1
|
Shiota Y, Kosaka T. Insight on flavinylation and functioning factor in Type B succinate dehydrogenase from Gram-positive bacteria. Biosci Biotechnol Biochem 2025; 89:832-840. [PMID: 40053489 DOI: 10.1093/bbb/zbaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/01/2025] [Indexed: 03/09/2025]
Abstract
Succinate dehydrogenase (SDH), a multisubunit complex enzyme, catalyzes the oxidation of succinate to fumarate, coupled with quinone reduction. Maturation of each subunit and assembly of the complex is essential. However, little is known about the maturation mechanisms of SDH in Gram-positive bacteria. To elucidate the maturation of Type B SDH in Gram-positive bacteria, we heterologously expressed 3 SDH from Bacillus subtilis, Corynebacterium glutamicum, and Pelotomaculum thermopropionicum in Escherichia coli. The covalent binding of flavin adenine dinucleotide (FAD) at these SDH flavoprotein subunits was observed in heterologous expression as a complex. Their flavinylation was enhanced by the presence of the iron-sulfur subunit and fumarate. In contrast, the iron-sulfur subunit of heterologously expressed SDH without SDH activity showed no iron-sulfur clusters. These results suggest that during maturation of SDH, flavinylation is achieved by the complex and that other factors are required for the iron-sulfur cluster maturation.
Collapse
Affiliation(s)
- Yusuke Shiota
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Tomoyuki Kosaka
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
2
|
Engineering Gluconobacter cerinus CGMCC 1.110 for direct 2-keto-L-gulonic acid production. Appl Microbiol Biotechnol 2022; 107:153-162. [DOI: 10.1007/s00253-022-12310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
|
3
|
Bertucci M, Ariano K, Zumsteg M, Schweiger P. Engineering a tunable bicistronic TetR autoregulation expression system in Gluconobacter oxydans. PeerJ 2022; 10:e13639. [PMID: 35873911 PMCID: PMC9306550 DOI: 10.7717/peerj.13639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Acetic acid bacteria are well-known for their ability to incompletely oxidize their carbon sources. Many of the products of these oxidations find industrial uses. Metabolic engineering of acetic acid bacteria would improve production efficiency and yield by allowing controllable gene expression. However, the molecular tools necessary for regulating gene expression have only recently started being explored. To this end the ability of the activation-dependent Plux system and two constitutive repression Ptet systems were examined for their ability to modulate gene expression in Gluconobacter oxydans. The activation-dependent Plux system increased gene expression approximately 5-fold regardless of the strength of the constitutive promoter used to express the luxR transcriptional activator. The Ptet system was tunable and had a nearly 20-fold induction when the tetR gene was expressed from the strong constitutive promoters P0169 and P264, but only had a 4-fold induction when a weak constitutive promoter (P452) was used for tetR expression. However, the Ptet system was somewhat leaky when uninduced. To mitigate this background activity, a bicistronic TetR expression system was constructed. Based on molecular modeling, this system is predicted to have low background activity when not induced with anhydrotetracycline. The bicistronic system was inducible up to >3,000-fold and was highly tunable with almost no background expression when uninduced, making this bicistronic system potentially useful for engineering G. oxydans and possibly other acetic acid bacteria. These expression systems add to the newly growing repertoire of suitable regulatable promoter systems in acetic acid bacteria.
Collapse
|
4
|
YgfY Contributes to Stress Tolerance in Shewanella oneidensis Neither as an Antitoxin Nor as a Flavinylation Factor of Succinate Dehydrogenase. Microorganisms 2021; 9:microorganisms9112316. [PMID: 34835442 PMCID: PMC8621075 DOI: 10.3390/microorganisms9112316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
YgfY(SdhE/CptB) is highly conserved while has controversial functions in bacteria. It works as an antitoxin and composes a type IV toxin-antitoxin system with YgfX(CptA) typically in Escherichia coli, while functions as an flavinylation factor of succinate dehydrogenase and fumarate reductase typically in Serratia sp. In this study, we report the contribution of YgfY in Shewanella oneidensis MR-1 to tolerance of low temperature and nitrite. YgfY deficiency causes several growth defects of S. oneidensis MR-1 at low temperature, while YgfX do not cause a growth defect or morphological change of S. oneidensis MR1-1 and E. coli. YgfY do not interact with FtsZ and MreB nor with YgfX examined by bacterial two-hybrid assay. YgfY effect on growth under low temperature is not attributed to succinate dehydrogenase (SDH) because a mutant without SDH grows comparably with the wild-type strain in the presence of succinate. The ygfY mutant shows impaired tolerance to nitrite. Transcription of nitrite reductase and most ribosome proteins is significantly decreased in the ygfY mutant, which is consistent with the phenotypes detected above. Effects of YgfY on growth and nitrite tolerance are closely related to the RGXXE motif in YgfY. In summary, this study demonstrates pleiotropic impacts of YgfY in S. oneidensis MR-1, and sheds a light on the physiological versatility of YgfY in bacteria.
