production of two reporters in comparison to the most recent expression vector employed in PhTAC125. Nevertheless, the use of KrPL LacY+ was crucial to achieving satisfying production levels using reasonable IPTG concentrations, even at 0 °C. Both the wild-type and the mutant recombinant strains are characterized by an average graded response upon IPTG induction and they will find different future applications depending on the desired levels of expression.
Collapse
|
4
|
Söderberg JJ, Grgic M, Hjerde E, Haugen P. Aliivibrio wodanis as a production host: development of genetic tools for expression of cold-active enzymes. Microb Cell Fact 2019; 18:197. [PMID: 31711487 PMCID: PMC6844050 DOI: 10.1186/s12934-019-1247-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023] Open
Abstract
Background Heterologous production of cold-adapted proteins currently represents one of the greatest bottlenecks in the ongoing bioprospecting efforts to find new enzymes from low-temperature environments, such as, the polar oceans that represent essentially untapped resources in this respect. In mesophilic expression hosts such as Escherichia coli, cold-adapted enzymes often form inactive aggregates. Therefore it is necessary to develop new low-temperature expression systems, including identification of new host organisms and complementary genetic tools. Psychrophilic bacteria, including Pseudoalteromonas haloplanktis, Shewanella and Rhodococcus erythropolis have all been explored as candidates for such applications. However to date none of these have found widespread use as efficient expression systems, or are commercially available. In the present work we explored the use of the sub-Arctic bacterium Aliivibrio wodanis as a potential host for heterologous expression of cold-active enzymes. Results We tested 12 bacterial strains, as well as available vectors, promoters and reporter systems. We used RNA-sequencing to determine the most highly expressed genes and their intrinsic promoters in A. wodanis. In addition we examined a novel 5′-fusion to stimulate protein production and solubility. Finally we tested production of a set of “difficult-to-produce” enzymes originating from various bacteria and one Archaea. Our results show that cold-adapted enzymes can be produced in soluble and active form, even in cases when protein production failed in E. coli due to the formation of inclusion bodies. Moreover, we identified a 60-bp/20-aa fragment from the 5′-end of the AW0309160_00174 gene that stimulates expression of Green Fluorescent Protein and improves production of cold-active enzymes when used as a 5′-fusion. A 25-aa peptide from the same protein enhanced secretion of a 25-aa-sfGFP fusion. Conclusions Our results indicate the use of A. wodanis and associated genetic tools for low-temperature protein production and indicate that A. wodanis represents an interesting platform for further development of a protein production system that can promote further cold-enzyme discoveries.
Collapse
Affiliation(s)
- Jenny Johansson Söderberg
- Department of Chemistry and Center for Bioinformatics (SfB) and The Norwegian Structural Biology Centre (NorStruct), Faculty of Science and Technology, UiT -The Arctic University of Norway, 9037, Tromsø, Norway
| | - Miriam Grgic
- Department of Chemistry and Center for Bioinformatics (SfB) and The Norwegian Structural Biology Centre (NorStruct), Faculty of Science and Technology, UiT -The Arctic University of Norway, 9037, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry and Center for Bioinformatics (SfB) and The Norwegian Structural Biology Centre (NorStruct), Faculty of Science and Technology, UiT -The Arctic University of Norway, 9037, Tromsø, Norway
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics (SfB) and The Norwegian Structural Biology Centre (NorStruct), Faculty of Science and Technology, UiT -The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
5
|
