1
|
Huang Q, Liu B, Wu W. Biomaterial-Based bFGF Delivery for Nerve Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8003821. [PMID: 37077657 PMCID: PMC10110389 DOI: 10.1155/2023/8003821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
Diseases in the nervous system are common in the human body. People have to suffer a great burden due to huge economic costs and poor prognosis of the diseases. Many treatment modalities are now available that can make recovery better. Managing nutritional factors is also helpful for such diseases. The basic fibroblast growth factor (bFGF) is one of the major nutritional factors, which plays a crucial role in organogenesis and tissue homeostasis. It plays a role in cell proliferation, migration, and differentiation, thereby regulating angiogenesis and wound healing and repair of the muscle, bone, and nerve. The study on how to improve the stability of bFGF to increase the treatment effect for different diseases has garnered tremendous attention. Biomaterials are the popular methods to improve the stability of bFGF because they are safe for the living body as they are biocompatible. Biomaterials can be loaded with bFGF and delivered locally to achieve the goal of sustained bFGF release. In the present review, we report different types of biomaterials that are used for bFGF delivery for nerve repair and briefly report how the introduced bFGF can function in the nervous system. We aim to provide summative guidance for future studies about nerve injury using bFGF.
Collapse
Affiliation(s)
- Qinying Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| | - Bo Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| |
Collapse
|
2
|
SIDDIQUE F, Hon LAM EK, Raymond WONG WK. Synergistic hydrolysis of filter paper by recombinant cellulase cocktails leveraging a key cellobiase, Cba2, of Cellulomonas biazotea. Front Bioeng Biotechnol 2022; 10:990984. [PMID: 36246366 PMCID: PMC9554474 DOI: 10.3389/fbioe.2022.990984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cellulomonas biazotea, a Gram-positive cellulolytic bacterium isolated from soil, is capable of producing a complete cellulase complex exhibiting endoglucanase, exoglucanase, and cellobiase activities. Despite the presence of a full complement of all three types of cellulases, samples prepared from both cell lysates and culture media of C. biazotea showed only weak synergistic activities formed among the cellulase components, as reflected by their inefficient performance in filter paper hydrolysis. However, when the five previously characterized recombinant cellobiases of C. biazotea were mixed individually or in different combinations with recombinant enzyme preparations (CenA/Cex) containing an endoglucanase, CenA, and an exoglucanase, Cex, of another Cellulomonas species, C. fimi, the cellulase cocktails exhibited not only much higher but also synergistic activities in filter paper hydrolysis. Among the 5 C. biazotea cellobiases studied, Cba2 was shown to perform 2.8 to 3.8 times better than other homologous isozymes when acting individually with CenA/Cex. More noteworthy is that when Cba2 and Cba4 were added together to the reaction mixture, an even better synergistic effect was achieved. The filter paper activities resulting from Cba2 and Cba4 interacting with CenA/Cex are comparable to those obtained from some commercial fungal cellulase mixtures. To our knowledge, our results represent the first demonstration of synergistic effects on filter paper hydrolysis achieved using recombinant bacterial cellulases.
Collapse
Affiliation(s)
- Faiza SIDDIQUE
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Edward Kat Hon LAM
- Green Faith (International) Environmental Technology Ltd, Unit G, 19/F, King Palace Plaza, Kwun Tong, Kowloon, Hong Kong, China
| | - Wan Keung Raymond WONG
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- *Correspondence: Wan Keung Raymond WONG,
| |
Collapse
|
3
|
Wang H, Wang L, Zhong B, Dai Z. Protein Splicing of Inteins: A Powerful Tool in Synthetic Biology. Front Bioeng Biotechnol 2022; 10:810180. [PMID: 35265596 PMCID: PMC8899391 DOI: 10.3389/fbioe.2022.810180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Inteins are protein segments that are capable of enabling the ligation of flanking extein into a new protein, a process known as protein splicing. Since its discovery, inteins have become powerful biotechnological tools for applications such as protein engineering. In the last 10 years, the development in synthetic biology has further endowed inteins with enhanced functions and diverse utilizations. Here we review these efforts and discuss the future directions.
Collapse
Affiliation(s)
- Hao Wang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Wang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baihua Zhong
- Materials Interfaces Center, Institute of Advanced Materials Science and Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhuojun Dai
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
4
|
Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact 2021; 20:208. [PMID: 34717620 PMCID: PMC8557517 DOI: 10.1186/s12934-021-01698-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and ‘omics’ based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.
Collapse
Affiliation(s)
- Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Lai CY, Ng KL, Wang H, Lam CC, Wong WKR. Spontaneous Cleavages of a Heterologous Protein, the CenA Endoglucanase of Cellulomonas fimi, in Escherichia coli. Microbiol Insights 2021; 14:11786361211024637. [PMID: 34188486 PMCID: PMC8209791 DOI: 10.1177/11786361211024637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/22/2021] [Indexed: 11/26/2022] Open
Abstract
CenA is an endoglucanase secreted by the Gram-positive cellulolytic bacterium, Cellulomonas fimi, to the environment as a glycosylated protein. The role of glycosylation in CenA is unclear. However, it seems not crucial for functional activity and secretion since the unglycosylated counterpart, recombinant CenA (rCenA), is both bioactive and secretable in Escherichia coli. Using a systematic screening approach, we have demonstrated that rCenA is subjected to spontaneous cleavages (SC) in both the cytoplasm and culture medium of E. coli, under the influence of different environmental factors. The cleavages were found to occur in both the cellulose-binding (CellBD) and catalytic domains, with a notably higher occurring rate detected in the former than the latter. In CellBD, the cleavages were shown to occur close to potential N-linked glycosylation sites, suggesting that these sites might serve as ‘attributive tags’ for differentiating rCenA from endogenous proteins and the points of initiation of SC. It is hypothesized that glycosylation plays a crucial role in protecting CenA from SC when interacting with cellulose in the environment. Subsequent to hydrolysis, SC would ensure the dissociation of CenA from the enzyme-substrate complex. Thus, our findings may help elucidate the mechanisms of protein turnover and enzymatic cellulolysis.
