1
|
Huang Y, Gao Y, Huang Y, Wang X, Xu M, Xu G, Zhang X, Li H, Shi J, Xu Z, Zhang X. Enhanced l-serine synthesis in Corynebacterium glutamicum by exporter engineering and Bayesian optimization of the medium composition. Synth Syst Biotechnol 2025; 10:835-845. [PMID: 40291977 PMCID: PMC12033900 DOI: 10.1016/j.synbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
l-serine is a versatile, high value-added amino acid, widely used in food, medicine and cosmetics. However, the low titer of l-serine has limited its industrial production. In this study, a cell factory without plasmid for efficient production of l-serine was constructed based on transport engineering. Firstly, the effects of l-serine exporter SerE overexpression and deletion on the cell growth and l-serine titer were investigated in Corynebacterium glutamicum (C. glutamicum) A36, overexpression of s erE using a plasmid led to a 15.1% increase in l-serine titer but also caused a 15.1% decrease in cell growth. Subsequently, to increase the export capacity of SerE, we conducted semi-rational design and bioinformatics analysis, combined with alanine mutation and site-specific saturation mutation. The mutant E277K was obtained and exhibited a 53.2% higher export capacity compared to wild-type SerE, resulting in l-serine titer increased by 39.6%. Structural analysis and molecular dynamics simulations were performed to elucidate the mechanism. The results showed that the mutation shortened the hydrogen bond distance between the exporter and l-serine, enhanced complex stability, and reduced the binding energy. Finally, Bayesian optimization was employed to further improve l-serine titer of the mutant strain C-E277K. Under the optimized conditions, 47.77 g/L l-serine was achieved in a 5-L bioreactor, representing the highest reported titer for C. glutamicum to date. This study provides a basis for the transformation of l-serine export pathway and offers a new strategy for increasing l-serine titer.
Collapse
Affiliation(s)
- Yifan Huang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yujie Gao
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yamin Huang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiaogang Wang
- Key Laboratory of Advanced Control for Light Industry Processes, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Xu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiaojuan Zhang
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhenghong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
2
|
Han R, Zhong Q, Yan Y, Wang J, Zhu Y, Li S, Lei P, Wang R, Qiu Y, Luo Z, Xu H. Transcriptomics-guided rational engineering in Bacillus licheniformis for enhancing poly-γ-glutamic acid biosynthesis using untreated molasses. Int J Biol Macromol 2024; 282:137514. [PMID: 39532159 DOI: 10.1016/j.ijbiomac.2024.137514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The utilization of non-food raw materials for microbial synthesis of poly-γ-glutamic acid (γ-PGA) presents a promising alternative to conventional food-based biosynthesis. However, the complex carbon source and composition of molasses, a prevalent non-food raw material, may impose constraints on its conversion and utilization by microorganisms. This study aimed to enhance the capacity of Bacillus licheniformis to convert untreated molasses into γ-PGA through transcriptomic analysis to guide metabolic modifications. Initial results from the transcriptomic analysis indicated that the strain utilizing molasses exhibited decreased expression of genes associated with substrate utilization (Module 1) and by-product synthesis (Module 2), while upregulating genes related to precursor synthesis (Module 3). Furthermore, we performed a knockout of the acetolactate synthase (AlsS) to reduce the synthesis of metabolic by-products and a knockout of the global regulator (CcpA) to alleviate carbon catabolite repression (CCR) and then promote substrate utilization. Ultimately, following the tandem overexpression of precursor supplying key genes, the titer of γ-PGA reached 48.26 g/L with a productivity of 1.15 g/L/h, using untreated molasses as the sole carbon source, which was 3.12-fold of the starting strain. These findings offer significant insights into the cost-effective synthesis of γ-PGA by bioconversion of untreated molasses during fermentation.
Collapse
Affiliation(s)
- Rui Han
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Zhong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Yan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Juan Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Xu G, Zhang X, Xiao W, Shi J, Xu Z. Production of L-serine and its derivative L-cysteine from renewable feedstocks using Corynebacterium glutamicum: advances and perspectives. Crit Rev Biotechnol 2024; 44:448-461. [PMID: 36944486 DOI: 10.1080/07388551.2023.2170863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023]
Abstract
L-serine and its derivative L-cysteine have broad industrial applications, and their direct fermentative production from renewable biomass is gaining increasing attention. Corynebacterium glutamicum is an extensively studied and well-established industrial microorganism, which is a predominant microbial host for producing amino acids. In this review, updated information on the genetics and molecular mechanisms underlying L-serine and L-cysteine production using C. glutamicum is presented, including their synthesis and degradation pathways, and other intracellular processes related to their production, as well as the mechanisms underlying substrate import and product export are also analyzed. Furthermore, metabolic strategies for strain improvement are systematically discussed, and conclusions and future perspectives for bio-based L-serine and L-cysteine production using C. glutamicum are presented. This review can provide a thorough understanding of L-serine and L-cysteine metabolic pathways to facilitate metabolic engineering modifications of C. glutamicum and development of more efficient industrial fermentation processes for L-serine and L-cysteine production.