Collapse
|
5
|
FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium Gluconobacter oxydans Affects Expression of Genes Involved in Respiration and Redox Metabolism. Appl Environ Microbiol 2021; 87:AEM.00195-21. [PMID: 33741613 DOI: 10.1128/aem.00195-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gene expression in the obligately aerobic acetic acid bacterium Gluconobacter oxydans responds to oxygen limitation, but the regulators involved are unknown. In this study, we analyzed a transcriptional regulator named GoxR (GOX0974), which is the only member of the fumarate-nitrate reduction regulator (FNR) family in this species. Evidence that GoxR contains an iron-sulfur cluster was obtained, suggesting that GoxR functions as an oxygen sensor similar to FNR. The direct target genes of GoxR were determined by combining several approaches, including a transcriptome comparison of a ΔgoxR mutant with the wild-type strain and detection of in vivo GoxR binding sites by chromatin affinity purification and sequencing (ChAP-Seq). Prominent targets were the cioAB genes encoding a cytochrome bd oxidase with low O2 affinity, which were repressed by GoxR, and the pnt operon, which was activated by GoxR. The pnt operon encodes a transhydrogenase (pntA1A2B), an NADH-dependent oxidoreductase (GOX0313), and another oxidoreductase (GOX0314). Evidence was obtained for GoxR being active despite a high dissolved oxygen concentration in the medium. We suggest a model in which the very high respiration rates of G. oxydans due to periplasmic oxidations cause an oxygen-limited cytoplasm and insufficient reoxidation of NAD(P)H in the respiratory chain, leading to inhibited cytoplasmic carbohydrate degradation. GoxR-triggered induction of the pnt operon enhances fast interconversion of NADPH and NADH by the transhydrogenase and NADH reoxidation by the GOX0313 oxidoreductase via reduction of acetaldehyde formed by pyruvate decarboxylase to ethanol. In fact, small amounts of ethanol were formed by G. oxydans under oxygen-restricted conditions in a GoxR-dependent manner.IMPORTANCE Gluconobacter oxydans serves as a cell factory for oxidative biotransformations based on membrane-bound dehydrogenases and as a model organism for elucidating the metabolism of acetic acid bacteria. Surprisingly, to our knowledge none of the more than 100 transcriptional regulators encoded in the genome of G. oxydans has been studied experimentally until now. In this work, we analyzed the function of a regulator named GoxR, which belongs to the FNR family. Members of this family serve as oxygen sensors by means of an oxygen-sensitive [4Fe-4S] cluster and typically regulate genes important for growth under anoxic conditions by anaerobic respiration or fermentation. Because G. oxydans has an obligatory aerobic respiratory mode of energy metabolism, it was tempting to elucidate the target genes regulated by GoxR. Our results show that GoxR affects the expression of genes that support the interconversion of NADPH and NADH and the NADH reoxidation by reduction of acetaldehyde to ethanol.
Collapse
|
6
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
7
|
Fricke PM, Link T, Gätgens J, Sonntag C, Otto M, Bott M, Polen T. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans. Appl Microbiol Biotechnol 2020; 104:9267-9282. [PMID: 32974745 PMCID: PMC7567684 DOI: 10.1007/s00253-020-10905-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023]
Abstract
Abstract The acetic acid bacterium (AAB) Gluconobacter oxydans incompletely oxidizes a wide variety of carbohydrates and is therefore used industrially for oxidative biotransformations. For G. oxydans, no system was available that allows regulatable plasmid-based expression. We found that the l-arabinose-inducible PBAD promoter and the transcriptional regulator AraC from Escherichia coli MC4100 performed very well in G. oxydans. The respective pBBR1-based plasmids showed very low basal expression of the reporters β-glucuronidase and mNeonGreen, up to 480-fold induction with 1% l-arabinose, and tunability from 0.1 to 1% l-arabinose. In G. oxydans 621H, l-arabinose was oxidized by the membrane-bound glucose dehydrogenase, which is absent in the multi-deletion strain BP.6. Nevertheless, AraC-PBAD performed similar in both strains in the exponential phase, indicating that a gene knockout is not required for application of AraC-PBAD in wild-type G. oxydans strains. However, the oxidation product arabinonic acid strongly contributed to the acidification of the growth medium in 621H cultures during the stationary phase, which resulted in drastically decreased reporter activities in 621H (pH 3.3) but not in BP.6 cultures (pH 4.4). These activities could be strongly increased quickly solely by incubating stationary cells in d-mannitol-free medium adjusted to pH 6, indicating that the reporters were hardly degraded yet rather became inactive. In a pH-controlled bioreactor, these reporter activities remained high in the stationary phase (pH 6). Finally, we created a multiple cloning vector with araC-PBAD based on pBBR1MCS-5. Together, we demonstrated superior functionality and good tunability of an AraC-PBAD system in G. oxydans that could possibly also be used in other AAB. Key points • We found the AraC-PBADsystem from E. coli MC4100 was well tunable in G. oxydans. • In the absence of AraC orl-arabinose, expression from PBADwas extremely low. • This araC-PBADsystem could also be fully functional in other acetic acid bacteria. Electronic supplementary material The online version of this article (10.1007/s00253-020-10905-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tobias Link