New insights on Pseudoalteromonas haloplanktis TAC125 genome organization and benchmarks of genome assembly applications using next and third generation sequencing technologies. Sci Rep 2019; 9:16444. [PMID: 31712730 PMCID: PMC6848147 DOI: 10.1038/s41598-019-52832-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudoalteromonas haloplanktis TAC125 is among the most commonly studied bacteria adapted to cold environments. Aside from its ecological relevance, P. haloplanktis has a potential use for biotechnological applications. Due to its importance, we decided to take advantage of next generation sequencing (Illumina) and third generation sequencing (PacBio and Oxford Nanopore) technologies to resequence its genome. The availability of a reference genome, obtained using whole genome shotgun sequencing, allowed us to study and compare the results obtained by the different technologies and draw useful conclusions for future de novo genome assembly projects. We found that assembly polishing using Illumina reads is needed to achieve a consensus accuracy over 99.9% when using Oxford Nanopore sequencing, but not in PacBio sequencing. However, the dependency of consensus accuracy on coverage is lower in Oxford Nanopore than in PacBio, suggesting that a cost-effective solution might be the use of low coverage Oxford Nanopore sequencing together with Illumina reads. Despite the differences in consensus accuracy, all sequencing technologies revealed the presence of a large plasmid, pMEGA, which was undiscovered until now. Among the most interesting features of pMEGA is the presence of a putative error-prone polymerase regulated through the SOS response. Aside from the characterization of the newly discovered plasmid, we confirmed the sequence of the small plasmid pMtBL and uncovered the presence of a potential partitioning system. Crucially, this study shows that the combination of next and third generation sequencing technologies give us an unprecedented opportunity to characterize our bacterial model organisms at a very detailed level.
Collapse
|
6
|
Parrilli E, Tedesco P, Fondi M, Tutino ML, Lo Giudice A, de Pascale D, Fani R. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys Life Rev 2019; 36:137-161. [PMID: 31072789 DOI: 10.1016/j.plrev.2019.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/10/2023]
Abstract
Extremophilic microbes have adapted to thrive in ecological niches characterized by harsh chemical/physical conditions such as, for example, very low/high temperature. Living organisms inhabiting these environments have developed peculiar mechanisms to cope with extreme conditions, in such a way that they mark the chemical-physical boundaries of life on Earth. Studying such mechanisms is stimulating from a basic research viewpoint and because of biotechnological applications. Pseudoalteromonas species are a group of marine gamma-proteobacteria frequently isolated from a range of extreme environments, including cold habitats and deep-sea sediments. Since deep-sea floors constitute almost 60% of the Earth's surface and cold temperatures represent the most common of the extreme conditions, the genus Pseudoalteromonas can be considered one of the most important model systems for studying microbial adaptation. Particularly, among all Pseudoalteromonas representatives, P. haloplanktis TAC125 has recently gained a central role. This bacterium was isolated from seawater sampled along the Antarctic ice-shell and is considered one of the model organisms of cold-adapted bacteria. It is capable of thriving in a wide temperature range and it has been suggested as an alternative host for the soluble overproduction of heterologous proteins, given its ability to rapidly multiply at low temperatures. In this review, we will present an overview of the recent advances in the characterization of Pseudoalteromonas strains and, more importantly, in the understanding of their evolutionary and chemical-physical strategies to face such a broad array of extreme conditions. A particular attention will be given to systems-biology approaches in the study of the above-mentioned topics, as genome-scale datasets (e.g. genomics, proteomics, phenomics) are beginning to expand for this group of organisms. In this context, a specific section dedicated to P. haloplanktis TAC125 will be presented to address the recent efforts in the elucidation of the metabolic rewiring of the organisms in its natural environment (Antarctica).