Collapse
Affiliation(s)
- Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| | - Xiaomei Zhang
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Jiangnan University, Wuxi, China
| | - Wenhan Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| | - Jinsong Shi
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| |
Collapse
|
4
|
Tian S, Zhao G, Lv G, Wu C, Su R, Wang F, Wang Z, Liu Y, Chen N, Li Y. Efficient Fermentative Production of d-Alanine and Other d-Amino Acids by Metabolically Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8039-8051. [PMID: 38545740 DOI: 10.1021/acs.jafc.4c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
d-Amino acids (d-AAs) have wide applications in industries such as pharmaceutical, food, and cosmetics due to their unique properties. Currently, the production of d-AAs has relied on chemical synthesis or enzyme catalysts, and it is challenging to produce d-AAs via direct fermentation from glucose. We observed that Corynebacterium glutamicum exhibits a remarkable tolerance to high concentrations of d-Ala, a crucial characteristic for establishing a successful fermentation process. By optimizing meso-diaminopilmelate dehydrogenases in different C. glutamicum strains and successively deleting l-Ala biosynthetic pathways, we developed an efficient d-Ala fermentation system. The d-Ala titer was enhanced through systems metabolic engineering, which involved strengthening glucose assimilation and pyruvate supply, reducing the formation of organic acid byproducts, and attenuating the TCA cycle. During fermentation in a 5-L bioreactor, a significant accumulation of l-Ala was observed in the broth, which was subsequently diminished by introducing an l-amino acid deaminase. Ultimately, the engineered strain DA-11 produced 85 g/L d-Ala with a yield of 0.30 g/g glucose, accompanied by an optical purity exceeding 99%. The fermentation platform has the potential to be extended for the synthesis of other d-AAs, as demonstrated by the production of d-Val and d-Glu.
Collapse
Affiliation(s)
- Siyu Tian
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Guihong Zhao
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Gengcheng Lv
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Rui Su
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yuexiang Liu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
5
|
Gao Y, Zhang X, Xu G, Zhang X, Li H, Shi J, Xu Z. Enhanced L-serine production by Corynebacterium glutamicum based on novel insights into L-serine exporters. Biotechnol J 2024; 19:e2300136. [PMID: 37971189 DOI: 10.1002/biot.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The L-serine exporters ThrE and SerE play important roles in L-serine production by Corynebacterium glutamicum. Deletion of both thrE and serE decreased L-serine titer by 60%, suggesting the existence of other L-serine exporters. A comparative transcriptomics identified NCgl0254 and NCgl0255 as novel L-serine exporters. Further analysis of the contributions of ThrE, SerE, NCgl0254, and NCgl0255 found that SerE was the major L-serine exporter in C. glutamicum and these four L-serine exporters were responsible for 79.7% of L-serine export. Deletion of one L-serine exporter upregulated the transcription levels of the other three, which might be coursed by increased intracellular concentrations of L-serine. Overexpression of NCgl0254 and NCgl0255 increased L-serine titer by 20.8% in C. glutamicum A36, while overexpression of the four L-serine exporters increased L-serine production by 31.9% (41.1 g·L-1 ) in C. glutamicum A36. The identification of novel L-serine exporters in C. glutamicum will help to improve industrial production of L-serine.
Collapse
Affiliation(s)
- Yujie Gao
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Guoqiang Xu
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaojuan Zhang
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Gao GR, Wei SY, Ding MZ, Hou ZJ, Wang DJ, Xu QM, Cheng JS, Yuan YJ. Enhancing fengycin production in the co-culture of Bacillus subtilis and Corynebacterium glutamicum by engineering proline transporter. BIORESOURCE TECHNOLOGY 2023:129229. [PMID: 37244302 DOI: 10.1016/j.biortech.2023.129229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Fengycin possesses antifungal activity but has limited application due to its low yields. Amino acid precursors play a crucial role in fengycin synthesis. Herein, the overexpression of alanine, isoleucine, and threonine transporter-related genes in Bacillus subtilis increased fengycin production by 34.06%, 46.66%, and 7.83%, respectively. Particularly, fengycin production in B. subtilis reached 871.86 mg/L with the addition of 8.0 g/L exogenous proline after enhancing the expression of the proline transport-related gene opuE. To overcome the metabolic burden caused by excessive enhancement of gene expression for supplying precursors, B. subtilis and Corynebacterium glutamicum which produced proline, were co-cultured, which further improved fengycin production. Fengycin production in the co-culture of B. subtilis and C. glutamicum in shake flasks reached 1554.74 mg/L after optimizing the inoculation time and ratio. The fengycin level in the fed-batch co-culture was 2309.96 mg/L in a 5.0-L bioreactor. These findings provide a new strategy for improving fengycin production.
