1
|
Fakih Z, Germain H. Implication of ribosomal protein in abiotic and biotic stress. PLANTA 2025; 261:85. [PMID: 40067484 DOI: 10.1007/s00425-025-04665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION This review article explores the intricate role, and regulation of ribosomal protein in response to stress, particularly emphasizing their pivotal role to ameliorate abiotic and biotic stress conditions in crop plants. Plants must coordinate ribosomes production to balance cellular protein synthesis in response to environmental variations and pathogens invasion. Over the past decade, research has revealed ribosome subgroups respond to adverse conditions, suggesting that this tight coordination may be grounded in the induction of ribosome variants resulting in differential translation outcomes. Furthermore, an increasing snumber of studies on plant ribosomes have made it possible to explore the stress-regulated expression pattern of ribosomal protein large subunit (RPL) and ribosomal protein small subunit (RPS) genes. In this perspective, we reviewed the literature linking ribosome heterogeneity to plants' abiotic and biotic stress responses to offer an overview on the expression and biological function of ribosomal components including specialized translation of individual transcripts and its implications for the regulation and expression of important gene regulatory networks, along with phenotypic analysis in ribosomal gene mutations in physiologic and pathologic processes. We also highlight recent advances in understanding the molecular mechanisms behind the transcriptional regulation of ribosomal genes linked to stress events. This review may serve as the foundation of novel strategies to customize cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
- Zainab Fakih
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada.
| |
Collapse
|
2
|
Sharanya R, Gayathri M, Renukadevi P, Saranya N, Suganthy M, Varanavasiappan S, Ghosh A, Nakkeeran S. Induction of innate immunity and plant growth promotion in tomato unveils the antiviral nature of bacterial endophytes against groundnut bud necrosis virus. J Virol 2025; 99:e0180324. [PMID: 39745468 PMCID: PMC11852893 DOI: 10.1128/jvi.01803-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 02/26/2025] Open
Abstract
Tomato is an important crop worldwide, but groundnut bud necrosis virus (GBNV) often hampers its growth. This study investigates the antiviral potential of bacterial endophytes, including Brucella melitensis CNEB54, Bacillus licheniformis CNEB4, Bacillus velezensis CNEB26, and Bacillus vallismortis BAVE5 against GBNV, as well as their ability to enhance immunity and growth in tomato. All four bacterial isolates demonstrated a significant delay in GBNV symptom development 10 days post-inoculation, with disease incidence ranging from 18% to 36% compared to 84% in control. DAC-ELISA results indicated a noteworthy reduction in virus titer (0.32-0.96 OD) in treated tomato plants versus the control (3.26 OD). In addition, qPCR analysis revealed decreased viral copy numbers in plants treated with bacterial endophytes (1.3-3.1 × 105) as against in untreated inoculated control (2.4 × 106). Furthermore, these endophytes upregulated the expression of defense-associated genes, such as MAPKK1, PAL, PPO, LOX1, JAR1, and PDF 1.2. Field experiments with the application of B. melitensis and B. velezensis exhibited improved growth, with an average plant height of 123.70 cm, 14.87 flowers per plant, and a fruit weight of 549.3 g per plant, with a disease incidence of 18.1%. In comparison, the untreated control plants only reached a height of 104.73 cm, produced 11.17 flowers per plant, and yielded 267 g of fruit per plant, with a disease incidence of 30.1%. These findings strongly support the use of bacterial endophytes to reduce disease incidence and severity, enhance plant immunity and promote plant growth, resulting in overall crop productivity in sustainable agriculture.IMPORTANCEThe infection of GBNV in crops such as tomatoes, peanuts, and pulses leads to significant yield loss. Applying insecticides to control vector populations, can limit the spread of viruses carried by these vectors. The present study envisages a novel strategy to combat GBNV, with the help of bacterial endophytes. These bacterial endophytes have tremendously reduced the symptom expression of GBNV, induced the expression of defense genes during the tri-trophic interaction and promoted plant growth in tomatoes under field conditions. Hence, these bacteria are identified to be involved in immunity boosting, viral suppression and growth promotion.
