1
|
Miyazaki T, Ishizaki M, Dohra H, Park S, Terzic A, Kato T, Kohsaka T, Park EY. Insulin-like peptide 3 expressed in the silkworm possesses intrinsic disulfide bonds and full biological activity. Sci Rep 2017; 7:17339. [PMID: 29229959 PMCID: PMC5725452 DOI: 10.1038/s41598-017-17707-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a member of the relaxin/insulin superfamily and is expressed in testicular Leydig cells. Essential for fetal testis descent, INSL3 has been implicated in testicular and sperm function in adult males via interaction with relaxin/insulin-like family peptide receptor 2 (RXFP2). The INSL3 is typically prepared using chemical synthesis or overexpression in Escherichia coli followed by oxidative refolding and proteolysis. Here, we expressed and purified full-length porcine INSL3 (pINSL3) using a silkworm-based Bombyx mori nucleopolyhedrovirus bacmid expression system. Biophysical measurements and proteomic analysis revealed that this recombinant pINSL3 exhibited the correct conformation, with the three critical disulfide bonds observed in native pINSL3, although partial cleavage occurred. In cAMP stimulation assays using RXFP2-expressing HEK293 cells, the recombinant pINSL3 possessed full biological activity. This is the first report concerning the production of fully active pINSL3 without post-expression treatments and provides an efficient production platform for expressing relaxin/insulin superfamily peptides.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Masaaki Ishizaki
- Laboratory of Biotechnology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tatsuya Kato
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tetsuya Kohsaka
- Laboratory of Animal Reproduction and Physiology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Laboratory of Biotechnology, Division of Applied Biological Chemistry, College of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Park S, Arrell DK, Reyes S, Park EY, Terzic A. Conventional and unconventional secretory proteins expressed with silkworm bombyxin signal peptide display functional fidelity. Sci Rep 2017; 7:14499. [PMID: 29101331 PMCID: PMC5670176 DOI: 10.1038/s41598-017-14833-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/18/2017] [Indexed: 11/10/2022] Open
Abstract
Growth factors are signaling molecules which orchestrate cell growth, proliferation and differentiation. The majority are secreted proteins, exported through the classical endoplasmic reticulum (ER)/Golgi-dependent pathway, but a few are released by unconventional ER/Golgi-independent means. Human fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1), are canonical prototypes secreted by the unconventional and conventional pathway, respectively. We herein examined whether expression of these two growth factors in the Bombyx mori nucleopolyhedrovirus (BmNPV)-based silkworm expression system with its innate signal peptide, bombyxin, secures structural homogeneity at the signal peptide cleavage site regardless of the native secretory route. Proteomic analysis mapped structural microheterogeneity of signal peptide cleavage at the amino terminus of FGF2, whereas IGF1 displayed homogeneous amino-terminal cleavage with complete removal of the bombyxin signal peptide. A cell proliferation assay revealed potent functional activity of both FGF2 and IGF1, suggesting that FGF2 amino-terminal microheterogeneity does not alter mitogenic activity. These findings demonstrate that the occurrence of amino-terminal structural homogeneity may be associated with the original secretion mechanism of a particular growth factor. Furthermore, our results highlight the bombyxin signal peptide as a reliable secretion sequence applicable to mass production of functionally active secretory proteins in a silkworm-based expression platform.
Collapse
Affiliation(s)
- Sungjo Park
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Marriott Heart Disease Research Program, Departments of Cardiovascular Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - D Kent Arrell
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Marriott Heart Disease Research Program, Departments of Cardiovascular Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Santiago Reyes
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Marriott Heart Disease Research Program, Departments of Cardiovascular Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Enoch Y Park
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA. .,Marriott Heart Disease Research Program, Departments of Cardiovascular Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
3
|
Ling B, Liu Y, Li X, Wang Z, Bi S. Identification of the active site of human mitochondrial malonyl-coenzyme a decarboxylase: A combined computational study. Proteins 2016; 84:792-802. [PMID: 26948533 DOI: 10.1002/prot.25029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 11/06/2022]
Abstract
Malonyl-CoA decarboxylase (MCD) can control the level of malonyl-CoA in cell through the decarboxylation of malonyl-CoA to acetyl-CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N-terminal helical domain instead of the adenine ring of CoA. The residues 300 - 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl-CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl-CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792-802. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Xiaoping Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, 273165, China
| |
Collapse
|