Collapse
Affiliation(s)
- Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Dun-Ju Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| |
Collapse
|
7
|
Sun HZ, Chen XY, Zhang YM, Qiao B, Xu QM, Cheng JS, Yuan YJ. Construction of multi-strain microbial consortia producing amylase, serine and proline for enhanced bioconversion of food waste into lipopeptides. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Bioprocess Engineering, Transcriptome, and Intermediate Metabolite Analysis of L-Serine High-Yielding Escherichia coli W3110. Microorganisms 2022; 10:microorganisms10101927. [PMID: 36296205 PMCID: PMC9612172 DOI: 10.3390/microorganisms10101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
L-serine is widely used in the food, cosmetic, and pharmaceutical industries. However, the complicated metabolic network and regulatory mechanism of L-serine production lead to the suboptimal productivity of the direct fermentation of L-serine and limits its large-scale industrial production. In this study, a high-yield L-serine production Escherichia coli strain was constructed by a series of defined genetic modification methodologies. First, L-serine-mediated feedback inhibition was removed and L-serine biosynthetic pathway genes (serAfr, serC, and serB) associated with phosphoglycerate kinase (pgk) were overexpressed. Second, the L-serine conversion pathway was further examined by introducing a glyA mutation (K229G) and deleting other degrading enzymes based on the deletion of initial sdaA. Finally, the L-serine transport system was rationally engineered to reduce uptake and accelerate L-serine export. The optimally engineered strain produced 35 g/L L-serine with a productivity of 0.98 g/L/h and a yield of 0.42 g/g glucose in a 5-L fermenter, the highest productivity and yield of L-serine from glucose reported to date. Furthermore, transcriptome and intermediate metabolite of the high-yield L-serine production Escherichia coli strain were analyzed. The results demonstrated the regulatory mechanism of L-serine production is delicate, and that combined metabolic and bioprocess engineering strategies for L-serine producing strains can improve the productivity and yield.
Collapse
|
9
|
Chen Z, Chen X, Li Q, Zhou P, Zhao Z, Li B. Transcriptome Analysis Reveals Potential Mechanisms of L-Serine Production by Escherichia coli Fermentation in Different Carbon-Nitrogen Ratio Medium. Foods 2022; 11:2092. [PMID: 35885334 PMCID: PMC9318367 DOI: 10.3390/foods11142092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
L-serine is an industrially valuable amino acid that is widely used in the food, cosmetics and pharmaceutical industries. In this study, transcriptome sequencing technology was applied to analyze the changes in gene expression levels during the synthesis of L-serine in Escherichia coli fermentation. The optimal carbon-nitrogen ratio for L-serine synthesis in E. coli was determined by setting five carbon-nitrogen ratios for shake flask fermentation. Transcriptome sequencing was performed on E. coli fermented in five carbon-nitrogen ratio medium in which a total of 791 differentially expressed genes (DEGs) were identified in the CZ4_vs_CZ1 group, including 212 upregulated genes and 579 downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these DEGs showed that the effect of an altered carbon-nitrogen ratio on the fermentability of E. coli was mainly focused on metabolic pathways such as GABAergic synapse and the two-component system (TCS) in which the genes playing key roles were mainly gadB, gadA, glsA, glnA, narH and narJ. In summary, these potential key metabolic pathways and key genes were proposed to provide valuable information for improving glucose conversion during E. coli fermentation.
Collapse
Affiliation(s)
- Zheng Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Xiaojia Chen
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Qinyu Li
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Peng Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Zhijun Zhao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
| |
Collapse
|
10
|
High Yield Fermentation of L-serine in Recombinant Escherichia coli via Co-localization of SerB and EamA through Protein Scaffold. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Chen XY, Sun HZ, Qiao B, Miao CH, Hou ZJ, Xu SJ, Xu QM, Cheng JS. Improved the lipopeptide production of Bacillus amyloliquefaciens HM618 under co-culture with the recombinant Corynebacterium glutamicum producing high-level proline. BIORESOURCE TECHNOLOGY 2022; 349:126863. [PMID: 35183721 DOI: 10.1016/j.biortech.2022.126863] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The application of antibacterial lipopeptides is limited by high cost and low yield. Herein, the exogenous L-proline significantly improved lipopeptide production by Bacillus amyloliquefaciens HM618. A recombinant Corynebacterium glutamicum producing high levels of proline using genetically modifying proB and putA was used to establish consortium, to improve lipopeptide production of strain HM618. Compared to a pure culture, the levels of iturin A, fengycin, and surfactin in consortium reached 67.75, 39.32, and 37.25 mg L-1, respectively, an increase of 3.19-, 2.05-, and 1.63-fold over that produced by co-cultures of B. amyloliquefaciens and recombinant C. glutamicum with normal medium. Commercial amylase and recombinant Pichia pastoris with a heterologous amylase gene were used to hydrolyze kitchen waste. A three-strain consortium with recombinant P. pastoris and C. glutamicum increased the lipopeptide production of strain HM618 in medium containing KW. This work provides new strategies to improve lipopeptide production by B. amyloliquefaciens.
