1
|
Lee YJ, Moon BC, Lee DK, Ahn JH, Gong G, Um Y, Lee SM, Kim KH, Ko JK. Sustainable production of microbial protein from carbon dioxide in the integrated bioelectrochemical system using recycled nitrogen sources. WATER RESEARCH 2024; 268:122576. [PMID: 39395365 DOI: 10.1016/j.watres.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Given the urgency of climate change, it is imperative to develop innovative technologies for repurposing CO2 into value-added products to achieve carbon neutrality. Additionally, repurposing nitrogen-source-derived wastewater streams is crucial, focusing on sustainability rather than conventional nitrogen removal in wastewater treatment plants. In this context, microbial protein (MP) production presents a sustainable and promising approach for transforming recovered low-value resources into high-quality feed and food. We assessed MP production by hydrogen-oxidizing bacteria (HOB) utilizing CO2 and various nitrogen sources. Specifically, we investigated MP production by two different HOB strains, Cupriavidus necator H16 and Xanthobacter viscosus 7d, within an integrated water-splitting biosynthetic system that generates in situ H2 via water electrolysis. The electroautotrophically produced MPs of C. necator H16 and X. viscosus 7d exhibited amino acid contents of 555 and 717 mg protein/g cell dry weight, with 243 and 299 mg essential amino acid/g cell dry weight, respectively. They could serve as viable alternatives to conventional food/feed sources like fishmeal or soybean protein. Ammonium-rich wastewater streams are preferable for MP production in integrated bioelectrochemical systems. This study provides valuable insights into sustainable, carbon-neutral MP production using CO2, water, renewable electricity, and recycled nitrogen sources.
Collapse
Affiliation(s)
- Yeon Ji Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Cheul Moon
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dong Ki Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Department of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
2
|
Ishihara S, Orita I, Matsumoto K, Fukui T. (R/S)-lactate/2-hydroxybutyrate dehydrogenases in and biosynthesis of block copolyesters by Ralstonia eutropha. Appl Microbiol Biotechnol 2023; 107:7557-7569. [PMID: 37773219 PMCID: PMC10656315 DOI: 10.1007/s00253-023-12797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are promising bio-based biodegradable polyesters. It was recently reported that novel PHA block copolymers composed of (R)-3-hydroxybutyrate (3HB) and (R)-2-hydroxybutyrate (2HB) were synthesized by Escherichia coli expressing PhaCAR, a chimeric enzyme of PHA synthases derived from Aeromonas caviae and Ralstonia eutropha. In this study, the sequence-regulating PhaCAR was applied in the natural PHA-producing bacterium, R. eutropha. During the investigation, (R/S)-2HB was found to exhibit strong growth inhibitory effects on the cells of R. eutropha. This was probably due to formation of excess 2-ketobutyrate (2KB) from (R/S)-2HB and the consequent L-valine depletion caused by dominant L-isoleucine synthesis attributed to the excess 2KB. Deletion analyses for genes of lactate dehydrogenase homologs identified cytochrome-dependent D-lactate dehydrogenase (Dld) and [Fe-S] protein-dependent L-lactate dehydrogenase as the enzymes responsible for sensitivity to (R)-2HB and (S)-2HB, respectively. The engineered R. eutropha strain (phaCAR+, ldhACd-hadACd+ encoding clostridial (R)-2-hydroxyisocaproate dehydrogenase and (R)-2-hydoroxyisocaproate CoA transferase, ∆dld) synthesized PHA containing 10 mol% of 2HB when cultivated on glucose with addition of sodium (RS)-2HB, and the 2HB composition in PHA increased up to 35 mol% by overexpression phaCAR. The solvent fractionation and NMR analyses showed that the resulting PHAs were most likely to be block polymers consisting of P(3HB-co-3HV) and P(2HB) segments, suggesting that PhaCAR functions as the sequence-regulating PHA synthase independently from genetic and metabolic backgrounds of the host cell. KEY POINTS: (R/S)-2-hydroxubutyrates (2HB) caused l-valine deletion in Ralstonia eutropha (R)- and (S)-lactate/2HB dehydrogenases functional in R. eutropha were identified The engineered R. eutropha synthesized block copolymers of 2HB-containing polyhydroxyalkanoates on glucose and 2HB.