Collapse
Affiliation(s)
- R. Sharanya
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M. Gayathri
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P. Renukadevi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - N. Saranya
- Department of Plant Molecular Biology & Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M. Suganthy
- Department of Sustainable Organic Agriculture, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - S. Varanavasiappan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - S. Nakkeeran
- Agriculture College and Research Institute, Kudumiyanmalai, Pudukottai, Tamil Nadu, India
| |
Collapse
|
3
|
He WZ, Rong T, Liu XY, Rao Q. Transcriptomic Profiling Unravels the Disruption of Photosynthesis Apparatuses and Induction of Immune Responses by a Bipartite Begomovirus in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3198. [PMID: 39599406 PMCID: PMC11598137 DOI: 10.3390/plants13223198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Diseases caused by begomoviruses such as tomato yellow leaf curl disease (TYLCD) are major constraints in agriculture. While the interactions between plants and monopartite begomoviruses during TYLCD pathogenesis have been explored extensively, how bipartite begomoviruses interact with tomato plants are understudied. Here we first found that a bipartite begomovirus tomato yellow leaf curl Thailand virus (TYLCTHV) induced stunted growth, leaf curl and yellowing in tomato plants. We then profiled the tomato transcriptomic changes in response to TYLCTHV infection. In total, we identified 2322 upregulated and 1377 downregulated genes. KEGG enrichment analysis of the differentially expressed genes (DEGs) revealed that many KEGG pathways regulating plant photosynthesis processes and defenses were enriched. Specifically, TYLCTHV infection disrupted the expression of DEGs that function in the light-harvesting chlorophyll protein complex, photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase. Additionally, the expression of many DEGs regulating plant defenses including pathogen-associated molecular pattern (PAMP)-triggered immunity, effector-triggered immunity and hypersensitive response was upregulated upon TYLCTHV infection. Taken together, we found that during the pathogenesis of TYLCD induced by TYLCTHV, the virus actively disrupts plant photosynthesis processes and induces defense responses. Our findings add to our knowledge of TYLCD pathogenesis and plant-virus interactions in general.
Collapse
Affiliation(s)
| | | | | | - Qiong Rao
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (W.-Z.H.); (T.R.); (X.-Y.L.)
| |
Collapse
|
4
|
He WZ, Zhao L, Sun K, Feng Z, Zhou G, Rao Q. Transcriptomic profiling reveals the complex interaction between a bipartite begomovirus and a cucurbitaceous host plant. BMC Genomics 2024; 25:876. [PMID: 39294575 PMCID: PMC11409788 DOI: 10.1186/s12864-024-10781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Begomoviruses are major constraint in the production of many crops. Upon infection, begomoviruses may substantially modulate plant biological processes. While how monopartite begomoviruses interact with their plant hosts has been investigated extensively, bipartite begomoviruses-plant interactions are understudied. Moreover, as one of the major groups of hosts, cucurbitaceous plants have been seldom examined in the interaction with begomoviruses. RESULTS We profiled the zucchini transcriptomic changes induced by a bipartite begomovirus squash leaf curl China virus (SLCCNV). We identified 2275 differentially-expressed genes (DEGs), of which 1310 were upregulated and 965 were downregulated. KEGG enrichment analysis of the DEGs revealed that many pathways related to primary and secondary metabolisms were enriched. qRT-PCR verified the transcriptional changes of twelve selected DEGs induced by SLCCNV infection. Close examination revealed that the expression levels of all the DEGs of the pathway Photosynthesis were downregulated upon SLCCNV infection. Most DEGs in the pathway Plant-pathogen interaction were upregulated, including some positive regulators of plant defenses. Moreover, the majority of DEGs in the MAPK signaling pathway-plant were upregulated. CONCLUSION Our findings indicates that SLCCNV actively interact with its cucurbitaceous plant host by suppressing the conversion of light energy to chemical energy and inducing immune responses. Our study not only provides new insights into the interactions between begomoviruses and host plants, but also adds to our knowledge on virus-plant interactions in general.