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Pietro Tedesco
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | | | - Donatella de Pascale
- Institute of Protein Biochemistry, CNR, Napoli, Italy, Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Napoli, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
7
|
Ayyar BV, Arora S, Ravi SS. Optimizing antibody expression: The nuts and bolts. Methods 2017; 116:51-62. [PMID: 28163103 DOI: 10.1016/j.ymeth.2017.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/28/2017] [Accepted: 01/28/2017] [Indexed: 01/07/2023] Open
Abstract
Antibodies are extensively utilized entities in biomedical research, and in the development of diagnostics and therapeutics. Many of these applications require high amounts of antibodies. However, meeting this ever-increasing demand of antibodies in the global market is one of the outstanding challenges. The need to maintain a balance between demand and supply of antibodies has led the researchers to discover better means and methods for optimizing their expression. These strategies aim to increase the volumetric productivity of the antibodies along with the reduction of associated manufacturing costs. Recent years have witnessed major advances in recombinant protein technology, owing to the introduction of novel cloning strategies, gene manipulation techniques, and an array of cell and vector engineering techniques, together with the progress in fermentation technologies. These innovations were also highly beneficial for antibody expression. Antibody expression depends upon the complex interplay of multiple factors that may require fine tuning at diverse levels to achieve maximum yields. However, each antibody is unique and requires individual consideration and customization for optimizing the associated expression parameters. This review provides a comprehensive overview of several state-of-the-art approaches, such as host selection, strain engineering, codon optimization, gene optimization, vector modification and process optimization that are deemed suitable for enhancing antibody expression.
Collapse
Affiliation(s)
- B Vijayalakshmi Ayyar
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sushrut Arora
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shiva Shankar Ravi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Bosi E, Fondi M, Orlandini V, Perrin E, Maida I, de Pascale D, Tutino ML, Parrilli E, Lo Giudice A, Filloux A, Fani R. The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights. BMC Genomics 2017; 18:93. [PMID: 28095778 PMCID: PMC5240218 DOI: 10.1186/s12864-016-3382-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pseudoalteromonas is a genus of ubiquitous marine bacteria used as model organisms to study the biological mechanisms involved in the adaptation to cold conditions. A remarkable feature shared by these bacteria is their ability to produce secondary metabolites with a strong antimicrobial and antitumor activity. Despite their biotechnological relevance, representatives of this genus are still lacking (with few exceptions) an extensive genomic characterization, including features involved in the evolution of secondary metabolites production. Indeed, biotechnological applications would greatly benefit from such analysis. RESULTS Here, we analyzed the genomes of 38 strains belonging to different Pseudoalteromonas species and isolated from diverse ecological niches, including extreme ones (i.e. Antarctica). These sequences were used to reconstruct the largest Pseudoalteromonas pangenome computed so far, including also the two main groups of Pseudoalteromonas strains (pigmented and not pigmented strains). The downstream analyses were conducted to describe the genomic diversity, both at genus and group levels. This allowed highlighting a remarkable genomic heterogeneity, even for closely related strains. We drafted all the main evolutionary steps that led to the current structure and gene content of Pseudoalteromonas representatives. These, most likely, included an extensive genome reduction and a strong contribution of Horizontal Gene Transfer (HGT), which affected biotechnologically relevant gene sets and occurred in a strain-specific fashion. Furthermore, this study also identified the genomic determinants related to some of the most interesting features of the Pseudoalteromonas representatives, such as the production of secondary metabolites, the adaptation to cold temperatures and the resistance to abiotic compounds. CONCLUSIONS This study poses the bases for a comprehensive understanding of the evolutionary trajectories followed in time by this peculiar bacterial genus and for a focused exploitation of their biotechnological potential.
Collapse
Affiliation(s)
- Emanuele Bosi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy
| | - Valerio Orlandini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139, Florence, Italy
| | - Elena Perrin
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy
| | - Isabel Maida
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 111, I-80131, Naples, Italy
| | - Maria Luisa Tutino
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy
| | - Ermenegilda Parrilli
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy
| | - Angelina Lo Giudice
- Institute for the Coastal Marine Environment, National Research Council, Spianata San Raineri 86, I-98122, Messina, Italy
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Alain Filloux
- Department of Life Sciences, Imperial College London, MRC Centre for Molecular Bacteriology and Infection, Flowers Building, 1st floor, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy.