Collapse
Affiliation(s)
- Xin-Yue Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Chang-Hao Miao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Shu-Jing Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
12
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
13
|
Development of a Cofactor Balanced, Multi Enzymatic Cascade Reaction for the Simultaneous Production of L-Alanine and L-Serine from 2-Keto-3-deoxy-gluconate. Catalysts 2020. [DOI: 10.3390/catal11010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Enzymatic reaction cascades represent a powerful tool to convert biogenic resources into valuable chemicals for fuel and commodity markets. Sugars and their breakdown products constitute a significant group of possible substrates for such biocatalytic conversion strategies to value-added products. However, one major drawback of sugar cascades is the need for cofactor recycling without using additional enzymes and/or creating unwanted by-products. Here, we describe a novel, multi-enzymatic reaction cascade for the one-pot simultaneous synthesis of L-alanine and L-serine, using the sugar degradation product 2-keto-3-deoxygluconate and ammonium as precursors. To pursue this aim, we used four different, thermostable enzymes, while the necessary cofactor NADH is recycled entirely self-sufficiently. Buffer and pH optimisation in combination with an enzyme titration study yielded an optimised production of 21.3 +/− 1.0 mM L-alanine and 8.9 +/− 0.4 mM L-serine in one pot after 21 h.
Collapse
|
14
|
Shi F, Fan Z, Zhang S, Wang Y, Tan S, Li Y. Optimization of ribosomal binding site sequences for gene expression and 4-hydroxyisoleucine biosynthesis in recombinant corynebacterium glutamicum. Enzyme Microb Technol 2020; 140:109622. [PMID: 32912682 DOI: 10.1016/j.enzmictec.2020.109622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
4-Hydroxyisoleucine (4-HIL) has potential value for treating diabetes. α-Ketoglutarate (α-KG)-dependent l-isoleucine dioxygenase (IDO) can convert l-isoleucine (Ile) into 4-HIL. In our previous study, 4-HIL was de novo synthesized from glucose by expressing the ido gene in Corynebacterium glutamicum strain SN01, an Ile producer, and neither Ile nor α-KG was added. In this study, ribosomal binding site (RBS) engineering was applied for gene expression and 4-HIL biosynthesis in C. glutamicum. The 18 tested RBS sequences showed greatly differing strengths for expressing ido, and 8.10-104.22 mM 4-HIL was produced. To supply the cosubstrate α-KG at different levels, the odhI gene was then expressed using the RBS sequences of high, medium, and low strength in the above mentioned optimal strain SF01 carrying R8-ido. However, 4-HIL production decreased to varying amounts, and in some strains, the α-KG was redirected into l-glutamate synthesis. Next, the O2 supply was further enhanced in three ido-odhI coexpressing strains by overexpressing the vgb gene, and 4-HIL production changed dramatically. 4-HIL (up to 119.27 ± 5.03 mM) was produced in the best strain, SF08, suggesting that the synchronic supply of cosubstrates α-KG and O2 is critical for the high-yield production of 4-HIL. Finally, the avtA gene and the ldhA-pyk2 cluster were deleted separately in SF08 to reduce pyruvate-derived byproducts, and 4-HIL production increased to 122.16 ± 5.18 and 139.82 ± 1.56 mM, respectively, indicating that both strains were promising candidates for producing 4-HIL. Therefore, fine-tuning ido expression and the cosubstrates supply through RBS engineering is a useful strategy for improving 4-HIL biosynthesis in C. glutamicum.
Collapse
Affiliation(s)
- Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Zhengyu Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuping Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yinghao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuyu Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yongfu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
15
|
High-yield production of L-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum. Microb Cell Fact 2020; 19:115. [PMID: 32471433 PMCID: PMC7260847 DOI: 10.1186/s12934-020-01374-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
Background l-Serine has wide and increasing applications in industries with fast-growing market demand. Although strategies for achieving and improving l-serine production in Corynebacterium glutamicum (C. glutamicum) have focused on inhibiting its degradation and enhancing its biosynthetic pathway, l-serine yield has remained relatively low. Exporters play an essential role in the fermentative production of amino acids. To achieve higher l-serine yield, l-serine export from the cell should be improved. In C. glutamicum, ThrE, which can export l-threonine and l-serine, is the only identified l-serine exporter so far. Results In this study, a novel l-serine exporter NCgl0580 was identified and characterized in C. glutamicum ΔSSAAI (SSAAI), and named as SerE (encoded by serE). Deletion of serE in SSAAI led to a 56.5% decrease in l-serine titer, whereas overexpression of serE compensated for the lack of serE with respect to l-serine titer. A fusion protein with SerE and enhanced green fluorescent protein (EGFP) was constructed to confirm that SerE localized at the plasma membrane. The function of SerE was studied by peptide feeding approaches, and the results showed that SerE is a novel exporter for l-serine and l-threonine in C. glutamicum. Subsequently, the interaction of a known l-serine exporter ThrE and SerE was studied, and the results suggested that SerE is more important than ThrE in l-serine export in SSAAI. In addition, probe plasmid and electrophoretic mobility shift assays (EMSA) revealed NCgl0581 as the transcriptional regulator of SerE. Comparative transcriptomics between SSAAI and the NCgl0581 deletion strain showed that NCgl0581 is a positive regulator of NCgl0580. Finally, by overexpressing the novel exporter SerE, combined with l-serine synthetic pathway key enzyme serAΔ197, serC, and serB, the resulting strain presented an l-serine titer of 43.9 g/L with a yield of 0.44 g/g sucrose, which is the highest l-serine titer and yield reported so far in C. glutamicum. Conclusions This study provides a novel target for l-serine and l-threonine export engineering as well as a new global transcriptional regulator NCgl0581 in C. glutamicum.
