1
|
Batty CA, Pearson VK, Olsson-Francis K, Morgan G. Volatile organic compounds (VOCs) in terrestrial extreme environments: implications for life detection beyond Earth. Nat Prod Rep 2025; 42:93-112. [PMID: 39431456 DOI: 10.1039/d4np00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs). When assessing these VOCs as a group (volatilome) a fingerprint of all VOCs within an environment allows the complex patterns in metabolic data to be unravelled. As a technique already successfully applied to many biological and ecological fields, this paper explores how analysis of volatilomes in terrestrial extreme environments could be used to enhance processes (such as metabolomics and metagenomics) already utilised in life detection beyond Earth. By overcoming some of the complexities of collecting VOCs in remote field sites, a variety of lab based analytical equipment and techniques can then be utilised. Researching volatilomics in astrobiology requires time to characterise the patterns of VOCs. They must then be differentiated from abiotic (non-living) signals within extreme environments similar to those found on other planetary bodies (analogue sites) or in lab-based simulated environments or microcosms. Such an effort is critical for understanding data returned from past or upcoming missions, but it requires a step change in approach which explores the volatilome as a vital additional tool to current 'Omics techniques.
Collapse
Affiliation(s)
- Claire A Batty
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | - Geraint Morgan
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
2
|
Lochmann F, Flatschacher D, Stock V, Schiller A, Zeilinger S, Ruzsanyi V. Near real-time quantification of microbial volatile organic compounds from mycoparasitic fungi: Potential for advanced monitoring and pest control. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124237. [PMID: 39013326 DOI: 10.1016/j.jchromb.2024.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Microbial volatile organic compounds (MVOCs) are thought to play a key role in the interactions between mycoparasitic fungi, such as the biocontrol agent Trichoderma atroviride (T. atroviride), and their environment. However, the analysis of MVOC emissions from fungal samples is challenging because of low analyte concentrations, typically in the ppbV-range, and the complex chemical nature of biological samples. In a recent study using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) to determine MVOC emissions from T. atroviride, many product ions were unspecific, as they could arise from a large number of possible analytes. The aim of the present study was to determine whether fast gas chromatography (fast-GC) coupled to PTR-ToF-MS could be used to overcome this issue and constitute a suitable on-line, near real-time method to identify and quantify fungal MVOC emissions in the ppbV-to-ppmV regime. Using gas standards of eleven MVOCs known to be emitted by T. atroviride such as 6-amyl-α-pyrone (6-PP), 2-pentylfuran, 1-octen-3-ol, 2-heptanone, 3-octanone, 2-methyl-1-propanol, 2-pentanone, 3-methyl-1-butanol, 3-methylbutanal, acetone and ethanol, we developed a fast-GC method with a total runtime of 180 s which significantly enhances the analytical specificity of PTR-ToF-MS compared to conventional PTR-ToF-MS without fast-GC separation. Limits of detection were on the order of 0.1-4 ppbV. The increased analytical specificity demonstrated notable benefits, especially for MVOCs having partially overlapping distributions of product ions when analyzed directly using PTR-ToF-MS. In order to demonstrate the applicability of the analytical method, we analysed T. atroviride samples in four biological replicates twice daily over a duration of five days. Using the fast-GC method, nine out of the eleven MVOC species considered in this study in the headspace of T. atroviride could be identified and quantified and their time evolution over the five-day incubation period determined. The measured volume mixing ratios (VMRs) ranged from single-digit ppbV (2-pentylfuran) up to few ppmV (6-PP and ethanol), with the other compounds in the 10-to-100-ppbV range (1-octen-3-ol, 2-heptanone, 2-methyl-1-propanol, 3-methyl-1-butanol, 3-methylbutanal and acetone). Our results suggest that fast-GC-PTR-ToF-MS is a method well-suited for the analysis of gas-phase samples of biological origin, including but not limited to (mycoparasitic) fungi, in a wide range of VMRs from sub-ppbV to few-ppmV.
Collapse
Affiliation(s)
- Franziska Lochmann
- Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Daniel Flatschacher
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Valentina Stock
- Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Susanne Zeilinger
- Institut für Mikrobiologie, Universität Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institut für Atemgasanalytik, Universität Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Zhang Q, Lv J, He A, Cao D, He X, Zhao L, Wang Y, Jiang G. Investigation with ESI FT-ICR MS on sorbent selectivity and comprehensive molecular composition of landfill leachate dissolved organic matter. WATER RESEARCH 2023; 243:120359. [PMID: 37499543 DOI: 10.1016/j.watres.2023.120359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Molecular characterization of landfill leachate dissolved organic matter (LDOM) is essential for developing effective processing techniques. However, the molecular selectivity of extraction method and ionization modes often leads to the bias of molecular characterization of LDOM. Here, seven representative sorbents were selected and electrospray ionization negative ion mode (ESI (-)) and positive ion mode (ESI (+)) Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to investigate the molecular composition of different LDOM samples. Obvious sorbent selectivity during extraction procedure was observed, resulting in the underestimation of molecular diversity of LDOM from 32.7% to 69.3%. Totally, 14,000-18,000 unique molecules were obtained in a single sample, indicating the unprecedented molecular diversity of LDOM. Lignins, proteins and lipids are three major molecular groups in LDOM, and N or S containing molecules occupied 83%. Although much of total organic carbon was removed during biochemical treatment process, the molecular diversity of LDOM was not reduced because a considerable of bio-recalcitrant molecules was produced. The results uncover the sorbents selectivity and ionization modes selectivity in LDOM analysis and provided a comprehensive change of LDOM molecular composition during biochemical treatment, which benefits the development of accurate methods to remove organic carbon in landfill leachate.
