1
|
Raunak R, Rakshit R, Bahl A, Sinha S, Pandey S, Kant S, Tripathi D. Functional Characterization of MIP_07528 of Mycobacterium indicus pranii for Tyrosine Phosphatase Activity Displays Sensitivity to Oxidative Inactivation and Plays a Role in Immunomodulation. BIOLOGY 2025; 14:565. [PMID: 40427754 PMCID: PMC12108596 DOI: 10.3390/biology14050565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Mycobacterium indicus pranii (MIP), an atypical mycobacterium originally developed as an anti-leprosy vaccine, has emerged as a potent immunomodulator with diverse therapeutic applications. Despite its clinical significance, molecular mechanisms underlying MIP's immunomodulatory properties remain largely unexplored. Bacterial phosphatases are recognized as crucial virulence factors that enable pathogens to evade host defenses by modulating host immune signaling pathways, including phosphoinositide metabolism. MIP_07528 was identified as a putative protein tyrosine phosphatase B (PtpB) ortholog through in silico analysis, with significant sequence conservation observed within catalytic domains of pathogenic mycobacterial PtpB proteins. Phosphatase activity was detected in both cell lysate and culture filtrate fractions, revealing differential expression patterns between MIP and M. tuberculosis. Upregulation of MIP_07528 was demonstrated under oxidative stress, suggesting involvement in stress adaptation. The recombinant protein exhibited distinctive kinetic properties, characterized by higher substrate affinity yet increased susceptibility to oxidative inactivation compared to its M. tuberculosis counterpart. In macrophages, MIP_07528 suppressed pro-inflammatory cytokines while enhancing anti-inflammatory IL-10 production. These findings establish MIP_07528 as a functional phosphatase that may contribute to MIP's immunomodulatory properties. This work advances understanding of phosphatase function in non-pathogenic mycobacteria while providing insights into virulence factor evolution and establishing a foundation for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Raunak Raunak
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India; (R.R.); (R.R.); (A.B.); (S.S.)
| | - Roopshali Rakshit
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India; (R.R.); (R.R.); (A.B.); (S.S.)
| | - Aayush Bahl
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India; (R.R.); (R.R.); (A.B.); (S.S.)
| | - Soumya Sinha
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India; (R.R.); (R.R.); (A.B.); (S.S.)
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, Delhi, India;
| | - Sashi Kant
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Deeksha Tripathi
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India; (R.R.); (R.R.); (A.B.); (S.S.)
| |
Collapse
|
2
|
Sulyman AO, Fulcher J, Crossley S, Fatokun AA, Olorunniji FJ. Shikonin and Juglone Inhibit Mycobacterium tuberculosis Low-Molecular-Weight Protein Tyrosine Phosphatase a (Mt-PTPa). BIOTECH 2023; 12:59. [PMID: 37754203 PMCID: PMC10526854 DOI: 10.3390/biotech12030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) are involved in promoting the intracellular survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis. These PTPs directly alter host signalling pathways to evade the hostile environment of macrophages and avoid host clearance. Among these, protein tyrosine phosphatase A (Mt-PTPa) is implicated in phagosome acidification failure, thereby inhibiting phagosome maturation to promote Mycobacterium tuberculosis (Mtb) survival. In this study, we explored Mt-PTPa as a potential drug target for treating Mtb. We started by screening a library of 502 pure natural compounds against the activities of Mt-PTPa in vitro, with a threshold of 50% inhibition of activity via a <500 µM concentration of the candidate drugs. The initial screen identified epigallocatechin, myricetin, rosmarinic acid, and shikonin as hits. Among these, the naphthoquinone, shikonin (5, 8-dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-pentenyl]-1,4-naphthoquinone), showed the strongest inhibition (IC50 33 µM). Further tests showed that juglone (5-hydroxy-1,4-naphthalenedione), another naphthoquinone, displayed similar potent inhibition of Mt-PTPa to shikonin. Kinetic analysis of the inhibition patterns suggests a non-competitive inhibition mechanism for both compounds, with inhibitor constants (Ki) of 8.5 µM and 12.5 µM for shikonin and juglone, respectively. Our findings are consistent with earlier studies suggesting that Mt-PTPa is susceptible to specific allosteric modulation via a non-competitive or mixed inhibition mechanism.
Collapse
Affiliation(s)
- Abdulhakeem O. Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jessie Fulcher
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Samuel Crossley
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Amos A. Fatokun
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
3
|
Chatterjee A. Mycobacterium tuberculosis and its secreted tyrosine phosphatases. Biochimie 2023; 212:41-47. [PMID: 37059349 DOI: 10.1016/j.biochi.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Tuberculosis is one of the most common infectious diseases and has been a major burden for a long time now. Increasing drug resistance in TB is slowing down the process of disease treatment. Mycobacterium tuberculosis, the causative agent of TB is known to have a cascade of virulence factors to fight with host's immune system. The phosphatases (PTPs) of Mtb plays a critical role as these are secretory in nature and help the survival of bacteria in host. Researchers have been trying to synthesize inhibitors against a lot of virulence factors of Mtb but recently the phosphatases have gained a lot of interest due to their secretory nature. This review gives a concise overview of virulence factors of Mtb with emphasis on mPTPs. Here we discuss the current scenario of drug development against mPTPs.
