1
|
Zhang N, Dong Y, Zhou H, Cui H. Effect of PAS-LuxR Family Regulators on the Secondary Metabolism of Streptomyces. Antibiotics (Basel) 2022; 11:antibiotics11121783. [PMID: 36551440 PMCID: PMC9774167 DOI: 10.3390/antibiotics11121783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
With the development of sequencing technology and further scientific research, an increasing number of biosynthetic gene clusters associated with secondary Streptomyces metabolites have been identified and characterized. The encoded genes of a family of regulators designated as PAS-LuxR are gradually being discovered in some biosynthetic gene clusters of polyene macrolide, aminoglycoside, and amino acid analogues. PAS-LuxR family regulators affect secondary Streptomyces metabolites by interacting with other family regulators to regulate the transcription of the target genes in the gene cluster. This paper provides a review of the structure, function, regulatory mechanism, and application of these regulators to provide more information on the regulation of secondary metabolite biosynthesis in Streptomyces, and promote the application of PAS-LuxR family regulators in industrial breeding and other directions.
Collapse
Affiliation(s)
- Naifan Zhang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yao Dong
- College of Biology & Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Hongli Zhou
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Province, Jilin Institute of Chemical Technology, Jilin 132022, China
- Correspondence: (H.Z.); (H.C.); Tel.: +86-432-62185246 (H.Z. & H.C.)
| | - Hao Cui
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Province, Jilin Institute of Chemical Technology, Jilin 132022, China
- Correspondence: (H.Z.); (H.C.); Tel.: +86-432-62185246 (H.Z. & H.C.)
| |
Collapse
|
2
|
Genome Mining as New Challenge in Natural Products Discovery. Mar Drugs 2020; 18:md18040199. [PMID: 32283638 PMCID: PMC7230286 DOI: 10.3390/md18040199] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Drug discovery is based on bioactivity screening of natural sources, traditionally represented by bacteria fungi and plants. Bioactive natural products and their secondary metabolites have represented the main source for new therapeutic agents, used as drug leads for new antibiotics and anticancer agents. After the discovery of the first biosynthetic genes in the last decades, the researchers had in their hands the tool to understand the biosynthetic logic and genetic basis leading to the production of these compounds. Furthermore, in the genomic era, in which the number of available genomes is increasing, genome mining joined to synthetic biology are offering a significant help in drug discovery. In the present review we discuss the importance of genome mining and synthetic biology approaches to identify new natural products, also underlining considering the possible advantages and disadvantages of this technique. Moreover, we debate the associated techniques that can be applied following to genome mining for validation of data. Finally, we review on the literature describing all novel natural drugs isolated from bacteria, fungi, and other living organisms, not only from the marine environment, by a genome-mining approach, focusing on the literature available in the last ten years.
Collapse
|
3
|
Xie CL, Niu S, Xia JM, Peng K, Zhang GY, Yang XW. Saccharopolytide A, a new cyclic tetrapeptide with rare 4-hydroxy-proline moieties from the deep-sea derived actinomycete Saccharopolyspora cebuensis MCCC 1A09850. Nat Prod Res 2017; 32:1627-1631. [DOI: 10.1080/14786419.2017.1392956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chun-Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Siwen Niu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Jin-Mei Xia
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Kun Peng
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Gai-Yun Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Xian-Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
4
|
Arocha-Garza HF, Canales-Del Castillo R, Eguiarte LE, Souza V, De la Torre-Zavala S. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ 2017; 5:e3247. [PMID: 28480140 PMCID: PMC5417069 DOI: 10.7717/peerj.3247] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.
Collapse
Affiliation(s)
- Hector Fernando Arocha-Garza
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Ricardo Canales-Del Castillo
- Facultad de Ciencias Biológicas, Laboratorio de Biología de la Conservación, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
5
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|
6
|
Caffrey P, De Poire E, Sheehan J, Sweeney P. Polyene macrolide biosynthesis in streptomycetes and related bacteria: recent advances from genome sequencing and experimental studies. Appl Microbiol Biotechnol 2016; 100:3893-908. [PMID: 27023916 DOI: 10.1007/s00253-016-7474-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
The polyene macrolide group includes important antifungal drugs, to which resistance does not arise readily. Chemical and biological methods have been used in attempts to make polyene antibiotics with fewer toxic side effects. Genome sequencing of producer organisms is contributing to this endeavour, by providing access to new compounds and by enabling yield improvement for polyene analogues obtained by engineered biosynthesis. This recent work is also enhancing bioinformatic methods for deducing the structures of cryptic natural products from their biosynthetic enzymes. The stereostructure of candicidin D has recently been determined by NMR spectroscopy. Genes for the corresponding polyketide synthase have been uncovered in several different genomes. Analysis of this new information strengthens the view that protein sequence motifs can be used to predict double bond geometry in many polyketides.Chemical studies have shown that improved polyenes can be obtained by modifying the mycosamine sugar that is common to most of these compounds. Glycoengineered analogues might be produced by biosynthetic methods, but polyene glycosyltransferases show little tolerance for donors other than GDP-α-D-mycosamine. Genome sequencing has revealed extending glycosyltransferases that add a second sugar to the mycosamine of some polyenes. NppY of Pseudonocardia autotrophica uses UDP-N-acetyl-α-D-glucosamine as donor whereas PegA from Actinoplanes caeruleus uses GDP-α-D-mannose. These two enzymes show 51 % sequence identity and are also closely related to mycosaminyltransferases. These findings will assist attempts to construct glycosyltransferases that transfer alternative UDP- or (d)TDP-linked sugars to polyene macrolactones.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eimear De Poire
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - James Sheehan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Sweeney
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Wang H, Sivonen K, Fewer DP. Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Curr Opin Genet Dev 2015; 35:79-85. [PMID: 26605685 DOI: 10.1016/j.gde.2015.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022]
Abstract
Polyketides and nonribosomal peptides are important secondary metabolites that exhibit enormous structural diversity, have many pharmaceutical applications, and include a number of clinically important drugs. These complex metabolites are most commonly synthesized on enzymatic assembly lines of polyketide synthases and nonribosomal peptide synthetases. Genome-mining studies making use of the recent explosion in the number of genome sequences have demonstrated unexpected enzymatic diversity and greatly expanded the known distribution of these enzyme systems across the three domains of life. The wealth of data now available suggests that genome-mining efforts will uncover new natural products, novel biosynthetic mechanisms, and shed light on the origin and evolution of these important enzymes.
Collapse
Affiliation(s)
- Hao Wang
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Kaarina Sivonen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - David P Fewer
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|