Collapse
Affiliation(s)
- Qiurui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Fan M, Rakotondrabe TF, Chen G, Guo M. Advances in microbial analysis: based on volatile organic compounds of microorganisms in food. Food Chem 2023; 418:135950. [PMID: 36989642 DOI: 10.1016/j.foodchem.2023.135950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/30/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
In recent years, microbial volatile organic compounds (mVOCs) produced by microbial metabolism have attracted more and more attention because they can be used to detect food early contamination and flaws. So far, many analytical methods have been reported for the determination of mVOCs in food, but few integrated review articles discussing these methods are published. Consequently, mVOCs as indicators of food microbiological contamination and their generation mechanism including carbohydrate, amino acid, and fatty acid metabolism are introduced. Meanwhile, a detailed summary of the mVOCs sampling methods such as headspace, purge trap, solid phase microextraction, and needle trap is presented, and a systematic and critical review of the analytical methods (ion mobility spectrometry, electronic nose, biosensor, and so on) of mVOCs and their application in the detection of food microbial contamination is highlighted. Finally, the future concepts that can help improve the detection of food mVOCs are prospected.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Van Malderen K, Hanning N, Lambrechts H, Haverhals T, Van Marcke S, Ceuleers H, De Man JG, De Winter BY, Lamote K, De Schepper HU. Volatile organic compound profiling as a potential biomarker in irritable bowel syndrome: A feasibility study. Front Med (Lausanne) 2022; 9:960000. [PMID: 35991639 PMCID: PMC9388331 DOI: 10.3389/fmed.2022.960000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder for which no diagnostic tools are currently available. Patients are diagnosed using the Rome IV criteria and subtyped into a diarrhea, constipation, or mixed phenotype based on their dominant stool pattern. A recent development in the biomarker area is the analysis of volatile organic compounds (VOCs). The aim of this study was to evaluate the potential of VOCs as diagnostic and phenotypic biomarkers for IBS in breath and fecal samples. MATERIALS AND METHODS Breath and fecal samples from IBS patients and healthy asymptomatic controls (HC) were analyzed with multicapillary column/ion mobility spectrometry (MCC/IMS) and classification models were created based upon VOCs and clinical characteristics. DISCUSSION Irritable bowel syndrome patients were differentiated from HC by means of volatile profiling in both breath and fecal samples with area under the curve (AUCs) of respectively 0.62 and 0.80. Patient subtypes could also be differentiated from each other with AUCs ranging between 0.65 and 0.78. Furthermore, VOC models could differentiate IBS patients based on clinical characteristics like psychological comorbidities and microbiota-influencing therapies. CONCLUSION This study is the first to demonstrate the use of VOC profiling with the help of MCC/IMS to differentiate IBS patients. Furthermore, the importance of clinical characteristics beside the dominant stool pattern in the differentiation of IBS patients was emphasized.
Collapse
Affiliation(s)
- Kathleen Van Malderen
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Helen Lambrechts
- Medical School, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Tine Haverhals
- Medical School, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Silke Van Marcke
- Medical School, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Heiko U. De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
6
|
Qualitative and quantitative determination of butanol in latex paint by fast gas chromatography proton transfer reaction mass spectrometry. J Chromatogr A 2022; 1676:463210. [PMID: 35700573 DOI: 10.1016/j.chroma.2022.463210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/13/2023]
Abstract
Butanol is a common organic solvent used in latex paint, and one of its isomers, tert-butanol, is toxic and can cause potential harm to the human body. Therefore, it is of great significance to develop a qualitative and quantitative detection method for butanol isomers. In this study, we combined the advantages of rapid detection of proton transfer reaction mass spectrometry (PTR-MS) with the separation and qualitative capabilities of gas chromatography-mass spectrometry (GC-MS) to achieve the detection of isomers, building a fast gas chromatography proton transfer reaction mass spectrometry (FastGC-PTR-MS) equipment. Firstly, the developed technology was optimized using standard samples of several common volatile organic compounds. The retention times of acetonitrile, acetone, and alcohols were less than 50 s, and the retention times of the benzene series were less than 110 s, on the premise that these isomers could be basically separated (resolution R > 1.0). Compared with a commercial GC-MS equipment, the detection times were shortened by 5-6 times and 2-4 times, respectively. Then the FastGC-PTR-MS was applied to detect the isomers of butanol in latex paint. The results showed that the headspace of brand D latex paint mainly contained five substances: tert-butanol, n-butanol, acetaldehyde, methanol, and acetone. Tert-butanol and n-butanol could be completely separated (R > 1.5). The concentration of tert-butanol was 4.41 ppmv, far below the 100 ppmv maximum allowable workplace concentration. The developed FastGC-PTR-MS can be used for rapid qualitative and quantitative detection of butanol isomers in latex paint. The new equipment has the potential to play an important role in indoor environmental safety applications.
Collapse
|
7
|
Mäki M, Mali T, Hellén H, Heinonsalo J, Lundell T, Bäck J. Deadwood substrate and species-species interactions determine the release of volatile organic compounds by wood-decaying fungi. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Fincheira P, Quiroz A, Tortella G, Diez MC, Rubilar O. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol Res 2021; 247:126726. [PMID: 33640574 DOI: 10.1016/j.micres.2021.126726] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Volatile organic compounds (VOCs) emitted by microorganisms have demonstrated an important role to improve growth and tolerance against abiotic stress on plants. Most studies have used Arabidopsis thaliana as a model plant, extending to other plants of commercial interest in the last years. Interestingly, the microbial VOCs are characterized by its biodegradable structure, quick action, absence of toxic substances, and acts at lower concentration to regulate plant physiological changes. These compounds modulate plant physiological processes such as phytohormone pathways, photosynthesis, nutrient acquisition, and metabolisms. Besides, the regulation of gene expression associated with cell components, biological processes, and molecular function are triggered by microbial VOCs. Otherwise, few studies have reported the important role of VOCs for confer plant tolerance to abiotic stress, such as drought and salinity. Although VOCs have shown an efficient action to enhance the plant growth under controlled conditions, there are still great challenges for their greenhouse or field application. Therefore, in this review, we summarize the current knowledge about the technical procedures, study cases, and physiological mechanisms triggered by microbial VOCs to finally discuss the challenges of its application in agriculture.
