1
|
Kim J, Fuller ME, Hatzinger PB, Chu KH. Isolation and characterization of nitroguanidine-degrading microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169184. [PMID: 38092196 DOI: 10.1016/j.scitotenv.2023.169184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Nitroguanidine (NQ) is a component of newly developed insensitive munition (IM) formulations which are more resistant to impact, friction, heat, or sparks than conventional explosives. NQ is also used to synthesize various organic compounds and herbicides, and has both human and environmental health impacts. Despite the wide application and associated health concerns, limited information is known regarding NQ biodegradation, and only one NQ-degrading pure culture identified as Variovorax strain VC1 has been characterized. Here, we present results for three new NQ-degrading bacterial strains isolated from soil, sediment, and a lab-scale aerobic membrane bioreactor (MBR), respectively. Each of these strains -utilizes NQ as a nitrogen (N) source rather than as a source of carbon or energy. The MBR strain, identified as Pseudomonas extremaustralis strain NQ5, is capable of degrading NQ at a rate of approximately 150 μmole L-1 h-1 under aerobic conditions with glucose as a sole carbon source - and NQ as a sole N source. The addition of NH4+ to strain NQ5 during active growth with NQ as a sole N source slowed the growth rate for several hours, and the strain released NH4+, presumably from NQ. When NO3- was added as an alternate N source under similar conditions, the NO3- was not consumed, but NH4+ release into the culture medium was again observed. Strain NQ5 was also able to utilize guanylurea, guanidine, and ethyl allophanate as N sources, and - tolerate salt concentrations as high as 4 % (as NaCl). The other two stains, NQ4 and NQ7, both identified as Arthrobacter spp., grew significantly slower than strain NQ5 under similar culture conditions and tolerated only ∼1 % NaCl. In addition, neither strain NQ4 nor strain NQ7 was able to degrade guanlyurea or ethyl allophanate, but each degraded guanidine. These strains, particularly strain NQ5, may have practical applications for in-situ and ex-situ NQ bioremediation.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Paul B Hatzinger
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
2
|
Gupta S, Siebner H, Ramanathan G, Ronen Z. Inhibition effect of 2,4,6-trinitrotoluene (TNT) on RDX degradation by rhodococcus strains isolated from contaminated soil and water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120018. [PMID: 36002099 DOI: 10.1016/j.envpol.2022.120018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
2,4,6-trinitrotoluene (TNT) is a highly toxic explosive that contaminates soil and water and may interfere with the degradation of co-occurring compounds, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). We proposed that TNT may influence RDX-degrading bacteria via either general toxicity or a specific effect on the |RDX degradation mechanisms. Thus, we examined the impact of TNT on RDX degradation by Rhodococcus strains YH1, T7, and YY1, which were isolated from an explosives-polluted environment. Although partly degraded, TNT did not support the growth of any of the strains when used as either sole carbon or sole nitrogen sources, or as carbon and nitrogen sources. The incubation of a mixture of TNT (25 mg/l) and RDX (20 mg/l) completely inhibited RDX degradation. The effect of TNT on the cytochrome P450, catalyzing RDX degradation, was tested in a resting cell experiment, proving that TNT inhibits XplA protein activity. A dose-response experiment showed that the IC50/trans values for YH1, T7, and YY1 were 7.272, 5.098, and 9.140 (mg/l of TNT), respectively, illustrating variable sensitivity to TNT among the strains. The expression of xplA was also strongly suppressed by TNT. Cells that were pre-grown with RDX (allowing xplA expression) and incubated with ammonium chloride, glucose, and TNT, completely transformed into their amino dinitrotoluene isomers and formed azoxy toluene isomers. The presence of oxygen-insensitive nitroreductase that enable reduction of the nitro group in the presence of O2 in the genomes of these strains suggests that they are responsible for TNT transformation in the cultures. The experimental results concluded that TNT has an adverse effect on RDX degradation by the examined strains. It inhibits RDX degradation due to the direct impact on cytochrome P450, xplA, or its expression. The tested strains can transform TNT independently of RDX. Thus, degradation of both compounds is possible if TNT concentrations are below their IC50 values.
Collapse
Affiliation(s)
- Swati Gupta
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Hagar Siebner
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel.
| |
Collapse
|
3
|
Effects of Perchlorate and Other Groundwater Inorganic Co-Contaminants on Aerobic RDX Degradation. Microorganisms 2022; 10:microorganisms10030663. [PMID: 35336238 PMCID: PMC8949498 DOI: 10.3390/microorganisms10030663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) pollution is accompanied by other co-contaminants, such as perchlorate and chlorates, which can retard biodegradation. The effects of perchlorate and chlorate on aerobic RDX degradation remain unclear. We hypothesized that they have a negative or no impact on aerobic RDX-degrading bacteria. We used three aerobic RDX-degrading strains—Rhodococcus strains YH1 and T7 and Gordonia YY1—to examine this hypothesis. The strains were exposed to perchlorate, chlorate, and nitrate as single components or in a mixture. Their growth, degradation activity, and gene expression were monitored. Strain-specific responses to the co-contaminants were observed: enhanced growth of strain YH1 and inhibition of strain T7. Vmax and Km of cytochrome P450 (XplA) in the presence of the co-contaminants were not significantly different from the control, suggesting no direct influence on cytochrome P450. Surprisingly, xplA expression increased fourfold in cultures pre-grown on RDX and, after washing, transferred to a medium containing only perchlorate. This culture did not grow, but xplA was translated and active, albeit at lower levels than in the control. We explained this observation as being due to nitrogen limitation in the culture and not due to perchlorate induction. Our results suggest that the aerobic strain YH1 is effective for aerobic remediation of RDX in groundwater.