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jochem Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christiane Sonntag
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Maike Otto
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
8
|
Kranz A, Steinmann A, Degner U, Mengus-Kaya A, Matamouros S, Bott M, Polen T. Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H. BMC Genomics 2018; 19:753. [PMID: 30326828 PMCID: PMC6191907 DOI: 10.1186/s12864-018-5111-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Gluconobacter oxydans is a strictly aerobic Gram-negative acetic acid bacterium used industrially for oxidative biotransformations due to its exceptional type of catabolism. It incompletely oxidizes a wide variety of carbohydrates regio- and stereoselectively in the periplasm using membrane-bound dehydrogenases with accumulation of the products in the medium. As a consequence, only a small fraction of the carbon and energy source enters the cell, resulting in a low biomass yield. Additionally, central carbon metabolism is characterized by the absence of a functional glycolysis and absence of a functional tricarboxylic acid (TCA) cycle. Due to these features, G. oxydans is a highly interesting model organism. Here we analyzed global mRNA decay in G. oxydans to describe its characteristic features and to identify short-lived mRNAs representing potential bottlenecks in the metabolism for further growth improvement by metabolic engineering. Results Using DNA microarrays we estimated the mRNA half-lives in G. oxydans. Overall, the mRNA half-lives ranged mainly from 3 min to 25 min with a global mean of 5.7 min. The transcripts encoding GroES and GroEL required for proper protein folding ranked at the top among transcripts exhibiting both long half-lives and high abundance. The F-type H+-ATP synthase transcripts involved in energy metabolism ranked among the transcripts with the shortest mRNA half-lives. RNAseq analysis revealed low expression levels for genes of the incomplete TCA cycle and also the mRNA half-lives of several of those were short and below the global mean. The mRNA decay analysis also revealed an apparent instability of full-length 23S rRNA. Further analysis of the ribosome-associated rRNA revealed a 23S rRNA fragmentation pattern exhibiting new cleavage regions in 23S rRNAs which were previously not known. Conclusions The very short mRNA half-lives of the H+-ATP synthase, which is likely responsible for the ATP-proton motive force interconversion in G. oxydans under many or most conditions, is notably in contrast to mRNA decay data from other bacteria. Together with the short mRNA half-lives and low expression of some other central metabolic genes it could limit intended improvements of G. oxydans’ biomass yield by metabolic engineering. Also, further studies are needed to unravel the multistep process of the 23S rRNA fragmentation in G. oxydans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5111-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela Kranz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andrea Steinmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ursula Degner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Aliye Mengus-Kaya
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
9
|
RNAseq analysis of α-proteobacterium Gluconobacter oxydans 621H. BMC Genomics 2018; 19:24. [PMID: 29304737 PMCID: PMC5756330 DOI: 10.1186/s12864-017-4415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023] Open
Abstract
Background The acetic acid bacterium Gluconobacter oxydans 621H is characterized by its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. The metabolism of this α-proteobacterium has been characterized to some extent, yet little is known about its transcriptomes and related data. In this study, we applied two different RNAseq approaches. Primary transcriptomes enriched for 5′-ends of transcripts were sequenced to detect transcription start sites, which allow subsequent analysis of promoter motifs, ribosome binding sites, and 5´-UTRs. Whole transcriptomes were sequenced to identify expressed genes and operon structures. Results Sequencing of primary transcriptomes of G. oxydans revealed 2449 TSSs, which were classified according to their genomic context followed by identification of promoter and ribosome binding site motifs, analysis of 5´-UTRs including validation of predicted cis-regulatory elements and correction of start codons. 1144 (41%) of all genes were found to be expressed monocistronically, whereas 1634 genes were organized in 571 operons. Together, TSSs and whole transcriptome data were also used to identify novel intergenic (18), intragenic (328), and antisense transcripts (313). Conclusions This study provides deep insights into the transcriptional landscapes of G. oxydans. The comprehensive transcriptome data, which we made publicly available, facilitate further analysis of promoters and other regulatory elements. This will support future approaches for rational strain development and targeted gene expression in G. oxydans. The corrections of start codons further improve the high quality genome reference and support future proteome analysis. Electronic supplementary material The online version of this article (10.1186/s12864-017-4415-x) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Kiefler I, Bringer S, Bott M. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield. Appl Microbiol Biotechnol 2017; 101:5453-5467. [PMID: 28484812 DOI: 10.1007/s00253-017-8308-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022]