Collapse
|
16
|
Wang C, Wu J, Shi B, Shi J, Zhao Z. Improving L-serine formation by Escherichia coli by reduced uptake of produced L-serine. Microb Cell Fact 2020; 19:66. [PMID: 32169078 PMCID: PMC7071685 DOI: 10.1186/s12934-020-01323-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
Background Microbial de novo production of l-serine, which is widely used in a range of cosmetic and pharmaceutical products, has attracted increasing attention due to its environmentally friendly characteristics. Previous pioneering work mainly focused on l-serine anabolism; however, in this study, it was found that l-serine could be reimported through the l-serine uptake system, thus hampering l-serine production. Result To address this challenge, engineering via deletion of four genes, namely, sdaC, cycA, sstT and tdcC, which have been reported to be involved in l-serine uptake in Escherichia coli, was first carried out in the l-serine producer E. coli ES. Additionally, the effects of these genes on l-serine uptake activity and l-serine production were investigated. The data revealed an abnormal phenomenon regarding serine uptake activity. The serine uptake activity of the ΔsdaC mutant was 0.798 nmol min−1 (mg dry weight) −1 after 30 min, decreasing by 23.34% compared to that of the control strain. However, the serine uptake activity of the single sstT, cycA and tdcC mutants increased by 34.29%, 78.29% and 48.03%, respectively, compared to that of the control strain. This finding may be the result of the increased level of sdaC expression in these mutants. In addition, multigene-deletion strains were constructed based on an sdaC knockout mutant. The ΔsdaCΔsstTΔtdcC mutant strain exhibited 0.253 nmol min−1 (mg dry weight) −1l-serine uptake activity and the highest production titer of 445 mg/L in shake flask fermentation, which was more than three-fold the 129 mg/L production observed for the parent. Furthermore, the ΔsdaCΔsstTΔtdcC mutant accumulated 34.8 g/L l-serine with a yield of 32% from glucose in a 5-L fermenter after 36 h. Conclusion The results indicated that reuptake of l-serine impairs its production and that an engineered cell with reduced uptake can address this problem and improve the production of l-serine in E. coli.
Collapse
Affiliation(s)
- Chenyang Wang
- Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Binchao Shi
- Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China.,College of Life Science, Shihezi University, 221 Beisi Road, Shihezi, 832003, China
| | - Jiping Shi
- Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China. .,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zhijun Zhao
- Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China. .,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
17
|
Liu W, Zhu X, Lian J, Huang L, Xu Z. Efficient production of glutathione with multi-pathway engineering in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 2019; 46:1685-1695. [PMID: 31420796 DOI: 10.1007/s10295-019-02220-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/11/2019] [Indexed: 01/15/2023]
Abstract
Glutathione is a bioactive tripeptide composed of glycine, L-cysteine, and L-glutamate, and has been widely used in pharmaceutical, food, and healthy products. The current metabolic studies of glutathione were mainly focused on the native producing strains with precursor amino acid supplementation. In the present work, Corynebacterium glutamicum, a workhorse for industrial production of a series of amino acids, was engineered to produce glutathione. First, the introduction of glutathione synthetase gene gshF from Streptococcus agalactiae fulfilled the ability of glutathione production in C. glutamicum and revealed that L-cysteine was the limiting factor. Then, considering the inherent capability of L-glutamate synthesis and the availability of external addition of low-cost glycine, L-cysteine biosynthesis was enhanced using a varieties of pathway engineering methods, such as disrupting the degradation pathways of L-cysteine and L-serine, and removing the repressor responsible for sulfur metabolism. Finally, the simultaneously introduction of gshF and enhancement of cysteine formation enabled C. glutamicum strain to produce glutathione greatly. Without external addition of L-cysteine and L-glutamate, 756 mg/L glutathione was produced. This is first time to demonstrate the potential of the glutathione non-producing strain C. glutamicum for glutathione production and provide a novel strategy to construct glutathione-producing strains.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,College of Chemical and Biological Engineering, Institute of Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,College of Chemical and Biological Engineering, Institute of Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,College of Chemical and Biological Engineering, Institute of Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,College of Chemical and Biological Engineering, Institute of Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
18
|
Rennig M, Mundhada H, Wordofa GG, Gerngross D, Wulff T, Worberg A, Nielsen AT, Nørholm MHH. Industrializing a Bacterial Strain for l-Serine Production through Translation Initiation Optimization. ACS Synth Biol 2019; 8:2347-2358. [PMID: 31550142 DOI: 10.1021/acssynbio.9b00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Turning a proof-of-concept synthetic biology design into a robust, high performing cell factory is a major time and money consuming task, which severely limits the growth of the white biotechnology sector. Here, we extend the use of tunable antibiotic resistance markers for synthetic evolution (TARSyn), a workflow for screening translation initiation region (TIR) libraries with antibiotic selection, to generic pathway engineering, and transform a proof-of-concept synbio design into a process that performs at industrially relevant levels. Using a combination of rational design and adaptive evolution, we recently engineered a high-performing bacterial strain for production of the important building block biochemical l-serine, based on two high-copy pET vectors facilitating expression of the serine biosynthetic genes serA, serC, and serB from three independent transcriptional units. Here, we prepare the bacterial strain for industrial scale up by transferring and reconfiguring the three genes into an operon encoded on a single low-copy plasmid. Not surprisingly, this initially reduces production titers considerably. We use TARSyn to screen both experimental and computational optimization designs resulting in high-performing synthetic serine operons and reach industrially relevant production levels of 50 g/L in fed-batch fermentations, the highest reported so far for serine production.
