1
|
Lai L, Xia M, Fu M, Gao Y, Sun J, Liu G, Chen S. Development of micro-nanostructured film with antibacterial, anticorrosive and thermal conductivity properties on copper surface. Bioelectrochemistry 2025; 163:108905. [PMID: 39847815 DOI: 10.1016/j.bioelechem.2025.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
A micro-nano sharkskin like film (Cu-MNS-FA) was synthesized on copper surface through chemical etching followed by formate passivation, and its anticorrosive, antibacterial and thermal conductivity properties were investigated. Results show that after 7 d of exposure to nature, Pseudomonas aeruginosa and Desulfovibrio vulgaris seawater, the charge transfer resistance of Cu-MNS-FA is more than three times higher than that of unmodified copper. In particular, in D. vulgaris seawater, the Rct value of modified copper is 7 times higher than that of unmodified copper after the same exposure duration. The counts of sessile cells, specifically P. aeruginosa and D. vulgaris, on the surface of modified copper are reduced by > 88 % after 3 days of immersion. Furthermore, thermal conductivity remains 10 % higher than that of untreated copper after 7 d of immersion. This film improves the performance characteristics of copper in seawater heat exchange systems.
Collapse
Affiliation(s)
- Li Lai
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Muqiu Xia
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Mengyu Fu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuanyuan Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Jiahao Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Guangzhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shiqiang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
3
|
Antimicrobial-Loaded Polyacrylamide Hydrogels Supported on Titanium as Reservoir for Local Drug Delivery. Pathogens 2023; 12:pathogens12020202. [PMID: 36839473 PMCID: PMC9962340 DOI: 10.3390/pathogens12020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Arthroplasty is a highly successful treatment to restore the function of a joint. The contamination of the implant via bacterial adhesion is the first step toward the development of device-associated infections. The emerging concern about antimicrobial resistance resulted in a growing interest to develop alternative therapeutic strategies. Thus, the increment in the incidence of bacterial periprosthetic infections, the complexity of treating infections caused by organisms growing in biofilms, together with the rise in antibiotic resistant bacteria, expose the need to design novel surfaces that provide innovative solutions to these rising problems. The aim of this work is to develop a coating on titanium (Ti) suitable for inhibiting bacterial adhesion and proliferation, and hence, biofilm formation on the surface. We have successfully prepared polyacrylamide hydrogels containing the conventional antibiotic ampicillin (AMP), silver nanoparticles (AgNPs), and both, AMP and AgNPs. The release of the antibacterial agents from the gelled to aqueous media resulted in an excellent antibacterial action of the loaded hydrogels against sessile S. aureus. Moreover, a synergic effect was achieved with the incorporation of both AMP and AgNPs in the hydrogel, which highlights the importance of combining antimicrobial agents having different targets. The polyacrylamide hydrogel coating on the Ti surface was successfully achieved, as it was demonstrated by FTIR, contact angle, and AFM measurements. The modified Ti surfaces having the polyacrylamide hydrogel film containing AgNPs and AMP retained the highest antibacterial effect against S. aureus as it was found for the unsupported hydrogels. The modified surfaces exhibit an excellent cytocompatibility, since healthy, flattened MC3T3-E1 cells spread on the surfaces were observed. In addition, similar macrophage RAW 264.7 adhesion was found on all the surfaces, which could be related to a low macrophage activation. Our results indicate that AMP and AgNP-loaded polyacrylamide hydrogel films on Ti are a good alternative for designing efficient antibacterial surfaces having an excellent cytocompatibility without inducing an exacerbated immune response. The approach emerges as a superior alternative to the widely used direct adsorption of therapeutic agents on surfaces, since the antimicrobial-loaded hydrogel coatings open the possibility of modulating the concentration of the antimicrobial agents to enhance bacterial killing, and then, reducing the risk of infections in implantable materials.
Collapse
|
4
|
Liu P, Zhao Z, Tang J, Wang A, Zhao D, Yang Y. Early Antimicrobial Evaluation of Nanostructured Surfaces Based on Bacterial Biological Properties. ACS Biomater Sci Eng 2022; 8:4976-4986. [PMID: 36223479 DOI: 10.1021/acsbiomaterials.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanostructured physical antibacterial surfaces are of great interest due to the increasing antibiotic resistance. In this work, the titania nanotube (TNT) array, a potential physical antibacterial surface, was used for antimicrobial evaluation. The early antibacterial properties of TNTs were assessed based on three growth phases of Staphylococcus aureus (S. aureus), and the physical factors influencing the antibacterial properties were comprehensively discussed. The results show apparent early antibacterial effects of TNTs, including the anti-initial attachment during the lag phase, the inhibition of proliferation and bactericidal effect during the logarithmic phase, and the inhibition of biofilm formation during the stationary phase. These antimicrobial effects are closely related to the combined influence of various physical properties of TNTs, such as diameter, hydrophilicity, roughness, and charge. The present work suggests that the evaluation of the early antimicrobial behavior of biomaterials should pay more attention on the biological characteristics of bacteria.