Collapse
Affiliation(s)
- Wen-Ze He
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Li Zhao
- Hangzhou Agricultural Technology Extension Center, Hangzhou, 310058, China
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zhen Feng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Gen Zhou
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qiong Rao
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Romero-Rodríguez B, Petek M, Jiao C, Križnik M, Zagorščak M, Fei Z, Bejarano ER, Gruden K, Castillo AG. Transcriptional and epigenetic changes during tomato yellow leaf curl virus infection in tomato. BMC PLANT BIOLOGY 2023; 23:651. [PMID: 38110861 PMCID: PMC10726652 DOI: 10.1186/s12870-023-04534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, generating new insights into the molecular mechanisms underlying plant-virus interactions. However, an integrative study of the changes in the host transcriptome, small RNA profile and methylome during a geminivirus infection has not been performed yet. Using a time-scale approach, we aim to decipher the gene regulation in tomato in response to the infection with the geminivirus, tomato yellow leaf curl virus (TYLCV). RESULTS We showed that tomato undergoes substantial transcriptional and post-transcriptional changes upon TYLCV infection and identified the main altered regulatory pathways. Interestingly, although the principal plant defense-related processes, gene silencing and the immune response were induced, this cannot prevent the establishment of the infection. Moreover, we identified extra- and intracellular immune receptors as targets for the deregulated microRNAs (miRNAs) and established a network for those that also produced phased secondary small interfering RNAs (phasiRNAs). On the other hand, there were no significant genome-wide changes in tomato methylome at 14 days post infection, the time point at which the symptoms were general, and the amount of viral DNA had reached its maximum level, but we were able to identify differentially methylated regions that could be involved in the transcriptional regulation of some of the differentially expressed genes. CONCLUSION We have conducted a comprehensive and reliable study on the changes at transcriptional, post-transcriptional and epigenetic levels in tomato throughout TYLCV infection. The generated genomic information is substantial for understanding the genetic, molecular and physiological changes caused by TYLCV infection in tomato.
Collapse
Affiliation(s)
- Beatriz Romero-Rodríguez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- The Key Lab of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain.
| |
Collapse
|
6
|
Shingote PR, Wasule DL, Parma VS, Holkar SK, Karkute SG, Parlawar ND, Senanayake DMJB. An Overview of Chili Leaf Curl Disease: Molecular Mechanisms, Impact, Challenges, and Disease Management Strategies in Indian Subcontinent. Front Microbiol 2022; 13:899512. [PMID: 35847087 PMCID: PMC9277185 DOI: 10.3389/fmicb.2022.899512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Leaf curl disease in a chili plant is caused mainly by Chili leaf curl virus (ChiLCV) (Family: Geminiviridae, Genus: Begomovirus). ChiLCV shows a widespread occurrence in most of the chili (Capsicum spp.) growing regions. ChiLCV has a limited host range and infects tomatoes (Solanum lycopersicum), potatoes (S. tuberosum), and amaranth (Amaranthus tricolor). The virus genome is a monopartite circular single-stranded DNA molecule of 2.7 kb and associated with α and β-satellites of 1.3 and 1.4 kb, respectively. The virus genome is encapsulated in distinct twinned icosahedral particles of around 18-30 nm in size and transmitted by Bemisia tabaci (Family: Aleyrodidae, Order: Hemiptera). Recently, bipartite begomovirus has been found to be associated with leaf curl disease. The leaf curl disease has a widespread distribution in the major equatorial regions viz., Australia, Asia, Africa, Europe, and America. Besides the PCR, qPCR, and LAMP-based detection systems, recently, localized surface-plasmon-resonance (LPSR) based optical platform is used for ChiLCV detection in a 20-40 μl of sample volume using aluminum nanoparticles. Management of ChiLCV is more challenging due to the vector-borne nature of the virus, therefore integrated disease management strategies need to be followed to contain the spread and heavy crop loss. CRISPR/Cas-mediated virus resistance has gained importance in disease management of DNA and RNA viruses due to certain advantages over the conventional approaches. Therefore, CRISPR/Cas system-mediated resistance needs to be explored in chili against ChiLCV.