Collapse
Affiliation(s)
- Maja Rennig
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Mycropt IVS, 2800 Kgs. Lyngby, Denmark
| | - Hemanshu Mundhada
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Gossa G. Wordofa
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Daniel Gerngross
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Andreas Worberg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Alex T. Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Mycropt IVS, 2800 Kgs. Lyngby, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Mycropt IVS, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Yu J, Li J, Gao X, Zeng S, Zhang H, Liu J, Jiao Q. Dynamic Kinetic Resolution for Asymmetric Synthesis of L-Noncanonical Amino Acids from D-Ser Using Tryptophan Synthase and Alanine Racemase. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Shuiyun Zeng
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Hongjuan Zhang
- School of Pharmacy; Nanjing Medical University; 211166 Nanjing China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| |
Collapse
|
20
|
Zhang X, Lai L, Xu G, Zhang X, Shi J, Koffas MAG, Xu Z. Rewiring the Central Metabolic Pathway for High‐Yieldl‐Serine Production inCorynebacterium glutamicumby Using Glucose. Biotechnol J 2019; 14:e1800497. [DOI: 10.1002/biot.201800497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaomei Zhang
- Laboratory of Pharmaceutical EngineeringSchool of Pharmaceutics Science, Jiangnan UniversityWuxi 214122 China
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
| | - Lianhe Lai
- Laboratory of Pharmaceutical EngineeringSchool of Pharmaceutics Science, Jiangnan UniversityWuxi 214122 China
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
| | - Guoqiang Xu
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityNo. 1800, Lihu Avenue Wuxi 214122 China
| | - Xiaojuan Zhang
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityNo. 1800, Lihu Avenue Wuxi 214122 China
| | - Jinsong Shi
- Laboratory of Pharmaceutical EngineeringSchool of Pharmaceutics Science, Jiangnan UniversityWuxi 214122 China
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
| | - Mattheos A. G. Koffas
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroy 12180 NY USA
- Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroy 12180 NY USA
| | - Zhenghong Xu
- The Key Laboratory of Industrial BiotechnologyMinistry of Education, School of Biotechnology, Jiangnan UniversityWuxi 214122 China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityNo. 1800, Lihu Avenue Wuxi 214122 China
| |
Collapse
|
21
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
22
|
Zhang X, Zhang D, Zhu J, Liu W, Xu G, Zhang X, Shi J, Xu Z. High-yield production of L-serine from glycerol by engineered Escherichia coli. J Ind Microbiol Biotechnol 2019; 46:221-230. [PMID: 30600411 DOI: 10.1007/s10295-018-2113-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
Abstract
L-Serine is widely used in pharmaceutical, food and cosmetic industries, and the direct fermentation to produce L-serine from cheap carbon sources such as glycerol is greatly desired. The production of L-serine by engineered Escherichia coli from glycerol has not been achieved so far. In this study, E. coli was engineered to efficiently produce L-serine from glycerol. To this end, three L-serine deaminase genes were deleted in turn, and all of the deletions caused the maximal accumulation of L-serine at 0.06 g/L. Furthermore, removal of feedback inhibition by L-serine resulted in a titer of 1.1 g/L. Additionally, adaptive laboratory evolution was employed to improve glycerol utilization in combination with the overexpression of the cysteine/acetyl serine transporter gene eamA, leading to 2.36 g/L L-serine (23.6% of the theoretical yield). In 5-L bioreactor, L-serine titer could reach up to 7.53 g/L from glycerol, demonstrating the potential of the established strain and bioprocess.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Dong Zhang
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Jiafen Zhu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Wang Liu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Guoqiang Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Zhenghong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
23
|
Wei L, Wang H, Xu N, Zhou W, Ju J, Liu J, Ma Y. Metabolic engineering of Corynebacterium glutamicum for l-cysteine production. Appl Microbiol Biotechnol 2018; 103:1325-1338. [DOI: 10.1007/s00253-018-9547-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
24
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
25
|
One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Sci Rep 2018; 8:12895. [PMID: 30150644 PMCID: PMC6110843 DOI: 10.1038/s41598-018-31309-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
N-methylated amino acids are found in Nature in various biological compounds. N-methylation of amino acids has been shown to improve pharmacokinetic properties of peptide drugs due to conformational changes, improved proteolytic stability and/or higher lipophilicity. Due to these characteristics N-methylated amino acids received increasing interest by the pharmaceutical industry. Syntheses of N-methylated amino acids by chemical and biocatalytic approaches are known, but often show incomplete stereoselectivity, low yields or expensive co-factor regeneration. So far a one-step fermentative process from sugars has not yet been described. Here, a one-step conversion of sugars and methylamine to the N-methylated amino acid N-methyl-l-alanine was developed. A whole-cell biocatalyst was derived from a pyruvate overproducing C. glutamicum strain by heterologous expression of the N-methyl-l-amino acid dehydrogenase gene from Pseudomonas putida. As proof-of-concept, N-methyl-l-alanine titers of 31.7 g L−1 with a yield of 0.71 g per g glucose were achieved in fed-batch cultivation. The C. glutamicum strain producing this imine reductase enzyme was engineered further to extend this green chemistry route to production of N-methyl-l-alanine from alternative feed stocks such as starch or the lignocellulosic sugars xylose and arabinose.