Collapse
Affiliation(s)
- Pingting Liu
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhili Zhao
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410010, China
| | - Jincheng Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Anqi Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dapeng Zhao
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yan Yang
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
5
|
Shi Y, Chen T, Shaw P, Wang PY. Manipulating Bacterial Biofilms Using Materiobiology and Synthetic Biology Approaches. Front Microbiol 2022; 13:844997. [PMID: 35875573 PMCID: PMC9301480 DOI: 10.3389/fmicb.2022.844997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria form biofilms on material surfaces within hours. Biofilms are often considered problematic substances in the fields such as biomedical devices and the food industry; however, they are beneficial in other fields such as fermentation, water remediation, and civil engineering. Biofilm properties depend on their genome and the extracellular environment, including pH, shear stress, and matrices topography, stiffness, wettability, and charges during biofilm formation. These surface properties have feedback effects on biofilm formation at different stages. Due to emerging technology such as synthetic biology and genome editing, many studies have focused on functionalizing biofilm for specific applications. Nevertheless, few studies combine these two approaches to produce or modify biofilms. This review summarizes up-to-date materials science and synthetic biology approaches to controlling biofilms. The review proposed a potential research direction in the future that can gain better control of bacteria and biofilms.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingli Chen
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Zhao L, Liu T, Li X, Cui Q, Wu Q, Wang X, Song K, Ge D. Low-Temperature Hydrothermal Synthesis of Novel 3D Hybrid Nanostructures on Titanium Surface with Mechano-bactericidal Performance. ACS Biomater Sci Eng 2021; 7:2268-2278. [PMID: 34014655 DOI: 10.1021/acsbiomaterials.0c01659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Titanium is extensively employed in modern medicines as orthopedic and dental implants, but implant failures frequently occur because of bacterial infections. Herein, three types of 3D nanostructured titanium surfaces with nanowire clusters (NWC), nanowire/sheet clusters (NW/SC) and nanosheet clusters (NSC), were fabricated using the low-temperature hydrothermal synthesis under normal pressure, and assessed for the sterilization against two common human pathogens. The results show that the NWC and NSC surfaces merely display good bactericidal activity against Escherichia coli, whereas the NW/SC surface represents optimal bactericidal efficiency against both Escherichia coli (98.6 ± 1.23%) and Staphylococcus aureus (69.82 ± 2.79%). That is attributed to the hybrid geometric nanostructure of NW/SC, i.e., the pyramidal structures of ∼23 nm in tip diameter formed with tall clustered wires, and the sharper sheets of ∼8 nm in thickness in-between these nanopyramids. This nanostructure displays a unique mechano-bactericidal performance via the synergistic effect of capturing the bacteria cells and penetrating the cell membrane. This study proves that the low-temperature hydrothermal synthesized hybrid mechano-bactericidal titanium surfaces provide a promising solution for the construction of bactericidal biomedical implants.
Collapse
Affiliation(s)
- Lidan Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Tianqing Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Xiangqin Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qianqian Cui
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qiqi Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Xin Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Kedong Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Dan Ge
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| |
Collapse
|
7
|
Kunrath MF, Monteiro MS, Gupta S, Hubler R, de Oliveira SD. Influence of titanium and zirconia modified surfaces for rapid healing on adhesion and biofilm formation of Staphylococcus epidermidis. Arch Oral Biol 2020; 117:104824. [DOI: 10.1016/j.archoralbio.2020.104824] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
|
8
|
Abstract
Antibiotic resistance is a global human health threat, causing routine treatments of bacterial infections to become increasingly difficult. The problem is exacerbated by biofilm formation by bacterial pathogens on the surfaces of indwelling medical and dental devices that facilitate high levels of tolerance to antibiotics. The development of new antibacterial nanostructured surfaces shows excellent prospects for application in medicine as next-generation biomaterials. The physico-mechanical interactions between these nanostructured surfaces and bacteria lead to bacterial killing or prevention of bacterial attachment and subsequent biofilm formation, and thus are promising in circumventing bacterial infections. This Review explores the impact of surface roughness on the nanoscale in preventing bacterial colonization of synthetic materials and categorizes the different mechanisms by which various surface nanopatterns exert the necessary physico-mechanical forces on the bacterial cell membrane that will ultimately result in cell death.