Collapse
Affiliation(s)
- Prashant Raghunath Shingote
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India.,Department of Agricultural Biotechnology, Vasantrao Naik College of Agricultural Biotechnology, Yavatmal, India
| | - Dhiraj Lalji Wasule
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - Vaishnavi Sanjay Parma
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - Somnath Kadappa Holkar
- Indian Council of Agricultural Research (ICAR)-National Research Centre for Grapes, Pune, India
| | - Suhas Gorakh Karkute
- Division of Vegetable Improvement, Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, India
| | - Narsing Devanna Parlawar
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - D M J B Senanayake
- Deparment of Agriculture, Rice Research and Development Institute, Bathalagoda, Sri Lanka
| |
Collapse
|
7
|
Siddique MI, Lee JH, Ahn JH, Kusumawardhani MK, Safitri R, Harpenas A, Kwon JK, Kang BC. Genotyping-by-sequencing-based QTL mapping reveals novel loci for Pepper yellow leaf curl virus (PepYLCV) resistance in Capsicum annuum. PLoS One 2022; 17:e0264026. [PMID: 35176091 PMCID: PMC8853517 DOI: 10.1371/journal.pone.0264026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Disease caused by Pepper yellow leaf curl virus (PepYLCV) is one of the greatest threats to pepper (Capsicum spp.) cultivation in the tropics and subtropics. Resistance to PepYLCV was previously identified in a few Capsicum accessions, but no resistance QTLs have been mapped. This study aimed to elucidate the genetics of PepYLCV resistance in C. annuum L. Augmented inoculation by the viruliferous whitefly Bemisia tabaci was used to evaluate parental lines and an F2 segregating population derived from a cross between resistant C. annuum line LP97 and susceptible C. annuum line ECW30R. Final evaluation was performed six weeks after inoculation using a standardized 5-point scale (0 = no symptoms to 4 = very severe symptoms). A high-density linkage map was constructed using genotyping-by-sequencing (GBS) to identify single-nucleotide polymorphism (SNP) markers associated with PepYLCV resistance in the F2 population. QTL analysis revealed three QTLs, peplcv-1, peplcv-7, and peplcv-12, on chromosomes P1, P7, and P12, respectively. Candidate genes associated with PepYLCV resistance in the QTL regions were inferred. In addition, single markers Chr7-LCV-7 and Chr12-LCV-12 derived from the QTLs were developed and validated in another F2 population and in commercial varieties. This work thus provides not only information for mapping PepYLCV resistance loci in pepper but also forms the basis for future molecular analysis of genes involved in PepYLCV resistance.
Collapse
Affiliation(s)
- Muhammad Irfan Siddique
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | | - Ramadhani Safitri
- Department of Plant Pathology, East West Seed Indonesia, West Java, Indonesia
| | - Asep Harpenas
- Department of Plant Pathology, East West Seed Indonesia, West Java, Indonesia
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
8
|
Gupta N, Reddy K, Bhattacharyya D, Chakraborty✉ S. Plant responses to geminivirus infection: guardians of the plant immunity. Virol J 2021; 18:143. [PMID: 34243802 PMCID: PMC8268416 DOI: 10.1186/s12985-021-01612-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Geminiviruses are circular, single-stranded viruses responsible for enormous crop loss worldwide. Rapid expansion of geminivirus diversity outweighs the continuous effort to control its spread. Geminiviruses channelize the host cell machinery in their favour by manipulating the gene expression, cell signalling, protein turnover, and metabolic reprogramming of plants. As a response to viral infection, plants have evolved to deploy various strategies to subvert the virus invasion and reinstate cellular homeostasis. MAIN BODY Numerous reports exploring various aspects of plant-geminivirus interaction portray the subtlety and flexibility of the host-pathogen dynamics. To leverage this pool of knowledge towards raising antiviral resistance in host plants, a comprehensive account of plant's defence response against geminiviruses is required. This review discusses the current knowledge of plant's antiviral responses exerted to geminivirus in the light of resistance mechanisms and the innate genetic factors contributing to the defence. We have revisited the defence pathways involving transcriptional and post-transcriptional gene silencing, ubiquitin-proteasomal degradation pathway, protein kinase signalling cascades, autophagy, and hypersensitive responses. In addition, geminivirus-induced phytohormonal fluctuations, the subsequent alterations in primary and secondary metabolites, and their impact on pathogenesis along with the recent advancements of CRISPR-Cas9 technique in generating the geminivirus resistance in plants have been discussed. CONCLUSIONS Considering the rapid development in the field of plant-virus interaction, this review provides a timely and comprehensive account of molecular nuances that define the course of geminivirus infection and can be exploited in generating virus-resistant plants to control global agricultural damage.