Collapse
Affiliation(s)
- Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| |
Collapse
|
9
|
De Simone N, Capozzi V, Amodio ML, Colelli G, Spano G, Russo P. Microbial-based Biocontrol Solutions for Fruits and Vegetables: Recent Insight, Patents, and Innovative Trends. Recent Pat Food Nutr Agric 2021; 12:3-18. [PMID: 33550980 DOI: 10.2174/2212798412666210125141117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 12/29/2020] [Indexed: 05/01/2023]
Abstract
BACKGROUND Fruits and vegetables are susceptible to colonisation by undesired microflora, which, in pre- and post-harvest conditions, negatively impact the quality of these products, leading to a reduction of yield, shelf-life, and marketability. In the few last years, the use of microbial Biological Control Agents (BCAs) has assumed international relevance in order to control harmful microorganisms, as a promising alternative to chemical interventions. OBJECTIVE The purpose of this review is to discuss the microbial-based solutions applicable for the biocontrol of the main microbial spoilers, phytopathogens, and human food-borne pathogens affecting fruits and vegetables during their production and storage. RESULTS A comprehensive overview of the scientific literature investigating the effectiveness of BCA-based products available on the market is provided, as well as of the most recent patents protecting biotechnological applications in this field. Innovative trends are discussed, with a particular focus on the integration of BCAs to minimise spoilage phenomena and microbiological risks adopting combined approaches. CONCLUSION This study underlines the growing interest about biocontrol strategies to counteract the growth of spoilage and/or pathogenic microorganisms indicating that in the next years a considerable increase of commercial products and patents will be developed worldwide to exploit innovative biotechnological solutions in the sector.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), C/O CS-DAT, Via Michele Protano, Foggia 71121, Italy
| | - Maria Luisa Amodio
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Giancarlo Colelli
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Pasquale Russo
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, Foggia 71122, Italy
| |
Collapse
|
10
|
Chen X, Hu R, Hu L, Huang Y, Shi W, Wei Q, Li Z. Portable Analytical Techniques for Monitoring Volatile Organic Chemicals in Biomanufacturing Processes: Recent Advances and Limitations. Front Chem 2020; 8:837. [PMID: 33024746 PMCID: PMC7516303 DOI: 10.3389/fchem.2020.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
It is essential to develop effective analytical techniques for accurate and continuous monitoring of various biomanufacturing processes, such as the production of monoclonal antibodies and vaccines, through sensitive and quantitative detection of characteristic aqueous or gaseous metabolites and other analytes in the cell culture media. A comprehensive summary toward the use of mainstream techniques for bioprocess monitoring is critically reviewed here, which illustrates the instrumental and procedural advances and limitations of several major analytical tools in biomanufacturing applications. Despite those drawbacks present in modern detection systems such as mass spectrometry, gas chromatography or chemical/biological sensors, a considerable number of useful solutions and inspirations such as electronic or optoelectronic noses can be offered to greatly overcome the restrictions and facilitate the development of advanced analytical techniques that can target a more diverse range of key nutritious components, products or potential contaminants in different biomanufacturing processes.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Runmen Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Luoyu Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yingcan Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wenyang Shi
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Pass HI, Alimi M, Carbone M, Yang H, Goparaju CM. Mesothelioma Biomarkers: A Review Highlighting Contributions from the Early Detection Research Network. Cancer Epidemiol Biomarkers Prev 2020; 29:2524-2540. [PMID: 32699075 DOI: 10.1158/1055-9965.epi-20-0083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/22/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related neoplasm, which can be treated successfully only if correctly diagnosed and treated in early stages. The asbestos-exposed population serves as a high-risk group that could benefit from sensitive and specific blood- or tissue-based biomarkers. This review details the recent work with biomarker development in MPM and the contributions of the NCI Early Detection Research Network Biomarker Developmental Laboratory of NYU Langone Medical Center. The literature of the last 20 years was reviewed to comment on the most promising of the blood- and tissue-based biomarkers. Proteomic, genomic, and epigenomic platforms as well as novel studies such as "breath testing" are covered. Soluble mesothelin-related proteins (SMRP) have been characterized extensively and constitute an FDA-approved biomarker in plasma with diagnostic, monitoring, and prognostic value in MPM. Osteopontin is found to be a valuable prognostic biomarker for MPM, while its utility in diagnosis is slightly lower. Other biomarkers, such as calretinin, fibulin 3, and High-Mobility Group Box 1 (HMGB1), remain under study and need international validation trials with large cohorts of cases and controls to demonstrate any utility. The EDRN has played a key role in the development and testing of MPM biomarkers by enlisting collaborations all over the world. A comprehensive understanding of previously investigated biomarkers and their utility in screening and early diagnosis of MPM will provide guidance for further future research.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Harvey I Pass
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York.