Collapse
|
4
|
Sowani H, Kulkarni M, Zinjarde S. Harnessing the catabolic versatility of Gordonia species for detoxifying pollutants. Biotechnol Adv 2019; 37:382-402. [DOI: 10.1016/j.biotechadv.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
|
5
|
Dong W, Chen S, Jin S, Chen M, Yan B, Chen Y. Effect of Sodium Alginate on the Morphology and Properties of High Energy Insensitive Explosive TKX‐50. PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201800279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenbo Dong
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing P.R. China
| | - Shusen Chen
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing P.R. China
| | - Shaohua Jin
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing P.R. China
| | - Minglei Chen
- Research InstituteGansu Yinguang Chemical Industry Group Co., Ltd. Baiyin P.R. China
| | - Bo Yan
- Research InstituteGansu Yinguang Chemical Industry Group Co., Ltd. Baiyin P.R. China
| | - Yu Chen
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing P.R. China
| |
Collapse
|
6
|
Sabir DK, Grosjean N, Rylott EL, Bruce NC. Investigating differences in the ability of XplA/B-containing bacteria to degrade the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). FEMS Microbiol Lett 2018; 364:3958792. [PMID: 28854671 DOI: 10.1093/femsle/fnx144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
The xenobiotic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a toxic explosive and environmental pollutant. This study examines three bacterial species that degrade RDX, using it as a sole source of nitrogen for growth. Although isolated from diverse geographical locations, the species contain near identical copies of genes encoding the RDX-metabolising cytochrome P450, XplA and accompanying reductase, XplB. Sequence analysis indicates a single evolutionary origin for xplA and xplB as part of a genomic island, which has been distributed around the world via horizontal gene transfer. Despite the fact that xplA and xplB are highly conserved between species, Gordonia sp. KTR9 and Microbacterium sp. MA1 degrade RDX more slowly than Rhodococcus rhodochrous 11Y. Both Gordonia sp. KTR9 and Microbacterium sp. MA1 were found to contain single base-pair mutations in xplB which, following expression and purification, were found to encode inactive XplB protein. Additionally, the Gordonia sp. KTR9 XplB was fused to glutamine synthetase, which would be likely to sterically inhibit XplB activity. Although the glutamine synthetase is fused to XplB and truncated by 71 residues, it was found to be active. Glutamine synthetase has been implicated in the regulation of nitrogen levels; controlling nitrogen availability will be important for effective bioremediation of RDX.
Collapse
Affiliation(s)
- Dana Khdr Sabir
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.,Department of General Sciences, Charmo University, 46023 Chamchamal, Sulaimani, Kurdistan Region- IRAQ
| | - Nicolas Grosjean
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
7
|
Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. CHEMOSPHERE 2017; 184:438-451. [PMID: 28618276 DOI: 10.1016/j.chemosphere.2017.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/10/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Utsab Deb
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Sibnarayan Datta
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Clemens Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany
| | - Dharmendra K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany.
| |
Collapse
|
8
|
Fuller ME, Hatzinger PB, Condee CW, Andaya C, Rezes R, Michalsen MM, Crocker FH, Indest KJ, Jung CM, Alon Blakeney G, Istok JD, Hammett SA. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Appl Microbiol Biotechnol 2017; 101:5557-5567. [DOI: 10.1007/s00253-017-8269-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
9
|
Khan MI, Yang J, Yoo B, Park J. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:243-251. [PMID: 25661171 DOI: 10.1016/j.jhazmat.2015.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
In this work, we developed and characterized a novel nitrogen-fixing aerobic microbial consortium for the complete detoxification of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Aerobic RDX biodegradation coupled with microbial growth and nitrogen fixation activity were effectively stimulated by the co-addition of starch and RDX under nitrogen limiting conditions. In the starch-stimulated nitrogen-fixing RDX degradative consortium, the RDX degradation activity was correlated with the xplA and nifH gene copy numbers, suggesting the involvement of nitrogen fixing populations in RDX biodegradation. Formate, nitrite, nitrate, and ammonia were detected as aerobic RDX degradation intermediates without the accumulation of any nitroso-derivatives or NDAB (4-nitro-2,4-diazabutanal), indicating nearly complete mineralization. Pyrosequencing targeting the bacterial 16S rRNA genes revealed that the Rhizobium, Rhizobacter and Terrimonas population increased as the RDX degradation activity increased, suggesting their involvement in the degradation process. These findings imply that the nitrogen-fixing aerobic RDX degrading consortium is a valuable microbial resource for improving the detoxification of RDX-contaminated soil or groundwater, especially when combined with rhizoremediation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- School of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea; Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jihoon Yang
- School of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Byungun Yoo
- School of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Joonhong Park
- School of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
10
|
Indest KJ, Eberly JO, Hancock DE. Expression and characterization of an N-oxygenase from Rhodococcus jostii RHAI. J GEN APPL MICROBIOL 2015; 61:217-23. [DOI: 10.2323/jgam.61.217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Karl J. Indest
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| | - Jed O. Eberly
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| | - Dawn E. Hancock
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| |
Collapse
|