1
|
Mugnai G, Bernabò L, Daly G, Corneli E, Adessi A. Photofermentative production of poly-β-hydroxybutyrate (PHB) by purple non-sulfur bacteria using olive oil by-products. BIORESOUR BIOPROCESS 2025; 12:25. [PMID: 40128444 PMCID: PMC11933499 DOI: 10.1186/s40643-025-00856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/22/2025] [Indexed: 03/26/2025] Open
Abstract
This study evaluated the ability of six purple non-sulfur bacteria (PNSB) to convert olive oil by-products into poly-β-hydroxybutyrate (PHB). Strains were first independently cultivated in synthetic media with different carbon sources (acetic, lactic and malic acid) to assess their physiology and PHB production. Subsequently, their growth and PHB production using ingested pâté olive cake (IPOC) as a substrate were investigated. Transmission electron microscopy (TEM) observations were conducted on strains cultivated on IPOC to investigate their cell morphologies and inclusion bodies presence and size. Rhodopseudomonas palustris strains accumulated up to 6.8% w PHB/w cells with acetate and 0.86% w PHB/w cells with a daily productivity of 0.54 mg PHB L⁻1 culture d⁻1 on IPOC. In contrast, Cereibacter johrii and Cereibacter sphaeroides reached 58.64% w PHB/w cells and 65.45% w PHB/w cells with acetate, respectively, while C. sphaeroides achieved 21.48% w PHB/w cells and a daily productivity of 10.85 mg PHB L⁻1 culture d⁻1 when cultivated on IPOC. All strains exhibited growth and PHB accumulation in both synthetic media and IPOC substrate. Specifically, R. palustris strains 42OL, AV33 and CGA009 displayed growth capability in all substrates, while C. johrii strains 9Cis and PISA 7, and C. sphaeroides F17 showed promising PHB synthesis capabilities. TEM observations revealed that R. palustris strains, with smaller cell and inclusion body sizes, exhibited lower PHB accumulations, while C. johrii and C. sphaeroides strains, characterized by larger cells and inclusion bodies, demonstrated higher PHB production, recognizing them as promising candidates for PHB production using olive oil by-products. Further investigations under laboratory-scale conditions will be necessary to optimize operating parameters and develop integrated strategies for simultaneous PHB synthesis and the co-production of value-added products, thereby enhancing the economic feasibility of the process within a biorefinery framework.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Luca Bernabò
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Giulia Daly
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Elisa Corneli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- PhotoB. Srl, Via Montecalvi, 3, San Casciano in Val Di Pesa, 50026, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy.
| |
Collapse
|
2
|
Morrison HM, Bose A. Purple non-sulfur bacteria for biotechnological applications. J Ind Microbiol Biotechnol 2024; 52:kuae052. [PMID: 39730143 PMCID: PMC11730080 DOI: 10.1093/jimb/kuae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 12/29/2024]
Abstract
In this review, we focus on how purple non-sulfur bacteria can be leveraged for sustainable bioproduction to support the circular economy. We discuss the state of the field with respect to the use of purple bacteria for energy production, their role in wastewater treatment, as a fertilizer, and as a chassis for bioplastic production. We explore their ability to serve as single-cell protein and production platforms for fine chemicals from waste materials. We also introduce more Avant-Garde technologies that leverage the unique metabolisms of purple bacteria, including microbial electrosynthesis and co-culture. These technologies will be pivotal in our efforts to mitigate climate change and circularize the economy in the next two decades. ONE-SENTENCE SUMMARY Purple non-sulfur bacteria are utilized for a range of biotechnological applications, including the production of bio-energy, single cell protein, fertilizer, bioplastics, fine chemicals, in wastewater treatment and in novel applications like co-cultures and microbial electrosynthesis.
Collapse
Affiliation(s)
- Hailee M Morrison
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Brown B, Wilkins M, Saha R. Rhodopseudomonas palustris: A biotechnology chassis. Biotechnol Adv 2022; 60:108001. [PMID: 35680002 DOI: 10.1016/j.biotechadv.2022.108001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Rhodopseudomonas palustris is an attractive option for biotechnical applications and industrial engineering due to its metabolic versatility and its ability to catabolize a wide variety of feedstocks and convert them to several high-value products. Given its adaptable metabolism, R. palustris has been studied and applied in an extensive variety of applications such as examining metabolic tradeoffs for environmental perturbations, biodegradation of aromatic compounds, environmental remediation, biofuel production, agricultural biostimulation, and bioelectricity production. This review provides a holistic summary of the commercial applications for R. palustris as a biotechnology chassis and suggests future perspectives for research and engineering.