Collapse
Affiliation(s)
- Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kishorekumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty✉
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
9
|
Devendran R, Kumar M, Ghosh D, Yogindran S, Karim MJ, Chakraborty S. Capsicum-infecting begomoviruses as global pathogens: host-virus interplay, pathogenesis, and management. Trends Microbiol 2021; 30:170-184. [PMID: 34215487 DOI: 10.1016/j.tim.2021.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Whitefly-transmitted begomoviruses are among the major threats to the cultivation of Capsicum spp. (Family: Solanaceae) worldwide. Capsicum-infecting begomoviruses (CIBs) have a broad host range and are commonly found in mixed infections, which, in turn, fuels the emergence of better-adapted species through intraspecies and interspecies recombination. Virus-encoded proteins hijack host factors to breach the well-coordinated antiviral response of plants. Epigenetic modifications of histones associated with viral minichromosomes play a critical role in this molecular arms race. Moreover, the association of DNA satellites further enhances the virulence of CIBs as the subviral agents aid the helper viruses to circumvent plant antiviral defense and facilitate expansion of their host range and disease development. The objective of this review is to provide a comprehensive overview on various aspects of CIBs such as their emergence, epidemiology, mechanism of pathogenesis, and the management protocols being employed for combating them.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneha Yogindran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Pidon H, Wendler N, Habekuβ A, Maasberg A, Ruge-Wehling B, Perovic D, Ordon F, Stein N. High-resolution mapping of Rym14 Hb, a wild relative resistance gene to barley yellow mosaic disease. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:823-833. [PMID: 33263784 PMCID: PMC7925471 DOI: 10.1007/s00122-020-03733-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 05/11/2023]
Abstract
We mapped the Rym14Hb resistance locus to barley yellow mosaic disease in a 2Mbp interval. The co-segregating markers will be instrumental for marker-assisted selection in barley breeding. Barley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley's secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n = 7500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.
Collapse
Affiliation(s)
- Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
| | - Neele Wendler
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37574, Einbeck, Germany
| | - Antje Habekuβ
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Anja Maasberg
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research On Agricultural Crops, Julius Kühn Institute (JKI), Groß Lüsewitz, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI), Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Von Siebold Straße 8, 37075, Göttingen, Germany.
| |
Collapse
|
11
|
Mansi, Kushwaha NK, Singh AK, Karim MJ, Chakraborty S. Nicotiana benthamiana phosphatidylinositol 4-kinase type II regulates chilli leaf curl virus pathogenesis. MOLECULAR PLANT PATHOLOGY 2019; 20:1408-1424. [PMID: 31475785 PMCID: PMC6792133 DOI: 10.1111/mpp.12846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Geminiviruses are single-stranded DNA viruses that can cause significant losses in economically important crops. In recent years, the role of different kinases in geminivirus pathogenesis has been emphasized. Although geminiviruses use several host kinases, the role of phosphatidylinositol 4-kinase (PI4K) remains obscure. We isolated and characterized phosphatidylinositol 4-kinase type II from Nicotiana benthamiana (NbPI4KII) which interacts with the replication initiator protein (Rep) of a geminivirus, chilli leaf curl virus (ChiLCV). NbPI4KII-mGFP was localized into cytoplasm, nucleus or both. NbPI4KII-mGFP was also found to be associated with the cytoplasmic endomembrane systems in the presence of ChiLCV. Furthermore, we demonstrated that Rep protein directly interacts with NbPI4KII protein and influenced nuclear occurrence of NbPI4KII. The results obtained in the present study revealed that NbPI4KII is a functional protein kinase lacking lipid kinase activity. Downregulation of NbPI4KII expression negatively affects ChiLCV pathogenesis in N. benthamiana. In summary, NbPI4KII is a susceptible factor, which is required by ChiLCV for pathogenesis.