| |
Collapse
|
9
|
Sannino F, Parrilli E, Apuzzo GA, de Pascale D, Tedesco P, Maida I, Perrin E, Fondi M, Fani R, Marino G, Tutino ML. Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains. N Biotechnol 2016; 35:13-18. [PMID: 27989956 DOI: 10.1016/j.nbt.2016.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 11/24/2022]
Abstract
The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 has been reported to produce several Volatile Organic Compounds (VOCs), which are able to inhibit the growth of Burkholderia cepacia complex (Bcc) strains, opportunistic pathogens responsible for the infection of immune-compromised patients. However, no specific antibacterial VOCs have been identified to date. The purpose of the present study was to identify specific VOCs that contribute to Bcc inhibition by the Antarctic strain. When grown on defined medium containing D-gluconate and L-glutamate as carbon, nitrogen and energy sources, P. haloplanktis TAC125 is unable to inhibit the growth of Bcc strains. However, single addition of several amino acids to the defined medium restores the P. haloplanktis TAC125 inhibition ability. With the aim of identifying specific volatile compound/s responsible for Bcc inhibition, we set up an apparatus for VOC capture, accumulation, and storage. P. haloplanktis TAC125 was grown in an automatic fermenter which was connected to a cooling system to condense VOCs present in the exhaust air outlet. Upon addition of methionine to the growth medium, the VOC methylamine was produced by P. haloplanktis TAC125. Methylamine was found to inhibit the growth of several Bcc strains in a dose-dependent way. Although it was reported that P. haloplanktis TAC125 produces VOCs endowed with antimicrobial activity, this is the first demonstration that methylamine probably contributes to the anti-Bcc activity of P. haloplanktis TAC125 VOCs.
Collapse
Affiliation(s)
- Filomena Sannino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
| | - Gennaro Antonio Apuzzo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 111, 80126 Naples, Italy.
| | - Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 111, 80126 Naples, Italy.
| | - Isabel Maida
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-50018, Sesto F.no, Florence, Italy.
| | - Elena Perrin
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-50018, Sesto F.no, Florence, Italy.
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-50018, Sesto F.no, Florence, Italy.
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-50018, Sesto F.no, Florence, Italy.
| | - Gennaro Marino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
| |
Collapse
|
10
|
Tools to cope with difficult-to-express proteins. Appl Microbiol Biotechnol 2016; 100:4347-55. [DOI: 10.1007/s00253-016-7514-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
|
11
|
de Marco A. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact 2015; 14:125. [PMID: 26330219 PMCID: PMC4557595 DOI: 10.1186/s12934-015-0320-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/20/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Antibodies have been a pillar of basic research, while their relevance in clinical diagnostics and therapy is constantly growing. Consequently, the production of both conventional and fragment antibodies constantly faces more demanding challenges for the improvement of their quantity and quality. The answer to such an increasing need has been the development of a wide array of formats and alternative production platforms. This review offers a critical comparison and evaluation of the different options to help the researchers interested in expressing recombinant antibodies in their choice. RESULTS Rather than the compilation of an exhaustive list of the recent publications in the field, this review intendeds to analyze the development of the most innovative or fast-growing strategies. These have been illustrated with some significant examples and, when possible, compared with the existing alternatives. Space has also been given to those solutions that might represent interesting opportunities or that investigate critical aspects of the production optimization but for which the available data as yet do not allow for a definitive judgment. CONCLUSIONS The take-home message is that there is a clear process of progressive diversification concerning the antibody expression platforms and an effort to yield directly application-adapted immune-reagents rather than generic naked antibodies that need further in vitro modification steps before becoming usable.
Collapse
Affiliation(s)
- Ario de Marco
- Department of Biomedical Sciences and Engineering, University of Nova Gorica, Glavni Trg 9, 5261, Vipava, Slovenia.
| |
Collapse
|
12
|
Unzueta U, Vázquez F, Accardi G, Mendoza R, Toledo-Rubio V, Giuliani M, Sannino F, Parrilli E, Abasolo I, Schwartz S, Tutino ML, Villaverde A, Corchero JL, Ferrer-Miralles N. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Appl Microbiol Biotechnol 2015; 99:5863-74. [DOI: 10.1007/s00253-014-6328-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 12/28/2022]
|