| | - Marjan Alimi
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York
| | - Michele Carbone
- John A. Burns School of Medicine, Department of Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Haining Yang
- John A. Burns School of Medicine, Department of Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Chandra M Goparaju
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York
| |
Collapse
|
12
|
Guo Y, Jud W, Ghirardo A, Antritter F, Benz JP, Schnitzler JP, Rosenkranz M. Sniffing fungi - phenotyping of volatile chemical diversity in Trichoderma species. THE NEW PHYTOLOGIST 2020; 227:244-259. [PMID: 32155672 DOI: 10.1111/nph.16530] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) play vital roles in the interaction of fungi with plants and other organisms. A systematic study of the global fungal VOC profiles is still lacking, though it is a prerequisite for elucidating the mechanisms of VOC-mediated interactions. Here we present a versatile system enabling a high-throughput screening of fungal VOCs under controlled temperature. In a proof-of-principle experiment, we characterized the volatile metabolic fingerprints of four Trichoderma spp. over a 48 h growth period. The developed platform allows automated and fast detection of VOCs from up to 14 simultaneously growing fungal cultures in real time. The comprehensive analysis of fungal odors is achieved by employing proton transfer reaction-time of flight-MS and GC-MS. The data-mining strategy based on multivariate data analysis and machine learning allows the volatile metabolic fingerprints to be uncovered. Our data revealed dynamic, development-dependent and extremely species-specific VOC profiles from the biocontrol genus Trichoderma. The two mass spectrometric approaches were highly complementary to each other, together revealing a novel, dynamic view to the fungal VOC release. This analytical system could be used for VOC-based chemotyping of diverse small organisms, or more generally, for any in vivo and in vitro real-time headspace analysis.
Collapse
Affiliation(s)
- Yuan Guo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Werner Jud
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Felix Antritter
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D-85354, Freising, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| |
Collapse
|
13
|
PTR-ToF-MS for the Online Monitoring of Alcoholic Fermentation in Wine: Assessment of VOCs Variability Associated with Different Combinations of Saccharomyces/Non-Saccharomyces as a Case-Study. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The management of the alcoholic fermentation (AF) in wine is crucial to shaping product quality. Numerous variables (e.g., grape varieties, yeast species/strains, technological parameters) can affect the performances of this fermentative bioprocess. The fact that these variables are often interdependent, with a high degree of interaction, leads to a huge ‘oenological space’ associated with AF that scientists and professionals have explored to obtain the desired quality standards in wine and to promote innovation. This challenge explains the high interest in approaches tested to monitor this bioprocess including those using volatile organic compounds (VOCs) as target molecules. Among direct injection mass spectrometry approaches, no study has proposed an untargeted online investigation of the diversity of volatiles associated with the wine headspace. This communication proposed the first application of proton-transfer reaction-mass spectrometry coupled to a time-of-flight mass analyzer (PTR-ToF-MS) to follow the progress of AF and evaluate the impact of the different variables of wine quality. As a case study, the assessment of VOC variability associated with different combinations of Saccharomyces/non-Saccharomyces was selected. The different combinations of microbial resources in wine are among the main factors susceptible to influencing the content of VOCs associated with the wine headspaces. In particular, this investigation explored the effect of multiple combinations of two Saccharomyces strains and two non-Saccharomyces strains (belonging to the species Metschnikowia pulcherrima and Torulaspora delbrueckii) on the content of VOCs in wine, inoculated both in commercial grape juice and fresh grape must. The results demonstrated the possible exploitation of non-invasive PTR-ToF-MS monitoring to explore, using VOCs as biomarkers, (i) the huge number of variables influencing AF in wine, and (ii) applications of single/mixed starter cultures in wine. Reported preliminary findings underlined the presence of different behaviors on grape juice and on must, respectively, and confirmed differences among the single yeast strains ‘volatomes’. It was one of the first studies to include the simultaneous inoculation on two non-Saccharomyces species together with a S. cerevisiae strain in terms of VOC contribution. Among the other outcomes, evidence suggests that the addition of M. pulcherrima to the coupled S. cerevisiae/T. delbrueckii can modify the global release of volatiles as a function of the characteristics of the fermented matrix.
Collapse
|
14
|
Van Malderen K, De Winter BY, De Man JG, De Schepper HU, Lamote K. Volatomics in inflammatory bowel disease and irritable bowel syndrome. EBioMedicine 2020; 54:102725. [PMID: 32330874 PMCID: PMC7177032 DOI: 10.1016/j.ebiom.2020.102725] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Volatile organic compounds (VOCs) are produced by the human metabolism, inflammation and gut microbiota and form the basis of innovative volatomics research. VOCs detected through breath and faecal analysis hence serve as attractive, non-invasive biomarkers for diagnosing and monitoring irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). This review describes the clinical applicability of volatomics in discriminating between IBS, IBD and healthy volunteers with acceptable accuracy in breath (70%-100%) and faecal (58%-85%) samples. Promising compounds are propan-1-ol for diagnosing and monitoring of IBD patients, and 1-methyl-4-propan-2-ylcyclohexa-1,4-diene as biomarker for IBS diagnosis. However, these VOCs often seem to be related to inflammation and probably will need to be used in conjunction with other clinical evidence. Furthermore, three interventional studies underlined the potential of VOCs in predicting treatment outcome and patient follow-up. This shows great promise for future use of VOCs as non-invasive breath and faecal biomarkers in personalised medicine. However, properly designed studies that correlate VOCs to IBD/IBS pathogenesis, while taking microbial influences into account, are still key before clinical implementation can be expected.