Collapse
Affiliation(s)
- Mansi
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
12
|
Kushwaha NK, Mansi, Sahu PP, Prasad M, Chakrabroty S. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1185-1196. [PMID: 31564781 PMCID: PMC6745583 DOI: 10.1007/s12298-019-00693-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 05/05/2023]
Abstract
Virus infection alters the expression of several host genes involved in various cellular and biological processes in plants. Most of the studies performed till now have mainly focused on genes which are up-regulated and later projected them as probable stress tolerant/susceptible genes. Nevertheless, genes which are down-regulated during plant-virus interaction could also play a critical role on disease development as well as in combating the virus infection. Hence, to identify such down-regulated genes and pathway, we performed reverse suppression subtractive hybridization in Capsicum annuum var. Punjab Lal following Chilli leaf curl virus (ChiLCV) infection. The screening and further processing suggested that majority of the genes (approximately 35% ESTs) showed homology with the genes encoding chloroplast proteins and 16% genes involved in the biotic and abiotic stress response. Additionally, we identified several genes, functionally known to be involved in metabolic processes, protein synthesis and degradation, ribosomal proteins, energy production, DNA replication and transcription, and transporters. We also found 3% transcripts which did not show homology with any known genes. The redundancy analysis revealed the maximum percentage of chlorophyll a-b binding protein (15/96) and auxin-binding proteins (13/96). We developed a protein interactome network to characterise the relationships between proteins and pathway involved during the ChiLCV infection. We identified that the most of the interaction occurs either among the chloroplast proteins (Arabidopsis proteins interactive map) or biotic and abiotic stress responsive proteins (Solanum lycopersicum interactome). Taken together, our study provides the first transcriptome and protein interactome of the down-regulated genes during C. annuum-ChiLCV interaction. These resources could be exploited in deciphering the steps involved in the process of virus infection.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mansi
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pranav Pankaj Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Supriya Chakrabroty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
13
|
Li K, Wu G, Li M, Ma M, Du J, Sun M, Sun X, Qing L. Transcriptome analysis of Nicotiana benthamiana infected by Tobacco curly shoot virus. Virol J 2018; 15:138. [PMID: 30176884 PMCID: PMC6122796 DOI: 10.1186/s12985-018-1044-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tobacco curly shoot virus (TbCSV) is a monopartite begomovirus associated with betasatellite (Tobacco curly shoot betasatellite, TbCSB), which causes serious leaf curl disease on tomato and tobacco in China. It is interesting that TbCSV induced severe upward leaf curling in Nicotiana benthamiana, but in the presence of TbCSB, symptoms changed to be downward leaf curling. However, the mechanism of interactions between viral pathogenicity, host defense, viral-betasatellite interactions and virus-host interactions remains unclear. METHODS In this study, RNA-seq was used to analyze differentially expressed genes (DEGs) in N. benthamiana plants infected by TbCSV (Y35A) and TbCSV together with TbCSB (Y35AB) respectively. RESULTS Through mapping to N. benthamiana reference genome, 59,814 unigenes were identified. Transcriptome analysis revealed that a total of 4081 and 3196 DEGs were identified in Y35AB vs CK (control check) and Y35A vs CK, respectively. Both GO and KEGG analyses were conducted to classify the DEGs. Ten of the top 15 GO terms were enriched in both DEGs of Y35AB vs CK and Y35A vs CK, and these enriched GO terms mainly classified into three categories including biological process, cellular component and molecular function. KEGG pathway analysis indicated that 118 and 111 pathways were identified in Y35AB vs CK and Y35A vs CK, respectively, of which nine and six pathways were significantly enriched. Three major pathways in Y35AB vs CK involved in metabolic pathways, carbon metabolism and photosynthesis, while those in Y35A vs CK were related to Ribosome, Glyoxylate and dicarboxylate metabolism and DNA replication. We observed that 8 PR genes were significantly up-regulated and 44 LRR-RLK genes were significantly differentially expressed in Y35A treatment or in Y35AB treatment. In addition, 7 and 13 genes were identified to be significantly changed in biosynthesis and signal transduction pathway of brassinosteroid (BR) and jasmonic acid (JA) respectively. CONCLUSIONS These results presented here would be particularly useful to further elucidate the response of the host plant against virus infection.