Collapse
|
9
|
Spengler C, Nolle F, Mischo J, Faidt T, Grandthyll S, Thewes N, Koch M, Müller F, Bischoff M, Klatt MA, Jacobs K. Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry. NANOSCALE 2019; 11:19713-19722. [PMID: 31599281 DOI: 10.1039/c9nr04375f] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial adhesion and the subsequent formation of resilient biofilms at surfaces are decisively influenced by substrate properties, such as the topography. To date, studies that quantitatively link surface topography and bacterial adhesion are scarce, as both are not straightforward to quantify. To fill this gap, surface morphometry combined with single-cell force spectroscopy was performed on surfaces with irregular topographies on the nano-scale. As surfaces, hydrophobized silicon wafers were used that were etched to exhibit surface structures in the same size range as the bacterial cell wall molecules. The surface structures were characterized by a detailed morphometric analysis based on Minkowski functionals revealing both qualitatively similar features and quantitatively different extensions. We find that as the size of the nanostructures increases, the adhesion forces decrease in a way that can be quantified by the area of the surface that is available for the tethering of cell wall molecules. In addition, we observe a bactericidal effect, which is more pronounced on substrates with taller structures but does not influence adhesion. Our results can be used for a targeted development of 3D-structured materials for/against bio-adhesion. Moreover, the morphometric analysis can serve as a future gold standard for characterizing a broad spectrum of material structures.
Collapse
Affiliation(s)
- Christian Spengler
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Friederike Nolle
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Johannes Mischo
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Thomas Faidt
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Samuel Grandthyll
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Nicolas Thewes
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Frank Müller
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael Andreas Klatt
- Institute of Stochastics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, Campus E2 9, 66123 Saarbrücken, Germany.
| |
Collapse
|
10
|
Kunrath MF, Leal BF, Hubler R, de Oliveira SD, Teixeira ER. Antibacterial potential associated with drug-delivery built TiO 2 nanotubes in biomedical implants. AMB Express 2019; 9:51. [PMID: 30993485 PMCID: PMC6468021 DOI: 10.1186/s13568-019-0777-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 02/09/2023] Open
Abstract
The fast evolution of surface treatments for biomedical implants and the concern with their contact with cells and microorganisms at early phases of bone healing has boosted the development of surface topographies presenting drug delivery potential for, among other features, bacterial growth inhibition without impairing cell adhesion. A diverse set of metal ions and nanoparticles (NPs) present antibacterial properties of their own, which can be applied to improve the implant local response to contamination. Considering the promising combination of nanostructured surfaces with antibacterial materials, this critical review describes a variety of antibacterial effects attributed to specific metals, ions and their combinations. Also, it explains the TiO2 nanotubes (TNTs) surface creation, in which the possibility of aggregation of an active drug delivery system is applicable. Also, we discuss the pertinent literature related to the state of the art of drug incorporation of NPs with antibacterial properties inside TNTs, along with the promising future perspectives of in situ drug delivery systems aggregated to biomedical implants.
Collapse
Affiliation(s)
- Marcel Ferreira Kunrath
- Dentistry University, School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil.
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, Porto Alegre, 90619-900, Brazil.