Collapse
|
26
|
Microbial Production of l-Serine from Renewable Feedstocks. Trends Biotechnol 2018; 36:700-712. [DOI: 10.1016/j.tibtech.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/21/2022]
|
27
|
Zhang X, Zhang X, Xu G, Zhang X, Shi J, Xu Z. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve l-serine yield in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:5939-5951. [DOI: 10.1007/s00253-018-9025-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/31/2018] [Accepted: 04/14/2018] [Indexed: 12/31/2022]
|
28
|
Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol 2018; 102:3915-3937. [DOI: 10.1007/s00253-018-8896-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/22/2023]
|
29
|
Zhang Y, Shang X, Lai S, Zhang Y, Hu Q, Chai X, Wang B, Liu S, Wen T. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum. ACS Synth Biol 2018; 7:635-646. [PMID: 29316787 DOI: 10.1021/acssynbio.7b00373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13CH2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.
Collapse
Affiliation(s)
- Yun Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuling Shang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujuan Lai
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qitiao Hu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chai
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwen Liu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingyi Wen
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Zhang Y, Kang P, Liu S, Zhao Y, Wang Z, Chen T. glyA gene knock-out in Escherichia coli enhances L-serine production without glycine addition. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2017; 2:87-96. [PMID: 29062965 PMCID: PMC5637227 DOI: 10.1016/j.synbio.2017.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.
Collapse
|
32
|
Zhang X, Lai L, Xu G, Zhang X, Shi J, Xu Z. Effects of pyruvate kinase on the growth of Corynebacterium glutamicum and L-serine accumulation. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Enhancement of fructose utilization from sucrose in the cell for improved l-serine production in engineered Corynebacterium glutamicum. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Yang J, Yang S. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 2017; 18:940. [PMID: 28198668 PMCID: PMC5310272 DOI: 10.1186/s12864-016-3255-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Corynebacterium glutamicum is a non-pathogenic bacterium widely used in industrial amino acid production and metabolic engineering research. Although the genome sequences of some C. glutamicum strains are available, comprehensive comparative genome analyses of these species have not been done. Six wild type C. glutamicum strains were sequenced using next-generation sequencing technology in our study. Together with 20 previously reported strains, we present a comprehensive comparative analysis of C. glutamicum genomes. Results By average nucleotide identity (ANI) analysis, we show that 10 strains, which were previously classified either in the genus Brevibacterium, or as some other species within the genus Corynebacterium, should be reclassified as members of the species C. glutamicum. C. glutamicum has an open pan-genome with 2359 core genes. An additional NAD+/NADP+ specific glutamate dehydrogenase (GDH) gene (gdh) was identified in the glutamate synthesis pathway of some C. glutamicum strains. For analyzing variations related to amino acid production, we have developed an efficient pipeline that includes three major steps: multi locus sequence typing (MLST), phylogenomic analysis based on single nucleotide polymorphisms (SNPs), and a thorough comparison of all genomic variation amongst ancestral or closely related wild type strains. This combined approach can provide new perspectives on the industrial use of C. glutamicum. Conclusions This is the first comprehensive comparative analysis of C. glutamicum genomes at the pan-genomic level. Whole genome comparison provides definitive evidence for classifying the members of this species. Identifying an aditional gdh gene in some C. glutamicum strains may accelerate further research on glutamate synthesis. Our proposed pipeline can provide a clear perspective, including the presumed ancestor, the strain breeding trajectory, and the genomic variations necessary to increase amino acid production in C. glutamicum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3255-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.,Shanghai Research Center of Industrial Biotechnology, Shanghai, 201201, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China. .,Shanghai Research Center of Industrial Biotechnology, Shanghai, 201201, China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China.