Collapse
Affiliation(s)
- Ke Li
- College of Plant Protection, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Gentu Wu
- College of Plant Protection, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Mingjun Li
- College of Plant Protection, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Mingge Ma
- College of Plant Protection, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Jiang Du
- College of Plant Protection, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Miao Sun
- College of Plant Protection, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Ling Qing
- College of Plant Protection, Southwest University, Chongqing, 400716 People’s Republic of China
| |
Collapse
|
14
|
Jasrotia RS, Iquebal MA, Yadav PK, Kumar N, Jaiswal S, Angadi UB, Rai A, Kumar D. Development of transcriptome based web genomic resources of yellow mosaic disease in Vigna mungo. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:767-777. [PMID: 29158627 PMCID: PMC5671452 DOI: 10.1007/s12298-017-0470-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 05/27/2023]
Abstract
Vigna mungo (Urdbean) is cultivated in the tropical and sub-tropical continental region of Asia. It is not only important source of dietary protein and nutritional elements, but also of immense value to human health due to medicinal properties. Yellow mosaic disease caused by Mungbean Yellow Mosaic India Virus is known to incur huge loss to crop, adversely affecting crop yield. Contrasting genotypes are ideal source for knowledge discovery of plant defence mechanism and associated candidate genes for varietal improvement. Whole genome sequence of this crop is yet to be completed. Moreover, genomic resources are also not freely accessible, thus available transcriptome data can be of immense use. V. mungo Transcriptome database, accessible at http://webtom.cabgrid.res.in/vmtdb/ has been developed using available data of two contrasting varieties viz., cv. VM84 (resistant) and cv. T9 (susceptible). De novo assembly was carried out using Trinity and CAP3. Out of total 240,945 unigenes, 165,894 (68.8%) showed similarity with known genes against NR database, and remaining 31.2% were found to be novel. We found 22,101 differentially expressed genes in all datasets, 44,335 putative genic SSR markers, 4105 SNPs and Indels, 64,964 transcriptional factor, 546 mature miRNA target prediction in 703 differentially expressed unigenes and 137 pathways. MAPK, salicylic acid-binding protein 2-like, pathogenesis-related protein and NBS-LRR domain were found which may play an important role in defence against pathogens. This is the first web genomic resource of V. mungo for future genome annotation as well as ready to use markers for future variety improvement program.