Abstract
The obligatory aerobic acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources regio- and stereoselectively in the periplasm and therefore is used industrially for oxidative biotransformations, e. g., in vitamin C production. However, it has a very low biomass yield as the oxidized products largely remain in the medium and cannot be used for anabolism. Cytoplasmic carbon metabolism occurs via the pentose phosphate pathway and the Entner-Doudoroff pathway, whereas glycolysis and the tricarboxylic acid cycle are incomplete. Acetate is formed as an end product via pyruvate decarboxylase and acetaldehyde dehydrogenase. In order to increase the biomass yield from glucose, we sequentially replaced (i) gdhS encoding the cytoplasmic NADP-dependent glucose dehydrogenase by the Acetobacter pasteurianus sdhCDABE genes for succinate dehydrogenase and the flavinylation factor SdhE (strain IK001), (ii) pdc encoding pyruvate decarboxylase by a second ndh gene encoding a type II NADH dehydrogenase (strain IK002.1), and (iii) gdhM encoding the membrane-bound PQQ-dependent glucose dehydrogenase by sucCD from Gluconacetobacter diazotrophicus encoding succinyl-CoA synthetase (strain IK003.1). Analysis of the strains under controlled cultivation conditions in bioreactors revealed for IK003.1 that neither gluconate nor 2-ketogluconate was formed, but some 5-ketogluconate. Acetate formation was eliminated, and comparable amounts of pyruvate were formed instead. CO2 formation by IK003.1 was more than doubled compared to the reference strain. Growth of IK003.1 was retarded, but the biomass yield of this strain was raised by 60%. IK003.1 serves as suitable host for oxidative biotransformations and for further metabolic engineering.
Collapse
Affiliation(s)
- Ines Kiefler
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Stephanie Bringer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425, Jülich, Germany. .,The Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
11
|
Kranz A, Vogel A, Degner U, Kiefler I, Bott M, Usadel B, Polen T. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads. J Biotechnol 2017; 258:197-205. [PMID: 28433722 DOI: 10.1016/j.jbiotec.2017.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 02/08/2023]
Abstract
State of the art and novel high-throughput DNA sequencing technologies enable fascinating opportunities and applications in the life sciences including microbial genomics. Short high-quality read data already enable not only microbial genome sequencing, yet can be inadequately to solve problems in genome assemblies and for the analysis of structural variants, especially in engineered microbial cell factories. Single-molecule real-time sequencing technologies generating long reads promise to solve such assembly problems. In our study, we wanted to increase the average read length of long nanopore reads with R9 chemistry and conducted a hybrid approach for the analysis of structural variants to check the genome stability of a recombinant Gluconobacter oxydans 621H strain (IK003.1) engineered for improved growth. Therefore we combined accurate Illumina sequencing technology and low-cost single-molecule nanopore sequencing using the MinION® device from Oxford Nanopore. In our hybrid approach with a modified library protocol we could increase the average size of nanopore 2D reads to about 18.9kb. Combining the long MinION nanopore reads with the high quality short Illumina reads enabled the assembly of the engineered chromosome into a single contig and comprehensive detection and clarification of 7 structural variants including all three known genetically engineered modifications. We found the genome of IK003.1 was stable over 70 generations of strain handling including 28h of process time in a bioreactor. The long read data revealed a novel 1420 bp transposon-flanked and ORF-containing sequence which was hitherto unknown in the G. oxydans 621H reference. Further analysis and genome sequencing showed that this region is already present in G. oxydans 621H wild-type strains. Our data of G. oxydans 621H wild-type DNA from different resources also revealed in 73 annotated coding sequences about 91 uniform nucleotide differences including InDels. Together, our results contribute to an improved high quality genome reference for G. oxydans 621H which is available via ENA accession PRJEB18739.
Collapse
Affiliation(s)
- Angela Kranz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Vogel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany; IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ursula Degner
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ines Kiefler
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Björn Usadel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany; IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|