| |
Collapse
|
35
|
Mundhada H, Seoane JM, Schneider K, Koza A, Christensen HB, Klein T, Phaneuf PV, Herrgard M, Feist AM, Nielsen AT. Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metab Eng 2016; 39:141-150. [PMID: 27908688 DOI: 10.1016/j.ymben.2016.11.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/24/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
L-serine is a promising building block biochemical with a high theoretical production yield from glucose. Toxicity of L-serine is however prohibitive for high-titer production in E. coli. Here, E. coli lacking L-serine degradation pathways was evolved for improved tolerance by gradually increasing L-serine concentration from 3 to 100g/L using adaptive laboratory evolution (ALE). Genome sequencing of isolated clones revealed multiplication of genetic regions, as well as mutations in thrA, thereby showing a potential mechanism of serine inhibition. Additional mutations were evaluated by MAGE combined with amplicon sequencing, revealing role of rho, lrp, pykF, eno, and rpoB on tolerance and fitness in minimal medium. Production using the tolerant strains resulted in 37g/L of L-serine with a 24% mass yield. The resulting titer is similar to the highest production reported for any organism thereby highlighting the potential of ALE for industrial biotechnology.
Collapse
Affiliation(s)
- Hemanshu Mundhada
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jose M Seoane
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Konstantin Schneider
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anna Koza
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Hanne B Christensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tobias Klein
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Patrick V Phaneuf
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Markus Herrgard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Alex T Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
36
|
Guo W, Chen Z, Zhang X, Xu G, Zhang X, Shi J, Xu Z. A novel aceE mutation leading to a better growth profile and a higher l-serine production in a high-yield l-serine-producing Corynebacterium glutamicum strain. ACTA ACUST UNITED AC 2016; 43:1293-301. [DOI: 10.1007/s10295-016-1801-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Abstract
A comparative genomic analysis was performed to study the genetic variations between the l-serine-producing strain Corynebacterium glutamicum SYPS-062 and the mutant strain SYPS-062-33a, which was derived from SYPS-062 by random mutagenesis with enhanced l-serine production. Some variant genes between the two strains were reversely mutated or deleted in the genome of SYPS-062-33a to verify the influences of the gene mutations introduced by random mutagenesis. It was found that a His-594 → Tyr mutation in aceE was responsible for the more accumulation of by-products, such as l-alanine and l-valine, in SYPS-062-33a. Furthermore, the influence of this point mutation on the l-serine production was investigated, and the results suggested that this point mutation led to a better growth profile and a higher l-serine production in the high-yield strain 33a∆SSAAI, which was derived from SYPS-062-33a by metabolic engineering with the highest l-serine production to date.
Collapse
Affiliation(s)
- Wen Guo
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Ziwei Chen
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Xiaomei Zhang
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Guoqiang Xu
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Xiaojuan Zhang
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
| | - Jinsong Shi
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Zhenghong Xu
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| |
Collapse
|
37
|
Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose. Metab Eng 2016; 33:12-18. [DOI: 10.1016/j.ymben.2015.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/14/2015] [Accepted: 10/30/2015] [Indexed: 11/23/2022]
|
38
|
Xu G, Zhu Q, Luo Y, Zhang X, Guo W, Dou W, Li H, Xu H, Zhang X, Xu Z. Enhanced production of l-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Mundhada H, Schneider K, Christensen HB, Nielsen AT. Engineering of high yield production of L-serine in Escherichia coli. Biotechnol Bioeng 2015; 113:807-16. [PMID: 26416585 DOI: 10.1002/bit.25844] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 01/23/2023]
Abstract
L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E. coli MG1655 was prevented by deletion of three L-serine deaminases sdaA, sdaB, and tdcG, as well as serine hydroxyl methyl transferase (SHMT) encoded by glyA. Upon overexpression of the serine production pathway, consisting of a feedback resistant version of serA along with serB and serC, this quadruple deletion strain showed a very high serine production yield (0.45 g/g glucose) during small-scale batch fermentation in minimal medium. Serine, however, was found to be highly toxic even at low concentrations to this strain, which lead to slow growth and production during fed batch fermentation, resulting in a serine production of 8.3 g/L. The production strain was therefore evolved by random mutagenesis to achieve increased tolerance towards serine. Additionally, overexpression of eamA, a cysteine/homoserine transporter was demonstrated to increase serine tolerance from 1.6 g/L to 25 g/L. During fed batch fermentation, the resulting strain lead to the serine production titer of 11.7 g/L with yield of 0.43 g/g glucose, which is the highest yield reported so far for any organism.
Collapse
Affiliation(s)
- Hemanshu Mundhada
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark
| | - Konstantin Schneider
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark
| | - Hanne Bjerre Christensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark
| | - Alex Toftgaard Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, 2970, Denmark.
| |
Collapse
|
40
|
Heider SAE, Wendisch VF. Engineering microbial cell factories: Metabolic engineering ofCorynebacterium glutamicumwith a focus on non-natural products. Biotechnol J 2015. [DOI: 10.1002/biot.201400590] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|