Collapse
Affiliation(s)
- Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
- Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, 211007 India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Pramod Kumar Yadav
- Department of Computational Biology & Bioinformatics, Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS), Allahabad, 211007 India
| | - Neeraj Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - U. B. Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| |
Collapse
|
15
|
Kushwaha NK, Bhardwaj M, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog 2017; 13:e1006587. [PMID: 28859169 PMCID: PMC5597257 DOI: 10.1371/journal.ppat.1006587] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/13/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Geminiviruses constitute a group of plant viruses, with a ssDNA genome, whose replication in the nucleus of an infected cell requires the function of geminivirus-encoded replication initiator protein (Rep). Our results suggest that monoubiquitinated histone 2B (H2B-ub) promotes tri-methylation of histone 3 at lysine 4 (H3-K4me3) on the promoter of Chilli leaf curl virus (ChiLCV). We isolated homologues of two major components of the monoubiquitination machinery: UBIQUITIN-CONJUGATING ENZYME2 (NbUBC2) and HISTONE MONOUBIQUITINATION1 (NbHUB1) from N. benthamiana. ChiLCV failed to cause disease in NbUBC2-, and NbHUB1-silenced plants, at the same time, H2B-ub and H3-K4me3 modifications were decreased, and the occupancy of RNA polymerase II on the viral promoter was reduced as well. In further investigations, Rep protein of ChiLCV was found to re-localize NbUBC2 from the cytoplasm to the nucleoplasm, like NbHUB1, the cognate partner of NbUBC2. Rep was observed to interact and co-localize with NbHUB1 and NbUBC2 in the nuclei of the infected cells. In summary, the current study reveals that the ChiLCV Rep protein binds the viral genome and interacts with NbUBC2 and NbHUB1 for the monoubiquitination of histone 2B that subsequently promotes trimethylation of histone 3 at lysine 4 on ChiLCV mini-chromosomes and enhances transcription of the viral genes.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansi Bhardwaj
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Differentially expressed genes of Chenopodium amaranticolor in response to cymbidium mosaic virus infection. Virus Res 2016; 223:43-51. [PMID: 27364083 DOI: 10.1016/j.virusres.2016.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/24/2022]
Abstract
Cymbidium mosaic virus (CymMV)-induced expressed sequence tag (EST) clones from Chenopodium amaranticolor were identified. CymMV was mechanically inoculated onto C. amaranticolor, and local lesion symptoms were observed. Inoculated leaves were collected on serial days post inoculation (dpi) to identify activated or suppressed genes. mRNA isolation and suppression subtractive hybridization (SSH) were then performed to identify differentially expressed genes related to the local lesion response. Fifty-three ESTs, including genes related to defense and stress responses (e.g., lipoxygenase, jasmonate-induced protein, and heat shock protein), were generated. In addition, a large proportion of the ESTs were found to be involved in photosynthesis, as determined by their functional categories. Expression levels of several EST genes were observed using quantitative real-time reverse transcription-polymerase chain reaction, and the evaluated genes showed varying levels of expression during the experimental period. In this study, differentially expressed sequences via SSH were identified from CymMV-infected C. amaranticolor, and profiling and annotation were carried out to determine the expression pattern of CymMV and its interaction with C. amaranticolor.
Collapse
|
17
|
Singh AK, Kushwaha N, Chakraborty S. Synergistic interaction among begomoviruses leads to the suppression of host defense-related gene expression and breakdown of resistance in chilli. Appl Microbiol Biotechnol 2016; 100:4035-49. [PMID: 26780359 DOI: 10.1007/s00253-015-7279-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/01/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
Chilli (Capsicum sp.) is one of the economically important spice and vegetable crops grown in India and suffers great losses due to the infection of begomoviruses. Conventional breeding approaches have resulted in development of a few cultivars of chilli resistant to begomoviruses. A severe leaf curl disease was observed on one such resistant chilli cultivar (Capsicum annuum cv. Kalyanpur Chanchal) grown in the experimental field of the Jawaharlal Nehru University, New Delhi. Four different viral genomic components namely, Chilli leaf curl virus (DNA A), Tomato leaf curl Bangladesh betasatellite (DNA β), Tomato leaf curl New Delhi virus (DNA A), and Tomato leaf curl Gujarat virus (DNA B) were associated with the severe leaf curl disease. Further, frequent association of these four genomic components was also observed in symptomatic plants of other chilli cultivars (Capsicum annuum cv. Kashi Anmol and Capsicum chinense cv. Bhut Jolokia) grown in the experimental field. Interaction studies among the isolated viral components revealed that Nicotiana benthamiana and chilli plants inoculated with four genomic components of begomoviruses exhibited severe leaf curl disease symptoms. In addition, this synergistic interaction resulted in increased viral DNA accumulation in infected plants. Resistant chilli plants co-inoculated with four genomic components of begomoviruses showed drastic reduction of host basal (ascorbate peroxidase, thionin, polyphenol oxidase) and specific defense-related gene (NBS-LRR) expression. Our results suggested that synergistic interaction among begomoviruses created permissive cellular environment in the resistant chilli plants which leads to breakdown of natural resistance, a phenomenon observed for the first time in chilli.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Nirbhay Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|