Collapse
Affiliation(s)
- Brandi Brown
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
4
|
Rao R, Basak N. Fermentative molecular biohydrogen production from cheese whey: present prospects and future strategy. Appl Biochem Biotechnol 2021; 193:2297-2330. [PMID: 33608807 DOI: 10.1007/s12010-021-03528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Waste-dependent fermentative routes for biohydrogen production present a possible scenario to produce hydrogen gas on a large scale in a sustainable way. Cheese whey contains a high portion of organic carbohydrate and other organic acids, which makes it a feasible substrate for biohydrogen production. In the present review, recent research progress related to fermentative technologies, which explore the potentiality of cheese whey for biohydrogen production as an effective tool on a large scale, has been analyzed systematically. In addition, application of multiple response surface methodology tools such as full factorial design, Box-Behnken model, and central composite design during fermentative biohydrogen production to study the interactive effects of different bioprocess variables for higher biohydrogen yield in batch, fed-batch, and continuous mode is also discussed. The current paper also emphasizes computational fluid dynamics-based simulation designs, by which the substrate conversion efficiency of the cheese whey-based bioprocess and temperature distribution toward the turbulent flow of reaction liquid can be enhanced. The possible future developments toward higher process efficiency are outlined.
Collapse
Affiliation(s)
- Raman Rao
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, 144 011, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, 144 011, India.
| |
Collapse
|
5
|
Pradhan N, d'Ippolito G, Dipasquale L, Esposito G, Panico A, Lens PNL, Fontana A. Kinetic modeling of hydrogen and L-lactic acid production by Thermotoga neapolitana via capnophilic lactic fermentation of starch. BIORESOURCE TECHNOLOGY 2021; 332:125127. [PMID: 33873006 DOI: 10.1016/j.biortech.2021.125127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the feasibility of hydrogen (H2) and L-lactic acid production from starch under capnophilic lactic fermentation (CLF) conditions by using Thermotoga neapolitana. Batch experiments were performed in 120 mL serum bottles and a 3 L pH-controlled continuous stirred-tank reactors (CSTR) system with potato and wheat starch as the substrates. A H2 yield of 3.34 (±0.17) and 2.79 (±0.17) mol H2/mol of glucose eq. was achieved with, respectively, potato and wheat starch. In the presence of CO2, L-lactic acid production by the acetyl-CoA carboxylation was significantly higher for the potato starch (0.88 ± 0.39 mol lactic acid/mol glucose eq.) than wheat starch (0.33 ± 0.11 mol lactic acid/mol glucose eq.). A kinetic model was applied to simulate and predict the T. neapolitana metabolic profile and bioreactor performance under CLF conditions. The CLF-based starch fermentation suggests a new direction to biotransform agri-food waste into biofuels and valuable biochemicals.
Collapse
Affiliation(s)
- Nirakar Pradhan
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Giuliana d'Ippolito
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Laura Dipasquale
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli "Federico II", Via Claudio 21, 80125 Napoli, Italy.
| | - Antonio Panico
- Department of Engineering, University of Campania "Luigi Vanvitelli", via Roma 29, 81031 Aversa, Italy.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611-AX Delft, the Netherlands.
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy; Department of Biology, University of Napoli "Federico II", Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy.
| |
Collapse
|
6
|
Lanzilli M, Esercizio N, Vastano M, Xu Z, Nuzzo G, Gallo C, Manzo E, Fontana A, d’Ippolito G. Effect of Cultivation Parameters on Fermentation and Hydrogen Production in the Phylum Thermotogae. Int J Mol Sci 2020; 22:ijms22010341. [PMID: 33396970 PMCID: PMC7795431 DOI: 10.3390/ijms22010341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023] Open
Abstract
The phylum Thermotogae is composed of a single class (Thermotogae), 4 orders (Thermotogales, Kosmotogales, Petrotogales, Mesoaciditogales), 5 families (Thermatogaceae, Fervidobacteriaceae, Kosmotogaceae, Petrotogaceae, Mesoaciditogaceae), and 13 genera. They have been isolated from extremely hot environments whose characteristics are reflected in the metabolic and phenotypic properties of the Thermotogae species. The metabolic versatility of Thermotogae members leads to a pool of high value-added products with application potentials in many industry fields. The low risk of contamination associated with their extreme culture conditions has made most species of the phylum attractive candidates in biotechnological processes. Almost all members of the phylum, especially those in the order Thermotogales, can produce bio-hydrogen from a variety of simple and complex sugars with yields close to the theoretical Thauer limit of 4 mol H2/mol consumed glucose. Acetate, lactate, and L-alanine are the major organic end products. Thermotagae fermentation processes are influenced by various factors, such as hydrogen partial pressure, agitation, gas sparging, culture/headspace ratio, inoculum, pH, temperature, nitrogen sources, sulfur sources, inorganic compounds, metal ions, etc. Optimization of these parameters will help to fully unleash the biotechnological potentials of Thermotogae and promote their applications in industry. This article gives an overview of how these operational parameters could impact Thermotogae fermentation in terms of sugar consumption, hydrogen yields, and organic acids production.