Collapse
Affiliation(s)
- Cheuk Yin Lai
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Ka Lun Ng
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Hao Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chui Chi Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wan Keung Raymond Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Liu J, Ekanayake O, Santoleri D, Walker K, Rozovsky S. Efficient Generation of Hydrazides in Proteins by RadA Split Intein. Chembiochem 2020; 21:346-352. [PMID: 31265209 DOI: 10.1002/cbic.201900160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/30/2019] [Indexed: 12/27/2022]
Abstract
Protein C-terminal hydrazides are useful for bioconjugation and construction of proteins from multiple fragments through native chemical ligation. To generate C-terminal hydrazides in proteins, an efficient intein-based preparation method has been developed by using thiols and hydrazine to accelerate the formation of the transient thioester intermediate and subsequent hydrazinolysis. This approach not only increases the yield, but also improves biocompatibility. The scope of the method has been expanded by employing Pyrococcus horikoshii RadA split intein, which can accommodate a broad range of extein residues before the site of cleavage. The use of split RadA minimizes premature intein N cleavage in vivo and offers control over the initiation of the intein N cleavage reaction. It is expected that this versatile preparation method will expand the utilization of protein C-terminal hydrazides in protein preparation and modification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Oshini Ekanayake
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Dominic Santoleri
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kelsi Walker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
7
|
Hu X, Lai CYN, Sivakumar T, Wang H, Ng KL, Lam CC, Wong WKR. Novel strategy for expression of authentic and bioactive human basic fibroblast growth factor in Bacillus subtilis. Appl Microbiol Biotechnol 2018; 102:7061-7069. [PMID: 29951857 DOI: 10.1007/s00253-018-9176-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Inteins, also known as "protein introns," have been found to be present in many microbial species and widely employed for the expression and purification of recombinant proteins in Escherichia coli. However, interestingly, until now there has not been much information on the identification and application of inteins to protein expression in Bacillus subtilis. In this article, for the first time, despite the likelihood of absence of inteins in B. subtilis, this bacterium was shown to be able to facilitate auto-catalytic cleavages of fusions formed between inteins and recombinant proteins. Employing a construct expressing the intein, Ssp DnaB, (DnaB), which was fused at its N-terminus with the cellulose-binding domain (CellBD) of an endoglucanase encoded by the cenA gene of Cellulomonas fimi, the construct was demonstrated to be capable of mediating intracellular expression of basic fibroblast growth factor (bFGF), followed by auto-processing of the CellBD-DnaB-bFGF fusion to result in bFGF possessing the 146-residue authentic structure. The mentioned fusion was shown to result in a high yield of 84 mg l-1 of biologically active bFGF. Future work in improving the growth of B. subtilis may enable the use of this bacterium, working in cooperation with inteins, to result in a new platform for efficient expression of valuable proteins.
Collapse
Affiliation(s)
- Xiuhua Hu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheuk Yin Nelson Lai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - T Sivakumar
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hao Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K L Ng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - C C Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - W K R Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Cloning and characterization of two novel β-glucosidase genes encoding isoenzymes of the cellobiase complex from Cellulomonas biazotea. Gene 2018; 642:367-375. [DOI: 10.1016/j.gene.2017.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
|
9
|
Kwong KWY, Sivakumar T, Wong WKR. Intein mediated hyper-production of authentic human basic fibroblast growth factor in Escherichia coli. Sci Rep 2016; 6:33948. [PMID: 27653667 PMCID: PMC5032022 DOI: 10.1038/srep33948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/30/2016] [Indexed: 11/09/2022] Open
Abstract
Human basic fibroblast growth factor is a functionally versatile but very expensive polypeptide. In this communication, employing a novel amplification method for the target gene and genetic optimization of a previously engineered expression construct, pWK3R, together with a refined fed-batch fermentation protocol, we report an achievement of a phenomenal yield of 610 mg/L of the 146 aa authentic human basic fibroblast growth factor (bFGF) in Escherichia coli. Construct pWK3R was first modified to form plasmid pWK311ROmpAd, which was devoid of the ompA leader sequence and possessed two copies of a DNA segment encoding a fusion product comprising an intein, Saccharomyces cerevisiae vascular membrane ATPase (VMA), and bFGF. When E. coli transformant JM101 [pWK311ROmpAd] was cultivated using the refined fed-batch fermentation protocol, superb expression resulting in a total yield of 610 mg/L of bFGF was detected. Despite existing in high levels, the bFGF remained to be soluble and highly bioactive.
Collapse
Affiliation(s)
- Keith W Y Kwong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - T Sivakumar
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - W K R Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|