| | - Bruna Ferreira Leal
- Immunology and Microbiology Laboratory, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, Porto Alegre, 90619-900, Brazil
| | - Sílvia Dias de Oliveira
- Immunology and Microbiology Laboratory, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| | - Eduardo Rolim Teixeira
- Dentistry University, School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| |
Collapse
|
11
|
Zeng X, Xiong S, Zhuo S, Liu C, Miao J, Liu D, Wang H, Zhang Y, Wang C, Liu Y. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity. Int J Nanomedicine 2019; 14:1849-1863. [PMID: 30880984 PMCID: PMC6417851 DOI: 10.2147/ijn.s190954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Despite titanium (Ti) implants have been commonly used in the medical device field due to their superior biocompatibility, implant-associated bacterial infection remains a major clinical complication. Nanosilver, an effective antibacterial agent against a wide spectrum of bacterial strains, with a low-resistance potential, has attracted much interest too. Incorporation of nanosilver on Ti implants may be a promising approach to prevent biofilm formation. Purpose The objective of the study was to investigate the antibacterial effects and osteoinductive properties of nanosilver/poly (dl-lactic-co-glycolic acid)-coated titanium (NSPTi). Methods Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and the Gram-negative opportunistic pathogen Pseudomonas aeruginosa (PAO-1) were used to evaluate the antibacterial activity of NSPTi implants through the analysis of bacterial colonization in vitro and in vivo. Furthermore, we examined the osteoinductive potential of NSPTi implants by investigating the proliferation and differentiation of MC3T3-E1 preosteoblast cells. In vivo, the osteoinductive properties of NSPTi implants were assessed by radiographic evaluation, H&E staining, and Masson’s trichrome staining. Results In vitro, bacterial adhesion to the 2% NSPTi was significantly inhibited and <1% of adhered bacteria survived after 24 hours. In vitro, the average colony-forming units (CFU)/g ratios in the 2% NSPTi with 103 CFU MRSA and PAO-1 were 1.50±0.68 and 1.75±0.6, respectively. In the uncoated Ti groups, the ratios were 1.03±0.82×103 and 0.94±0.49×103, respectively. These results demonstrated that NSPTi implants had prominent antibacterial properties. Proliferation of MC3T3-E1 cells on the 2% NSPTi sample was 1.51, 1.78, and 2.22 times that on the uncoated Ti control after 3, 5, and 7 days’ incubation, respectively. Furthermore, NSPTi implants promoted the maturation and differentiation of MC3T3-E1 cells. In vivo, NSPTi accelerated the formation of new bone while suppressing bacterial survival. Conclusion NSPTi implants have simultaneous antibacterial and osteoinductive activities and therefore have the potential in clinical applications.
Collapse
Affiliation(s)
- Xuemin Zeng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Shijiang Xiong
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Endodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Shaoyang Zhuo
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Oral Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Chunpeng Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Jie Miao
- Department of Stomatology, The 5th People's Hospital of Jinan, Jinan, People's Republic of China
| | - Dongxu Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Hengxiao Wang
- Department of Experimental Pathology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yueying Zhang
- Department of Experimental Pathology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Chunling Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Yi Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| |
Collapse
|
12
|
Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:36-46. [PMID: 30654187 DOI: 10.1016/j.nano.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 11/24/2022]
Abstract
Nanocolumnar titanium coatings have been fabricated in two sputtering systems with very different characteristics (a laboratory setup and semi-industrial equipment), thus possessing different morphologies (150 nm long columns tilted 20° from the normal and 300 nm long ones tilted 40°, respectively). These coatings exhibit similar antibacterial properties against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacteria. When a synergic route is followed and these coatings are functionalized with tellurium (Te) nanorods, the antibacterial properties are enhanced, especially for the long nanocolumns case. The biocompatibility is preserved in all the nanostructured coatings.
Collapse
|
13
|
Pham VTH, Murugaraj P, Mathes F, Tan BK, Truong VK, Murphy DV, Mainwaring DE. Copolymers enhance selective bacterial community colonization for potential root zone applications. Sci Rep 2017; 7:15902. [PMID: 29162884 PMCID: PMC5698314 DOI: 10.1038/s41598-017-16253-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.
Collapse
Affiliation(s)
- Vy T H Pham
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Pandiyan Murugaraj
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Falko Mathes
- SoilsWest, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA6009, Australia
| | - Boon K Tan
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Vi Khanh Truong
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Daniel V Murphy
- SoilsWest, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA6009, Australia
| | - David E Mainwaring
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
14
|
Aguilera-Correa JJ, Conde A, Arenas MA, de-Damborenea JJ, Marin M, Doadrio AL, Esteban J. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection. ACTA ACUST UNITED AC 2017; 12:045022. [PMID: 28799523 DOI: 10.1088/1748-605x/aa770c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Ti-6Al-4V alloy is one of the most commonly used in orthopedic surgery. Despite its advantages, there is an increasing need to use new titanium alloys with no toxic elements and improved biomechanical properties, such as Ti-13Nb-13Zr. Prosthetic joint infections (PJI) are mainly caused by Gram-positive bacteria; however, Gram-negative bacteria are a growing problem due to associated multidrug resistance. In this study, the bacterial adherence and viability on the Ti-13Nb-13Zr alloy have been compared to that of the Ti-6Al-4V alloy using 16 collection and clinical strains of bacterial species related to PJI: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. When compared with the Ti-6Al-4V alloy, bacterial adherence on the Ti-13Nb-13Zr alloy was significantly higher in most staphylococcal and P. aeruginosa strains and lower for E. coli strains. The proportion of live bacteria was significantly lower for both Gram-negative species on the Ti-13Nb-13Zr alloy than on the Ti-6Al-4V alloy pointing to some bactericidal effect of the Ti-13Nb-13Zr alloy. This bactericidal effect appears to be a consequence of the formation of hydroxyl radicals, since this effect is neutralized when dimethylsulfoxide was added to both the saline solution and water used to wash the stain. The antibacterial effect of the Ti-13Nb-13Zr alloy against Gram-negative bacteria is an interesting property useful for the prevention of PJI caused by these bacteria on this potential alternative to the Ti-6Al-4V alloy for orthopedic surgery.