Collapse
Affiliation(s)
- Kathleen Van Malderen
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Heiko U De Schepper
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium; Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Capozzi V, Lonzarich V, Khomenko I, Cappellin L, Navarini L, Biasioli F. Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS. Molecules 2020; 25:molecules25051242. [PMID: 32164157 PMCID: PMC7179404 DOI: 10.3390/molecules25051242] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Mascarpone, a soft-spread cheese, is an unripened dairy product manufactured by the thermal-acidic coagulation of milk cream. Due to the mild flavor and creamy consistency, it is a base ingredient in industrial, culinary, and homemade preparations (e.g., it is a key constituent of a widely appreciated Italian dessert ‘Tiramisù’). Probably due to this relevance as an ingredient rather than as directly consumed foodstuff, mascarpone has not been often the subject of detailed studies. To the best of our knowledge, no investigation has been carried out on the volatile compounds contributing to the mascarpone cheese aroma profile. In this study, we analyzed the Volatile Organic Compounds (VOCs) in the headspace of different commercial mascarpone cheeses by two different techniques: Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME GC-MS) and Proton-Transfer Reaction-Mass Spectrometry coupled to a Time of Flight mass analyzer (PTR-ToF-MS). We coupled these two approaches due to the complementarity of the analytical potential—efficient separation and identification of the analytes on the one side (HS-SPME GC-MS), and effective, fast quantitative analysis without any sample preparation on the other (PTR-ToF-MS). A total of 27 VOCs belonging to different chemical classes (9 ketones, 5 alcohols, 4 organic acids, 3 hydrocarbons, 2 furans, 1 ester, 1 lactone, 1 aldehyde, and 1 oxime) have been identified by HS-SPME GC-MS, while PTR-ToF-MS allowed a rapid snapshot of volatile diversity confirming the aptitude to rapid noninvasive quality control and the potential in commercial sample differentiation. Ketones (2-heptanone and 2-pentanone, in particular) are the most abundant compounds in mascarpone headspace, followed by 2-propanone, 2-nonanone, 2-butanone, 1-pentanol, 2-ethyl-1-hexanol, furfural and 2-furanmethanol. The study also provides preliminary information on the differentiation of the aroma of different brands and product types.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), URT c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Valentina Lonzarich
- Aromalab, illycaffè s.p.a., Area di Ricerca, Padriciano 99, 34149 Trieste, Italy;
| | - Iuliia Khomenko
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy; (I.K.); (F.B.)
| | - Luca Cappellin
- Department of Chemical Sciences, University of Padua, Via F. Marzolo 1, 35131 Padova, Italy;
| | - Luciano Navarini
- Aromalab, illycaffè s.p.a., Area di Ricerca, Padriciano 99, 34149 Trieste, Italy;
- Correspondence:
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all’Adige, Italy; (I.K.); (F.B.)
| |
Collapse
|
16
|
Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040085] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Climate change threatens food systems, with huge repercussions on food security and on the safety and quality of final products. We reviewed the potential of food microbiology as a source of biotechnological solutions to design climate-smart food systems, using wine as a model productive sector. Climate change entails considerable problems for the sustainability of oenology in several geographical regions, also placing at risk the wine typicity. The main weaknesses identified are: (i) The increased undesired microbial proliferation; (ii) the improved sugars and, consequently, ethanol content; (iii) the reduced acidity and increased pH; (iv) the imbalanced perceived sensory properties (e.g., colour, flavour); and (v) the intensified safety issues (e.g., mycotoxins, biogenic amines). In this paper, we offer an overview of the potential microbial-based strategies suitable to cope with the five challenges listed above. In terms of microbial diversity, our principal focus was on microorganisms isolated from grapes/musts/wines and on microbes belonging to the main categories with a recognized positive role in oenological processes, namely Saccharomyces spp. (e.g., Saccharomyces cerevisiae), non-Saccharomyces yeasts (e.g., Metschnikowia pulcherrima, Torulaspora delbrueckii, Lachancea thermotolerans, and Starmerella bacillaris), and malolactic bacteria (e.g., Oenococcus oeni, Lactobacillus plantarum).
Collapse
|
17
|
Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S, Balmas V, Hassan ZU, Jaoua S, Migheli Q. Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. Int J Food Microbiol 2018; 284:1-10. [DOI: 10.1016/j.ijfoodmicro.2018.06.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 01/17/2023]
|
18
|
Brusselmans L, Arnouts L, Millevert C, Vandersnickt J, van Meerbeeck JP, Lamote K. Breath analysis as a diagnostic and screening tool for malignant pleural mesothelioma: a systematic review. Transl Lung Cancer Res 2018; 7:520-536. [PMID: 30450290 PMCID: PMC6204411 DOI: 10.21037/tlcr.2018.04.09] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a tumour related to a historical exposure to asbestos fibres. Currently, the definite diagnosis is made only by the histological examination of a biopsy obtained through an invasive thoracoscopy. However, diagnosis is made too late for curative treatment because of non-specific symptoms mainly appearing at advanced stage disease. Hence, due to its biologic aggressiveness and the late diagnosis, survival rate is low and the patients' outcome poor. In addition, radiological imaging, like computed tomographic scans, and blood biomarkers are found not to be sensitive enough to be used as an early diagnostic tool. Detection in an early stage is assumed to improve the patients' outcome but is hampered due to non-specific and late symptomology. Hence, there is a need for a new screening and diagnostic test which could improve the patients' outcome. Despite extensive research has focused on blood biomarkers, not a single has been shown clinically useful, and therefore research recently shifted to "breathomics" techniques to recognize specific volatile organic compounds (VOCs) in the breath of the patient as potential non-invasive biomarkers for disease. In this review, we summarize the acquired knowledge about using breath analysis for diagnosing and monitoring MPM and asbestos-related disorders (ARD). Gas chromatography-mass spectrometry (GC-MS), the gold standard of breath analysis, appears to be the method with the highest accuracy (97%) to differentiate MPM patients from at risk asbestos-exposed subjects. There have already been found some interesting biomarkers that are significantly elevated in asbestosis (NO, 8-isoprostane, leukotriene B4, α-Pinene…) and MPM (cyclohexane) patients. Regrettably, the different techniques and the plethora of studies suffer some limitations. Most studies are pilot studies with the inclusion of a limited number of patients. Nevertheless, given the promising results and easy sampling methods, we can conclude that breath analysis may become a useful tool in the future to screen for MPM, but further research is warranted.