Collapse
Affiliation(s)
- Mariamichela Lanzilli
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Nunzia Esercizio
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Marco Vastano
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Genoveffa Nuzzo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Carmela Gallo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Emiliano Manzo
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
| | - Giuliana d’Ippolito
- Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (M.L.); (N.E.); (M.V.); (G.N.); (C.G.); (E.M.); (A.F.)
- Correspondence: ; Tel.: +39-081-8675096
| |
Collapse
|
7
|
Dipasquale L, Pradhan N, d’Ippolito G, Fontana A. Potential of Hydrogen Fermentative Pathways in Marine Thermophilic Bacteria: Dark Fermentation and Capnophilic Lactic Fermentation in Thermotoga and Pseudothermotoga Species. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Xie GJ, Liu BF, Ding J, Wang Q, Ma C, Zhou X, Ren NQ. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25312-25322. [PMID: 27696162 DOI: 10.1007/s11356-016-7756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Poor flocculation of photo fermentative bacteria resulting in continuous biomass washout from photobioreactor is a critical challenge to achieve rapid and stable hydrogen production. In this work, the aggregation of Rhodopseudomonas faecalis RLD-53 was successfully developed in a photobioreactor and the effects of different carbon sources on hydrogen production and aggregation ability were investigated. Extracellular polymeric substances (EPS) production by R. faecalis RLD-53 cultivated using different carbon sources were stimulated by addition of L-cysteine. The absolute ζ potentials of R. faecalis RLD-53 were considerably decreased with addition of L-cysteine, and aggregation barriers based on DLVO dropped to 15-43 % of that in control groups. Thus, R. faecalis RLD-53 flocculated effectively, and aggregation abilities of strain RLD-53 cultivated with acetate, propionate, lactate and malate reached 29.35, 32.34, 26.07 and 24.86 %, respectively. In the continuous test, hydrogen-producing activity was also promoted and reached 2.45 mol H2/mol lactate, 3.87 mol H2/mol propionate and 5.10 mol H2/mol malate, respectively. Therefore, the aggregation of R. faecalis RLD-53 induced by L-cysteine is independent on the substrate types, which ensures the wide application of this technology to enhance hydrogen recovery from wastewater dominated by different organic substrates.
Collapse
Affiliation(s)
- Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qilin Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Chao Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Adessi A, Spini G, Presta L, Mengoni A, Viti C, Giovannetti L, Fani R, De Philippis R. Draft genome sequence and overview of the purple non sulfur bacterium Rhodopseudomonas palustris 42OL. Stand Genomic Sci 2016; 11:24. [PMID: 26966509 PMCID: PMC4785650 DOI: 10.1186/s40793-016-0145-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022] Open
Abstract
Rhodopseudomonas palustris strain 42OL was isolated in 1973 from a sugar refinery waste treatment pond. The strain has been prevalently used for hydrogen production processes using a wide variety of waste-derived substrates, and cultured both indoors and outdoors, either freely suspended or immobilized. R. palustris 42OL was suitable for many other applications and capable of growing in very different culturing conditions, revealing a wide metabolic versatility. The analysis of the genome sequence allowed to identify the metabolic pathways for hydrogen and poly-β-hydroxy-butyrate production, and confirmed the ability of using a wide range of organic acids as substrates.
Collapse
Affiliation(s)
- Alessandra Adessi
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy ; Institute of Chemistry of Organometallic Compounds, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Giulia Spini
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy
| | - Luana Presta
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy
| | - Luciana Giovannetti
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy ; Institute of Chemistry of Organometallic Compounds, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Adessi A, Concato M, Sanchini A, Rossi F, De Philippis R. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain. Appl Microbiol Biotechnol 2016; 100:2917-26. [DOI: 10.1007/s00253-016-7291-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
|
11
|
Pradhan N, Dipasquale L, d'Ippolito G, Panico A, Lens PNL, Esposito G, Fontana A. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana. Int J Mol Sci 2015; 16:12578-600. [PMID: 26053393 PMCID: PMC4490462 DOI: 10.3390/ijms160612578] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.
Collapse
Affiliation(s)
- Nirakar Pradhan
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Laura Dipasquale
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Giuliana d'Ippolito
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Antonio Panico
- Telematic University Pegaso, piazza Trieste e Trento, 48, 80132 Naples, Italy.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611-AX Delft, The Netherlands.
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|