Collapse
Affiliation(s)
- Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
4
|
Kumar G, C A. Natural products and their analogues acting against Mycobacterium tuberculosis: A recent update. Drug Dev Res 2023; 84:779-804. [PMID: 37086027 DOI: 10.1002/ddr.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases caused by Mycobacterium tuberculosis (M.tb). It is responsible for significant causes of mortality and morbidity worldwide. M.tb possesses robust defense mechanisms against most antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. Thus, the efficacy of existing front-line drugs is diminishing, and new and recurring cases of TB arising from multidrug-resistant M.tb are increasing. TB begs the scientific community to explore novel therapeutic avenues. A precise knowledge of the compounds with their mode of action could aid in developing new anti-TB agents that can kill latent and actively multiplying M.tb. This can help in the shortening of the anti-TB regimen and can improve the outcome of treatment strategies. Natural products have contributed several antibiotics for TB treatment. The sources of anti-TB drugs/inhibitors discussed in this work are target-based identification/cell-based and phenotypic screening from natural products. Some of the recently identified natural products derived leads have reached clinical stages of TB drug development, which include rifapentine, CPZEN-45, spectinamide-1599 and 1810. We believe these anti-TB agents could emerge as superior therapeutic compounds to treat TB over known Food and Drug Administration drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| | - Amrutha C
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Chatterjee A, Pandey S, Dhamija E, Jaiswal S, Yabaji SM, Srivastava KK. ATP synthase, an essential enzyme in growth and multiplication is modulated by protein tyrosine phosphatase in Mycobacterium tuberculosis H37Ra. Biochimie 2019; 165:156-160. [PMID: 31377193 DOI: 10.1016/j.biochi.2019.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase (PtpA) has so far been known to control intracellular survival of mycobacteria; whereas the ATP synthase which is essential for mycobacterial growth has recently been contemplated in developing a breakthrough anti-TB drug, diarylquinoline. Since both of these enzymes have been established as validated drug targets; we report a robust and functional relationship between these two enzymes through a series of experiments using Mtb H37Ra. In the present study we report that the mycobacterial ATP synthase alpha subunit is regulated by PtpA. We generated gene knock-out for the enzyme PtpA and subjected to determine the mycobacterial replication and the proteome profile of wild type, mutant (ΔptpA) and complemented (ΔptpA:ptpA) strains of Mtb H37Ra. A substantial amount of decrease in the protein level of ATP synthase alpha subunit (AtpA) in case of mutant H37Ra was observed, while the levels of the enzyme were either increased or remained unchanged, in wild type and in the complemented strains.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sapna Pandey
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ekta Dhamija
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Swati Jaiswal
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shivraj M Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
6
|
Zhang X, Yin F, Xiao S, Jiang C, Yu T, Chen L, Ke X, Zhong Q, Cheng Z, Li W. Proteomic analysis of the rice (Oryza officinalis) provides clues on molecular tagging of proteins for brown planthopper resistance. BMC PLANT BIOLOGY 2019; 19:30. [PMID: 30658570 PMCID: PMC6339371 DOI: 10.1186/s12870-018-1622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/27/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Among various pests, the brown planthopper (BPH) that damages rice is the major destructive pests. Understanding resistance mechanisms is a critical step toward effective control of BPH. This study investigates the proteomics of BPH interactions with three rice cultivars: the first resistant (PR) to BPH, the second susceptible (PS), and the third hybrid (HR) between the two, in order to understand mechanisms of BPH resistance in rice. RESULTS Over 4900 proteins were identified from these three rice cultivars using iTRAQ proteomics study. A total of 414, 425 and 470 differentially expressed proteins (DEPs) were detected from PR, PS and HR, respectively, after BPH infestation. Identified DEPs are mainly enriched in categories related with biosynthesis of secondary metabolites, carbon metabolism, and glyoxylate and dicarboxylate metabolism. A two-component response regulator protein (ORR22) may participate in the early signal transduction after BPH infestation. In the case of the resistant rice cultivar (PR), 6 DEPs, i.e. two lipoxygenases (LOXs), a lipase, two dirigent proteins (DIRs) and an Ent-cassa-12,15-diene synthase (OsDTC1) are related to inheritable BPH resistance. A heat shock protein (HSP20) may take part in the physiological response to BPH infestation, making it a potential target for marker-assisted selection (MAS) of rice. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed eight genes encoding various metabolic proteins involved in BPH resistance. During grain development the expressions of these genes varied at the transcriptional and translational levels. CONCLUSIONS This study provides comprehensive details of key proteins under compatible and incompatible interactions during BPH infestation, which will be useful for further investigation of the molecular basis of rice resistance to BPH and for breeding BPH-resistant rice cultivars.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Fuyou Yin
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Suqin Xiao
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Chunmiao Jiang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Tengqiong Yu
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Ling Chen
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Xue Ke