Collapse
Affiliation(s)
- Lisa Brusselmans
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Lieselot Arnouts
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Charissa Millevert
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Joyce Vandersnickt
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
- Internal Medicine, Ghent University, Ghent, Belgium
- Department of Pneumology, Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
- Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Casas-Ferreira AM, Nogal-Sánchez MD, Pérez-Pavón JL, Moreno-Cordero B. Non-separative mass spectrometry methods for non-invasive medical diagnostics based on volatile organic compounds: A review. Anal Chim Acta 2018; 1045:10-22. [PMID: 30454564 DOI: 10.1016/j.aca.2018.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
In this review, an assessment of non-separative methods based on mass spectrometry used to analyse volatile organic compounds in the field of bioanalysis is performed. The use of non-separative methods based on mass spectrometry has been established as an attractive option for analysing compounds. These instrumental configurations are suitable for biomedical applications because of their versatility, rapid output of results, and the wide range of volatile organic compounds that can be determined. Here, techniques such as headspace sampling coupled to mass spectrometry, membrane introduction mass spectrometry, selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, secondary electrospray ionization mass spectrometry and ion mobility mass spectrometry, are evaluated. Samples involving non-invasive methods of collection, such as urine, saliva, breath and sweat, are mainly considered. To the best of our knowledge, a comprehensive review of all the non-separative instrumental configurations applied to the analysis of gaseous samples from all matrices non-invasively collected has not yet been carried out. The assessment of non-separative techniques for the analysis of these type of samples can be considered a key issue for future clinical applications, as they allow real-time sample analysis, without patient suffering. Any contribution to the early diagnosis of disease can be considered a priority for the scientific community. Therefore, the identification and determination of volatile organic compounds related to particular diseases has become an important field or research.
Collapse
Affiliation(s)
- Ana María Casas-Ferreira
- Departamento de Química Analítica, Nutrición y Bromatología Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Miguel Del Nogal-Sánchez
- Departamento de Química Analítica, Nutrición y Bromatología Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain.
| | - José Luis Pérez-Pavón
- Departamento de Química Analítica, Nutrición y Bromatología Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Bernardo Moreno-Cordero
- Departamento de Química Analítica, Nutrición y Bromatología Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
20
|
Timm CM, Lloyd EP, Egan A, Mariner R, Karig D. Direct Growth of Bacteria in Headspace Vials Allows for Screening of Volatiles by Gas Chromatography Mass Spectrometry. Front Microbiol 2018; 9:491. [PMID: 29662472 PMCID: PMC5890184 DOI: 10.3389/fmicb.2018.00491] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Bacterially produced volatile organic compounds (VOCs) can modify growth patterns of eukaryotic hosts and competing/cohabiting microbes. These compounds have been implicated in skin disorders and attraction of biting pests. Current methods to detect and characterize VOCs from microbial cultures can be laborious and low-throughput, making it difficult to understand the behavior of microbial populations. In this work we present an efficient method employing gas chromatography/mass spectrometry with autosampling to characterize VOC profiles from solid-phase bacterial cultures. We compare this method to complementary plate-based assays and measure the effects of growth media and incubation temperature on the VOC profiles from a well-studied Pseudomonas aeruginosa PAO1 system. We observe that P. aeruginosa produces longer chain VOCs, such as 2-undecanone and 2-undecanol in higher amounts at 37°C than 30°C. We demonstrate the throughput of this method by studying VOC profiles from a representative collection of skin bacterial isolates under three parallel growth conditions. We observe differential production of various aldehydes and ketones depending on bacterial strain. This generalizable method will support screening of bacterial populations in a variety of research areas.
Collapse
Affiliation(s)
- Collin M Timm
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| | - Evan P Lloyd
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| | - Amanda Egan
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| | - Ray Mariner
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| | - David Karig
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| |
Collapse
|
21
|
Anthony IGM, Brantley MR, Gaw CA, Floyd AR, Solouki T. Vacuum Ultraviolet Spectroscopy and Mass Spectrometry: A Tandem Detection Approach for Improved Identification of Gas Chromatography-Eluting Compounds. Anal Chem 2018; 90:4878-4885. [DOI: 10.1021/acs.analchem.8b00531] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ian G. M. Anthony
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Matthew R. Brantley
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Christina A. Gaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Adam R. Floyd
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
22
|
Castro-Puyana M, Pérez-Míguez R, Montero L, Herrero M. Reprint of: Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
|
24
|
Ashrafi M, Bates M, Baguneid M, Alonso-Rasgado T, Rautemaa-Richardson R, Bayat A. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections. Wound Repair Regen 2017; 25:574-590. [DOI: 10.1111/wrr.12563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | | | - Mohamed Baguneid
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | - Riina Rautemaa-Richardson
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| |
Collapse
|
25
|
Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Achyuthan KE, Harper JC, Manginell RP, Moorman MW. Volatile Metabolites Emission by In Vivo Microalgae-An Overlooked Opportunity? Metabolites 2017; 7:E39. [PMID: 28788107 PMCID: PMC5618324 DOI: 10.3390/metabo7030039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 01/04/2023] Open
Abstract
Fragrances and malodors are ubiquitous in the environment, arising from natural and artificial processes, by the generation of volatile organic compounds (VOCs). Although VOCs constitute only a fraction of the metabolites produced by an organism, the detection of VOCs has a broad range of civilian, industrial, military, medical, and national security applications. The VOC metabolic profile of an organism has been referred to as its 'volatilome' (or 'volatome') and the study of volatilome/volatome is characterized as 'volatilomics', a relatively new category in the 'omics' arena. There is considerable literature on VOCs extracted destructively from microalgae for applications such as food, natural products chemistry, and biofuels. VOC emissions from living (in vivo) microalgae too are being increasingly appreciated as potential real-time indicators of the organism's state of health (SoH) along with their contributions to the environment and ecology. This review summarizes VOC emissions from in vivo microalgae; tools and techniques for the collection, storage, transport, detection, and pattern analysis of VOC emissions; linking certain VOCs to biosynthetic/metabolic pathways; and the role of VOCs in microalgae growth, infochemical activities, predator-prey interactions, and general SoH.
