1
|
Yi L, Fan Q, Wang H, Fan H, Zuo J, Wang Y, Wang Y. Establishment of Streptococcus suis Biofilm Infection Model In Vivo and Comparative Analysis of Gene Expression Profiles between In Vivo and In Vitro Biofilms. Microbiol Spectr 2023; 11:e0268622. [PMID: 36507687 PMCID: PMC9927446 DOI: 10.1128/spectrum.02686-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that continuously threatens animal husbandry and public health worldwide. Studies have shown that S. suis can cause persistent infection by forming biofilms. In this study, a model of S. suis biofilm-related infection was successfully constructed for the first time by simulating the natural infection of S. suis, and biofilm of S. suis in vivo was successfully observed in the lung tissue of infected pigs by a variety of detection methods. Subsequently, selective capture of transcribed sequences (SCOTS) was used to identify genes expressed by S. suis in vivo biofilms. Sixty-nine genes were captured in in vivo biofilms formed by S. suis for the first time by SCOTS; they were mainly involved in metabolism, cell replication, and division, transport, signal transduction, cell wall, etc. Genes related to S. suis in vitro biofilm formation were also identified by SCOTS and RNA sequencing. Approximately half of the genes captured by SCOTS in the in vivo and in vitro biofilms were found to be different. In summary, our study provides powerful clues for future exploration of the mechanisms of S. suis biofilm formation. IMPORTANCE Streptococcus suis is considered an important zoonotic pathogen, and persistent infection caused by biofilm is currently considered to be the reason why S. suis is difficult to control in swine. However, to date, a model of the biofilm of S. suis in vivo has not been successfully constructed. Here, we successfully detected biofilms of S. suis in vivo in lung tissues of piglets infected with S. suis. Selective capture of transcribed sequences and the transcriptome were used to obtain gene profiles of S. suis in vivo and in vitro biofilms, and the results showed large differences between them. Such data are of importance for future experimental studies exploring the mechanism of biofilm formation by S. suis in vivo.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haoran Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jing Zuo
- College of Life Science, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| |
Collapse
|
2
|
Barton AJ, Hill J, Pollard AJ, Blohmke CJ. Transcriptomics in Human Challenge Models. Front Immunol 2017; 8:1839. [PMID: 29326715 PMCID: PMC5741696 DOI: 10.3389/fimmu.2017.01839] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Human challenge models, in which volunteers are experimentally infected with a pathogen of interest, provide the opportunity to directly identify both natural and vaccine-induced correlates of protection. In this review, we highlight how the application of transcriptomics to human challenge studies allows for the identification of novel correlates and gives insight into the immunological pathways required to develop functional immunity. In malaria challenge trials for example, innate immune pathways appear to play a previously underappreciated role in conferring protective immunity. Transcriptomic analyses of samples obtained in human challenge studies can also deepen our understanding of the immune responses preceding symptom onset, allowing characterization of innate immunity and early gene signatures, which may influence disease outcome. Influenza challenge studies demonstrate that these gene signatures have diagnostic potential in the context of pandemics, in which presymptomatic diagnosis of at-risk individuals could allow early initiation of antiviral treatment and help limit transmission. Furthermore, gene expression analysis facilitates the identification of host factors contributing to disease susceptibility, such as C4BPA expression in enterotoxigenic Escherichia coli infection. Overall, these studies highlight the exceptional value of transcriptional data generated in human challenge trials and illustrate the broad impact molecular data analysis may have on global health through rational vaccine design and biomarker discovery.
Collapse
Affiliation(s)
- Amber J Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|