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Qiaofang Zhong
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Zaiquan Cheng
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, Yunnan People’s Republic of China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan People’s Republic of China
| | - Weijiao Li
- Faculty of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan People’s Republic of China
| |
Collapse
|
7
|
Jaiswal S, Chatterjee A, Pandey S, Lata K, Gadi RK, Manda R, Kumar S, Reddy MS, Ramachandran R, Srivastava KK. Mycobacterial protein tyrosine kinase, PtkA phosphorylates PtpA at tyrosine residues and the mechanism is stalled by the novel series of inhibitors. J Drug Target 2018; 27:51-59. [PMID: 29724125 DOI: 10.1080/1061186x.2018.1473407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphorylation and dephosphorylation are the key mechanisms for mycobacterial physiology and play critical roles in mycobacterial survival and in its pathogenesis. Mycobacteria evade host immune mechanism by inhibiting phagosome - lysosome fusion in which mycobacterial protein tyrosine phosphatase A (PtpA;TP) plays an indispensable role. Tyrosine kinase (PtkA;TK) activated by autophosphorylation; phosphorylates TP, which subsequently leads to increase in its phosphatase activity. The phosphorylated TP is secreted in phagosome of macrophage. In the present study, we have shown that the phosphorylation at two sites of TP; Y128 and Y129 are critical for TK-mediated phosphatase activity. The disruption of this interaction between TK and TP inhibits activation of later which further leads to the decrease in intracellular survival of mycobacteria. Furthermore, the proof of concept has been established using benzylbenzofurans and benzofuranamides, which inhibit the growth and intracellular survival of mycobacteria, associate with the functional sites of TP and contend with the TK. This binding was further restated by looking at the anchorage of protein-protein and the protein-inhibitor complexes in the homology-based structure models and by surface plasmon resonance analysis.
Collapse
Affiliation(s)
- Swati Jaiswal
- a Division of Microbiology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Aditi Chatterjee
- a Division of Microbiology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Sapna Pandey
- a Division of Microbiology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Kiran Lata
- b Division of Molecular Structural Biology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Ranjith Kumar Gadi
- c Division of Medicinal and Process Chemistry , CSIR-Central Drug Research Institute , Lucknow , India
| | - Rajesh Manda
- c Division of Medicinal and Process Chemistry , CSIR-Central Drug Research Institute , Lucknow , India
| | - Sanjay Kumar
- b Division of Molecular Structural Biology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Maddi Sridhar Reddy
- c Division of Medicinal and Process Chemistry , CSIR-Central Drug Research Institute , Lucknow , India
| | - Ravishankar Ramachandran
- b Division of Molecular Structural Biology , CSIR-Central Drug Research Institute , Lucknow , India
| | - Kishore K Srivastava
- a Division of Microbiology , CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
8
|
Yang C, Xu L, Zhang N, Islam F, Song W, Hu L, Liu D, Xie X, Zhou W. iTRAQ-based proteomics of sunflower cultivars differing in resistance to parasitic weed Orobanche cumana. Proteomics 2017; 17. [PMID: 28618117 DOI: 10.1002/pmic.201700009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/10/2022]
Abstract
Orobanche cumana is an obligate root parasite causing severe damage to many economically important crops, including sunflowers worldwide. For efficient control measures, it is necessary to understand the resistant mechanism during interaction at molecular level. The present study emphasizes on comparative proteomics to investigate the mechanistic basis of compatible and incompatible interaction of O. cumana with resistant (JY207) and susceptible (TK0409) sunflowers. More than 3500 proteins were identified from two cultivars by iTRAQ analysis. Identified proteins associated with general functions, posttranslational modification, energy production and conversion, carbohydrate transport and metabolism, and signal transduction mechanisms were the most represented category of induced proteins in both cultivars. The resistant interaction was characterized by alteration of defense-related proteins involved in recognition of parasites, accumulation of pathogenesis-related proteins, biosynthesis of lignin, and detoxification of toxic metabolites in JY207 after inoculation. The susceptible interaction was characterized by decreased abundance of proteins involved in biosynthesis and signaling of plant growth regulators including auxin, gibberellin, brassinosteroid, and ethylene in TK0409 after inoculation. The present study provides comprehensive details of proteins and differential modulation of pathways regulated under compatible and incompatible interaction, allowing the identification of important molecular components for development of sustainable resistance against this parasite.
Collapse
Affiliation(s)
- Chong Yang
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, P. R. China
| | - Ling Xu
- Zhejiang Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Na Zhang
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, P. R. China
| | - Faisal Islam
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, P. R. China
| | - Wenjian Song
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, P. R. China
| | - Luyang Hu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, P. R. China
| | - Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, P. R. China
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
9
|
Protein kinase C-δ inhibitor, Rottlerin inhibits growth and survival of mycobacteria exclusively through Shikimate kinase. Biochem Biophys Res Commun 2016; 478:721-6. [DOI: 10.1016/j.bbrc.2016.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
|