Collapse
Affiliation(s)
- Komandoor E Achyuthan
- Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Jason C Harper
- Bioenergy and Defense Technology Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Ronald P Manginell
- Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Matthew W Moorman
- Nano and Microsensors Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| |
Collapse
|
27
|
Capozzi V, Yener S, Khomenko I, Farneti B, Cappellin L, Gasperi F, Scampicchio M, Biasioli F. PTR-ToF-MS Coupled with an Automated Sampling System and Tailored Data Analysis for Food Studies: Bioprocess Monitoring, Screening and Nose-space Analysis. J Vis Exp 2017. [PMID: 28518086 DOI: 10.3791/54075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Proton Transfer Reaction (PTR), combined with a Time-of-Flight (ToF) Mass Spectrometer (MS) is an analytical approach based on chemical ionization that belongs to the Direct-Injection Mass Spectrometric (DIMS) technologies. These techniques allow the rapid determination of volatile organic compounds (VOCs), assuring high sensitivity and accuracy. In general, PTR-MS requires neither sample preparation nor sample destruction, allowing real time and non-invasive analysis of samples. PTR-MS are exploited in many fields, from environmental and atmospheric chemistry to medical and biological sciences. More recently, we developed a methodology based on coupling PTR-ToF-MS with an automated sampler and tailored data analysis tools, to increase the degree of automation and, consequently, to enhance the potential of the technique. This approach allowed us to monitor bioprocesses (e.g. enzymatic oxidation, alcoholic fermentation), to screen large sample sets (e.g. different origins, entire germoplasms) and to analyze several experimental modes (e.g. different concentrations of a given ingredient, different intensities of a specific technological parameter) in terms of VOC content. Here, we report the experimental protocols exemplifying different possible applications of our methodology: i.e. the detection of VOCs released during lactic acid fermentation of yogurt (on-line bioprocess monitoring), the monitoring of VOCs associated with different apple cultivars (large-scale screening), and the in vivo study of retronasal VOC release during coffee drinking (nosespace analysis).
Collapse
Affiliation(s)
- Vittorio Capozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM); Faculty of Science and Technology, Free University of Bolzano; Department of Agriculture, Food and Environmental Sciences, University of Foggia;
| | - Sine Yener
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM); Faculty of Science and Technology, Free University of Bolzano; Institute of Analytical Chemistry & Radiochemistry, Leopold-Franzens Universität Innsbruck
| | - Iuliia Khomenko
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM); Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck
| | - Brian Farneti
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM)
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM)
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM)
| | | | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM)
| |
Collapse
|
28
|
Schoen HR, Peyton BM, Knighton WB. Rapid total volatile organic carbon quantification from microbial fermentation using a platinum catalyst and proton transfer reaction-mass spectrometry. AMB Express 2016; 6:90. [PMID: 27709547 PMCID: PMC5052237 DOI: 10.1186/s13568-016-0264-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 11/12/2022] Open
Abstract
A novel analytical system was developed to rapidly and accurately quantify total volatile organic compound (VOC) production from microbial reactor systems using a platinum catalyst and a sensitive CO2 detector. This system allows nearly instantaneous determination of total VOC production by utilizing a platinum catalyst to completely and quantitatively oxidize headspace VOCs to CO2 in coordination with a CO2 detector. Measurement of respiratory CO2 by bypassing the catalyst allowed the total VOC content to be determined from the difference in the two signals. To the best of our knowledge, this is the first instance of a platinum catalyst and CO2 detector being used to quantify the total VOCs produced by a complex bioreactor system. Continuous recording of these CO2 data provided a record of respiration and total VOC production throughout the experiments. Proton transfer reaction-mass spectrometry (PTR-MS) was used to identify and quantify major VOCs. The sum of the individual compounds measured by PTR-MS can be compared to the total VOCs quantified by the platinum catalyst to identify potential differences in detection, identification and calibration. PTR-MS measurements accounted on average for 94 % of the total VOC carbon detected by the platinum catalyst and CO2 detector. In a model system, a VOC producing endophytic fungus Nodulisporium isolate TI-13 was grown in a solid state reactor utilizing the agricultural byproduct beet pulp as a substrate. Temporal changes in production of major volatile compounds (ethanol, methanol, acetaldehyde, terpenes, and terpenoids) were quantified by PTR-MS and compared to the total VOC measurements taken with the platinum catalyst and CO2 detector. This analytical system provided fast, consistent data for evaluating VOC production in the nonhomogeneous solid state reactor system.
Collapse
|
29
|
Makhoul S, Yener S, Khomenko I, Capozzi V, Cappellin L, Aprea E, Scampicchio M, Gasperi F, Biasioli F. Rapid non-invasive quality control of semi-finished products for the food industry by direct injection mass spectrometry headspace analysis: the case of milk powder, whey powder and anhydrous milk fat. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:782-791. [PMID: 27628758 DOI: 10.1002/jms.3801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/02/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
In this study, we demonstrated the suitability of direct injection mass spectrometry headspace analysis for rapid non-invasive quality control of semi-finished dairy ingredients, such as skim milk powder (SMP), whole milk powder (WMP), whey powder (WP) and anhydrous milk fat (AMF), which are widely used as ingredients in the food industry. In this work, for the first time, we applied proton transfer reaction-mass spectrometry (PTR-MS) with a time-of-flight (ToF) analyzer for the rapid and non-invasive analysis of volatile compounds in different samples of SMP, WMP, WP and AMF. We selected different dairy ingredients in various concrete situations (e.g. same producer and different expiration times, different producers and same days of storage, different producers) based on their sensory evaluation. PTR-ToF-MS allowed the separation and characterization of different samples based on the volatile organic compound (VOC) profiles. Statistically significant differences in VOC content were generally coherent with differences in sensory evaluation, particularly for SMP, WMP and WP. The good separation of SMP samples from WMP samples suggested the possible application of PTR-ToF-MS to detect possible cases of adulteration of dairy ingredients for the food industry. Our findings demonstrate the efficient and rapid differentiation of dairy ingredients on the basis of the released VOCs via PTR-ToF-MS analysis and suggest this method as a versatile tool (1) for the facilitation/optimization of the selection of dairy ingredients in the food industry and (2) and for the prompt innovation in the production of dairy ingredients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Salim Makhoul
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, Italy
- Department of Chemistry, University of Balamand, P. O. Box 100, Tripoli, Lebanon
- UMR PAM - équipe VALMIS, IUVV, 1 rue Claude Ladrey, 21078, Dijon Cedex, France
| | - Sine Yener
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Iuliia Khomenko
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, Italy
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universitӓt Innsbruck, Technikerstr, 25, 6020, Innsbruck, Austria
| | - Vittorio Capozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, Italy
- Faculty of Science and Technology, Free University of Bolzano, 39100, Bolzano, Italy
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Eugenio Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bolzano, 39100, Bolzano, Italy
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
30
|
Capozzi V, Makhoul S, Aprea E, Romano A, Cappellin L, Sanchez Jimena A, Spano G, Gasperi F, Scampicchio M, Biasioli F. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin. Molecules 2016; 21:483. [PMID: 27077836 PMCID: PMC6274548 DOI: 10.3390/molecules21040483] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/16/2022] Open
Abstract
In light of the increasing attention towards “green” solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Salim Makhoul
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
- L'Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques-L'équipe Vin Aliment Microbiologie et Stress, Institut Universitaire de la Vigne et du Vin, 1 rue Claude Ladrey, Dijon Cedex 21078, France.