Collapse
Affiliation(s)
- Shizuru Ishihara
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Ken'ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
3
|
Jo YY, Park S, Gong G, Roh S, Yoo J, Ahn JH, Lee SM, Um Y, Kim KH, Ko JK. Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated 3-hydroxyvalerate fraction by overexpressing acetolactate synthase in Cupriavidus necator H16. Int J Biol Macromol 2023:125166. [PMID: 37270139 DOI: 10.1016/j.ijbiomac.2023.125166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The elastomeric properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable copolymer, strongly depend on the molar composition of 3-hydroxyvalerate (3 HV). This paper reports an improved artificial pathway for enhancing the 3HV component during PHBV biosynthesis from a structurally unrelated carbon source by Cupriavidus necator H16. To increase the intracellular accumulation of propionyl-CoA, a key precursor of the 3HV monomer, we developed a recombinant strain by genetically manipulating the branched-chain amino acid (e.g., valine, isoleucine) pathways. Overexpression of the heterologous feedback-resistant acetolactate synthase (alsS), (R)-citramalate synthase (leuA), homologous 3-ketothiolase (bktB), and the deletion of 2-methylcitrate synthase (prpC) resulted in biosynthesis of 42.5 % (g PHBV/g dry cell weight) PHBV with 64.9 mol% 3 HV monomer from fructose as the sole carbon source. This recombinant strain also accumulated the highest PHBV content of 54.5 % dry cell weight (DCW) with 24 mol% 3HV monomer from CO2 ever reported. The lithoautotrophic cell growth and PHBV production by the recombinant C. necator were promoted by oxygen stress. The thermal properties of PHBV showed a decreasing trend of the glass transition and melting temperatures with increasing 3 HV fraction. The average molecular weights of PHBV with modulated 3 HV fractions were between 20 and 26 × 104 g/mol.
Collapse
Affiliation(s)
- Young Yun Jo
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soyoung Park
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Soonjong Roh
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin Yoo
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
4
|
Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli. Appl Environ Microbiol 2022; 88:e0097622. [PMID: 35980178 PMCID: PMC9469723 DOI: 10.1128/aem.00976-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an important metabolic intermediate, 2-ketoisovalerate has significant potential in the pharmaceutical and biofuel industries. However, a low output through microbial fermentation inhibits its industrial application. The microbial production of 2-ketoisovalerate is representative whereby redox imbalance is generated with two molecules of NADH accumulated and an extra NADPH required to produce one 2-ketoisovalerate from glucose. To achieve efficient 2-ketoisovalerate production, metabolic engineering strategies were evaluated in Escherichia coli. After deleting the competing routes, overexpressing the key enzymes for 2-ketoisovalerate production, tuning the supply of NADPH, and recycling the excess NADH through enhancing aerobic respiration, a 2-ketoisovalerate titer and yield of 46.4 g/L and 0.644 mol/mol glucose, respectively, were achieved. To reduce the main by-product of isobutanol, the activity and expression of acetolactate synthase were modified. Additionally, a protein degradation tag was fused to pyruvate dehydrogenase (PDH) to curtail the conversion of pyruvate precursor into acetyl-CoA and the generation of NADH. The resulting strain, 050TY/pCTSDTQ487S-RBS55, was initially incubated under aerobic conditions to attain sufficient cell mass and then transferred to a microaerobic condition to degrade PDH and inhibit the remaining activity of PDH. Intracellular redox imbalance was relieved with titer, productivity and yield of 2-ketoisovalerate improved to 55.8 g/L, 2.14 g/L h and 0.852 mol/mol glucose. These results revealed metabolic engineering strategies for the production of a redox-imbalanced fermentative metabolite with high titer, productivity, and yield. IMPORTANCE An efficient microbial strain was constructed for 2-ketoisovalerate synthesis. The positive effect of the leuA deletion on 2-ketoisovalerate production was found. An optimal combination of overexpressing the target genes was obtained by adjusting the positions of the multiple enzymes on the plasmid frame and the presence of terminators, which could also be useful for the production of downstream products such as isobutanol and l-valine. Reducing the isobutanol by-product by engineering the acetolactate synthase called for special attention to decreasing the promiscuous activity of the enzymes involved. Redox-balancing strategies such as tuning the expression of the chromosomal pyridine nucleotide transhydrogenase, recycling NADH under aerobic cultivation, switching off PDH by degradation, and inhibiting the expression and activity under microaerobic conditions were proven effective for improving 2-ketoisovalerate production. The degradation of PDH and inhibiting this enzyme's expression would serve as a means to generate a wide range of products from pyruvate.