Collapse
Affiliation(s)
- John-Jairo Aguilera-Correa
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Catolicos, 2, E-28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Linklater DP, Nguyen HKD, Bhadra CM, Juodkazis S, Ivanova EP. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces. NANOTECHNOLOGY 2017; 28:245301. [PMID: 28534474 DOI: 10.1088/1361-6528/aa700e] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The nanostructuring of materials to create bactericidal and antibiofouling surfaces presents an exciting alternative to common methods of preventing bacterial adhesion. The fabrication of synthetic bactericidal surfaces has been inspired by the anti-wetting and anti-biofouling properties of insect wings, and other topologies found in nature. Black silicon is one such synthetic surfaces which has established bactericidal properties. In this study we show that time-dependent plasma etching of silicon wafers using 15, 30, and 45 min etching intervals, is able to produce different surface geometries with linearly increasing heights of approximately 280, 430, and 610 nm, respectively. After incubation on these surfaces with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacterial cells it was established that smaller, more densely packed pillars exhibited the greatest bactericidal activity with 85% and 89% inactivation of bacterial cells, respectively. The decrease in the pillar heights, pillar cap diameter and inter-pillar spacing corresponded to a subsequent decrease in the number of attached cells for both bacterial species.
Collapse
Affiliation(s)
- Denver P Linklater
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. Centre for Micro-Photonics and Industrial Research Institute Swinburne, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | | | | | | | | |
Collapse
|
16
|
Valdez-Salas B, Beltrán-Partida E, Castillo-Uribe S, Curiel-Álvarez M, Zlatev R, Stoytcheva M, Montero-Alpírez G, Vargas-Osuna L. In Vitro Assessment of Early Bacterial Activity on Micro/Nanostructured Ti6Al4V Surfaces. Molecules 2017; 22:E832. [PMID: 28524087 PMCID: PMC6154628 DOI: 10.3390/molecules22050832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022] Open
Abstract
It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO₂ nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis (S. epidermidis) and Pseudomonas aeruginosa (P. aeruginosa) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.
Collapse
Affiliation(s)
- Benjamin Valdez-Salas
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Ernesto Beltrán-Partida
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Av. Zotoluca y Chinampas, s/n, Mexicali C.P., 21280 Baja California, Mexico.
| | - Sandra Castillo-Uribe
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Mario Curiel-Álvarez
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Roumen Zlatev
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Margarita Stoytcheva
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Gisela Montero-Alpírez
- Instituto de Ingeniería, Departamento de Corrosión y Materiales, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| | - Lidia Vargas-Osuna
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P., 21040 Baja California, Mexico.
| |
Collapse
|
17
|
Nguyen DHK, Pham VTH, Al Kobaisi M, Bhadra C, Orlowska A, Ghanaati S, Manzi BM, Baulin VA, Joudkazis S, Kingshott P, Crawford RJ, Ivanova EP. Adsorption of Human Plasma Albumin and Fibronectin onto Nanostructured Black Silicon Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10744-10751. [PMID: 27718587 DOI: 10.1021/acs.langmuir.6b02601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed. At low bulk concentrations (below 40 μg/mL), the Alb preferentially adsorbed at the base of the nanopillars. At higher bulk concentrations, the Alb adsorbed on the top of the nanopillars. In the case of Fn, the protein preferentially adsorbed on the top of the nanopillars, irrespective of its bulk concentration.
Collapse
Affiliation(s)
- Duy H K Nguyen
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Vy T H Pham
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Mohammad Al Kobaisi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Chris Bhadra
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Anna Orlowska
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Shahram Ghanaati
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Berardo Mario Manzi
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Vladimir A Baulin
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Saulius Joudkazis
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne VIC 3001, Australia
| | - Elena P Ivanova
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| |
Collapse
|