- Department of Chemistry, University of Balamand, P. O. Box 100, Tripoli, Lebanon.
| | - Eugenio Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Andrea Romano
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Ana Sanchez Jimena
- Lallemand SAS, Lallemand Baking Solution Department, a Subsidiary of Lallemand Inc., Blagnac 31702, France.
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| |
Collapse
|
31
|
Patrignani F, Chinnici F, Serrazanetti DI, Vernocchi P, Ndagijimana M, Riponi C, Lanciotti R. Production of Volatile and Sulfur Compounds by 10 Saccharomyces cerevisiae Strains Inoculated in Trebbiano Must. Front Microbiol 2016; 7:243. [PMID: 26973621 PMCID: PMC4777720 DOI: 10.3389/fmicb.2016.00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
In wines, the presence of sulfur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of S. cerevisiae. In addition, the production of sulfur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the 10 strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulfur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.
Collapse
Affiliation(s)
- Francesca Patrignani
- Department of Agricultural and Food Sciences, University of BolognaBologna, Italy; Interdepartmental Centres for Industrial Research, University of BolognaCesena, Italy
| | - Fabio Chinnici
- Department of Agricultural and Food Sciences, University of Bologna Bologna, Italy
| | - Diana I Serrazanetti
- Interdepartmental Centres for Industrial Research, University of Bologna Cesena, Italy
| | - Pamela Vernocchi
- Department of Agricultural and Food Sciences, University of BolognaBologna, Italy; Human Microbiome Unit, Genetic and Rare Diseases Area, Bambino Gesu Research Hospital IRCCSRome, Italy
| | - Maurice Ndagijimana
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta Edmonton, AB, Canada
| | - Claudio Riponi
- Department of Agricultural and Food Sciences, University of Bologna Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of BolognaBologna, Italy; Interdepartmental Centres for Industrial Research, University of BolognaCesena, Italy
| |
Collapse
|
32
|
Lactobacillus and Leuconostoc volatilomes in cheese conditions. Appl Microbiol Biotechnol 2015; 100:2335-46. [DOI: 10.1007/s00253-015-7227-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
|
33
|
Benozzi E, Romano A, Capozzi V, Makhoul S, Cappellin L, Khomenko I, Aprea E, Scampicchio M, Spano G, Märk TD, Gasperi F, Biasioli F. Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. Food Res Int 2015; 76:682-688. [PMID: 28455053 DOI: 10.1016/j.foodres.2015.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
In this work, we used Proton Transfer Reaction-Mass Spectrometry (PTR-ToF-MS), coupled with an automated sampling system, to monitor lactic fermentation driven by different yogurt commercial starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. The aim is the identification of markers for real-time and non-invasive bioprocess control and optimisation as an industrial driver of innovation in food technology and biotechnology. We detected more than 300 mass peaks, tentatively identifying all major yogurt aroma volatiles. Thirteen mass peaks showed statistically significant differences among the four commercial starters. Among these are acetaldehyde, methanethiol, butanoic acid, 2-butanone, diacetyl, acetoin, 2-hydroxy-3-pentanone/pentanoic acid, heptanoic acid and benzaldehyde which play a key role in yogurt flavour. These volatile described the diverse flavour properties claimed by food biotechnological companies and, considering the possible contribution to yogurt flavour, are potential markers for the rapid screening of starter cultures and for the quality design in this fermentation-driven production. The strength of our approach lies in the identification, for the first time, of specific depletion kinetics of four sulphur containing compounds occurring during fermentation (hydrogen sulphide, methanethiol, S-methyl thioacetate/S-ethyl thioformate, pentane-thiol), which suggest a new possible protechnological feature of yogurt starter cultures.
Collapse
Affiliation(s)
- Elisabetta Benozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universitӓt Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Andrea Romano
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Vittorio Capozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Salim Makhoul
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Department of Chemistry, University of Balamand, P. O. Box 100, Tripoli, Lebanon; UMR PAM - équipe VALMIS, IUVV, 1 rue Claude Ladrey, 21078 Dijon Cedex, France
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Iuliia Khomenko
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universitӓt Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Eugenio Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122 Foggia, Italy
| | - Tilmann D Märk
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universitӓt Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy.
| |
Collapse
|
34
|
Volatile Compound Production During the Bread-Making Process: Effect of Flour, Yeast and Their Interaction. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1549-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|