Collapse
|
5
|
Bayaraa T, Gaete J, Sutiono S, Kurz J, Lonhienne T, Harmer JR, Bernhardt PV, Sieber V, Guddat L, Schenk G. Dihydroxy‐Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance. Chemistry 2022; 28:e202200927. [PMID: 35535733 PMCID: PMC9543379 DOI: 10.1002/chem.202200927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/30/2022]
Abstract
There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic‐resistant superbugs. Enzymes of the branched‐chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti‐microbial drug development. Dihydroxy‐acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe−S cluster for catalytic activity and has recently also gained attention as a catalyst in cell‐free enzyme cascades. Two types of Fe−S clusters have been identified in DHADs, i.e. [2Fe−2S] and [4Fe−4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000‐fold increase with kcat as high as ∼6.7 s−1). Inductively‐coupled plasma‐optical emission spectroscopy (ICP‐OES) measurements are consistent with the presence of [4Fe−4S] clusters in both enzymes. N‐isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki=7.8 and 51.6 μM, respectively) and CjDHAD (Ki=32.9 and 35.1 μM, respectively). These compounds thus present suitable starting points for the development of novel anti‐microbial chemotherapeutics.
Collapse
Affiliation(s)
- Tenuun Bayaraa
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jose Gaete
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Julia Kurz
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jeffrey R. Harmer
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Sustainable Minerals Institute The University of Queensland Brisbane 4072 Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
6
|
Eprintsev AT, Fedorin DN, Anokhina GB, Igamberdiev AU. Effects of light, anoxia and salinity on the expression of dihydroxyacid dehydratase in maize. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153507. [PMID: 34478919 DOI: 10.1016/j.jplph.2021.153507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Dihydroxyacid dehydratase (EC 4.2.1.9) participates in metabolism of branched chain amino acids, in CoA biosynthesis and in the conversion of hydroxycitric acid that accumulates in several plants. In maize (Zea mays L.), this enzyme is encoded by the two genes (Dhad1 and Dhad2), having different patterns of their expression during germination. We have demonstrated the inhibition of Dhad1 expression by light and the opposite effect of light on Dhad2. These effects were phytochrome-dependent and involved methylation/demethylation of promoters. Incubation of maize plants in a nitrogen atmosphere resulted in Dhad1 activation peaking at 12 h, which coincided with the decrease in promoter methylation. The gene Dhad2 was activated only during the first 6 h of anoxia, with no correlation with the level of promoter methylation. Salt stress (150 mM NaCl) caused the activation of expression of Dhad2 while the expression of Dhad1 was inhibited in the first hour and then after 12 h incubation with NaCl. We conclude that the expression of two genes encoding dihydroxyacid dehydratase reveals the opposite or different patterns of regulation by light, anoxia and salinity. The mechanisms underlying these modifications involve promoter methylation and result in corresponding changes in the enzymatic activity of the conversion of hydroxycitrate to 2-oxoglutarate.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Galina B Anokhina
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
7
|
Liang YF, Long ZX, Zhang YJ, Luo CY, Yan LT, Gao WY, Li H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie 2021; 184:72-87. [PMID: 33607240 DOI: 10.1016/j.biochi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
l-Valine, l-isoleucine, and l-leucine are three key proteinogenic amino acids, and they are also the essential amino acids required for mammalian growth, possessing important and to some extent, special physiological and biological functions. Because of the branched structures in their carbon chains, they are also named as branched-chain amino acids (BCAAs). This review will highlight the advance in studies of the enzymes involved in the biosynthetic pathway of BCAAs, concentrating on their chemical mechanisms and applications in screening herbicides and antibacterial agents. The uses of some of these enzymes in lab scale organic synthesis are also discussed.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Zi-Xian Long
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Ya-Jian Zhang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Cai-Yun Luo
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Le-Tian Yan
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| | - Heng Li
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
8
|
Ding X, Liu K, Gong G, Tian L, Ma J. Volatile organic compounds in the salt-lake sediments of the Tibet Plateau influence prokaryotic diversity and community assembly. Extremophiles 2020; 24:307-318. [PMID: 32025854 DOI: 10.1007/s00792-020-01155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
Volatile organic compounds (VOCs) are important environmental factors because they supply nutrients for microbial cells and mediate intercellular interactions. However, few studies have focused on the effects of VOCs on prokaryotic diversity and community composition. In this study, we examined the relationship between prokaryotic diversity and community composition and the content of VOCs in salt-lake sediments from the Tibet Plateau using amplicon sequencing of the 16S rRNA gene. Results showed that the alpha-diversity indices (Chao1, Shannon, and Simpson) were generally negatively correlated with the content of 36 VOCs (P < 0.05). The prokaryotic communities were significantly driven by multiple VOCs at the lineage-dependent pattern (P < 0.05). Further analysis indicated that VOCs, including 3-methylpyruvate, biuret, isocitric acid, and stearic acid, jointly explained 37.3% of the variations in prokaryotic communities. Supplemental VOCs-pyruvate, biuret, alanine, and aspartic acid-notably decreased the Chao1 and Shannon indices and significantly assembled co-occurrence networks for the bacterial communities in the saline sediments. Together, these results demonstrated that VOCs play a critical role in the regulation of the diversity, compositions, and network structures of prokaryotic communities in saline sediments.
Collapse
Affiliation(s)
- Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lu Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
9
|
Liu Y, Wang X, Zhan J, Hu J. The 138th residue of acetohydroxyacid synthase in Corynebacterium glutamicum is important for the substrate binding specificity. Enzyme Microb Technol 2019; 129:109357. [DOI: 10.1016/j.enzmictec.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 11/28/2022]
|
10
|
NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius. Sci Rep 2018; 8:7176. [PMID: 29739976 PMCID: PMC5940873 DOI: 10.1038/s41598-018-25361-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
Ketol-acid reductoisomerase (KARI) is a bifunctional enzyme in the second step of branched-chain amino acids biosynthetic pathway. Most KARIs prefer NADPH as a cofactor. However, KARI with a preference for NADH is desirable in industrial applications including anaerobic fermentation for the production of branched-chain amino acids or biofuels. Here, we characterize a thermoacidophilic archaeal Sac-KARI from Sulfolobus acidocaldarius and present its crystal structure at a 1.75-Å resolution. By comparison with other holo-KARI structures, one sulphate ion is observed in each binding site for the 2′-phosphate of NADPH, implicating its NADPH preference. Sac-KARI has very high affinity for NADPH and NADH, with KM values of 0.4 μM for NADPH and 6.0 μM for NADH, suggesting that both are good cofactors at low concentrations although NADPH is favoured over NADH. Furthermore, Sac-KARI can catalyze 2(S)-acetolactate (2S-AL) with either cofactor from 25 to 60 °C, but the enzyme has higher activity by using NADPH. In addition, the catalytic activity of Sac-KARI increases significantly with elevated temperatures and reaches an optimum at 60 °C. Bi-cofactor utilization and the thermoactivity of Sac-KARI make it a potential candidate for use in metabolic engineering or industrial applications under anaerobic or harsh conditions.
Collapse
|
11
|
Liu Y, Li Y, Wang X. Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol 2016; 100:8633-49. [DOI: 10.1007/s00253-016-7809-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
12
|
Genome-based analysis and gene dosage studies provide new insight into 3-hydroxy-4-methylvalerate biosynthesis in Ralstonia eutropha. J Bacteriol 2015; 197:1350-9. [PMID: 25645560 DOI: 10.1128/jb.02474-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant Ralstonia eutropha strain PHB(-)4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB(-)4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB(-)4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone.
Collapse
|