1
|
Yao C, Li Y, Li J, Jiang C, Jing K, Zhang S, Yang H, Liu C, Zhao L. Aerobic degradation of parent triisobutyl phosphate and its metabolite diisobutyl phosphate in activated sludge: Degradation pathways and degrading bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132380. [PMID: 37647667 DOI: 10.1016/j.jhazmat.2023.132380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/26/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Although organophosphate esters (OPEs) degradation has been widely studied, the degradation of their metabolites is always ignored. Triisobutyl phosphate (TiBP), a typical alkyl-OPEs, is of emerging concern because of its potential ecotoxicity in the environment. This study provides comprehensive understanding about the degradation of TiBP and one of its metabolites, diisobutyl phosphate (DiBP) using activated sludge (AS). The results showed that TiBP and DiBP were degraded mainly through hydrolysis, dehydrogenation, and hydroxylation. The degradation kinetics indicated that DiBP had similar transformation rates to its parent TiBP in AS, highlighting the importance of metabolite DiBP study. Dehydrogenase, hydroxylase, phosphotriesterase, phosphodiesterase, and phosphomonoesterase played an important role in contributing to TiBP and its metabolites degradation via enzyme activity analysis. Besides, the expression of genes encoding these enzymes in bacteria and the relative abundance change of bacterial populations indicated that Sphingomonas and Pseudomonas may be the degrading bacteria of TiBP and Pseudomonas may be the main degrading bacteria of DiBP. This study provides new perspectives for metabolite DiBP and its parent TiBP degradation. It highlights that the formation and degradation of metabolites must be considered into the future researches.
Collapse
Affiliation(s)
- Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China.
| | - Jing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Chenxue Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Suisui Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Lianfang Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| |
Collapse
|
2
|
He J, Wang Z, Zhen F, Wang Z, Song Z, Chen J, Hrynsphan D, Tatsiana S. Mechanisms of flame retardant tris (2-ethylhexyl) phosphate biodegradation via novel bacterial strain Ochrobactrum tritici WX3-8. CHEMOSPHERE 2023; 311:137071. [PMID: 36328323 DOI: 10.1016/j.chemosphere.2022.137071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is a common organophosphorus flame retardant analog with considerable ecological toxicity. Here, novel strain Ochrobactrum tritici WX3-8 capable of degrading TEHP as the sole C source was isolated. Our results show that the strain's TEHP degradation efficiency reached 75% after 104 h under optimal conditions, i.e., 30 °C, pH 7, bacterial inoculum 3%, and
Collapse
Affiliation(s)
- Jiamei He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fengzhen Zhen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhaoyun Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
3
|
Rangu SS, Singh R, Gaur NK, Rath D, Makde RD, Mukhopadhyaya R. Isolation and characterization of a recombinant class C acid phosphatase from Sphingobium sp. RSMS strain. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00709. [PMID: 35242619 PMCID: PMC8857453 DOI: 10.1016/j.btre.2022.e00709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Tributyl phosphate (TBP) is extensively used in nuclear industry and is a major environmental pollutant. The mechanism for TBP degradation is not identified in any TBP-degrading bacteria. Here, we report identification of an acid phosphatase from Sphingobium sp. RSMS (Aps) that exhibits high specific activity towards monobutyl phosphate (MBP) and could be a terminal component of the TBP degradation process. A genomic DNA library of the bacteria was screened using a histochemical method which yielded 35 phosphatase clones. Among these, the clone that showed the highest MBP degradation was studied further. DNA sequence analysis showed that the genomic insert encodes a protein (Aps) which belongs to class C acid phosphatase. The recombinant Aps was found to be a dimer and hydrolysed MBP with a Kcat 68.1 ± 5.46 s- 1 and Km 2.5 mM ± 0.50. The protein was found to be nonspecific for phosphatase activity and hydrolyzed disparate organophosphates.
Collapse
Affiliation(s)
- Shyam Sunder Rangu
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Neeraj Kailash Gaur
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Devashish Rath
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ravindra D. Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rita Mukhopadhyaya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
4
|
Liu J, Lin H, Dong Y, Li B. Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:284-291. [PMID: 30999205 DOI: 10.1016/j.envpol.2019.03.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 05/22/2023]
Abstract
Tributyl phosphate (TBP) is recognised as a global environmental contaminant because of its wide use in floatation reagents, nuclear fuel reprocessing and plasticisers. This contaminant is hardly degraded by hydrolysis in the environment due to its special physicochemical properties. In this study, one TBP-degrading strain was isolated from TBP-contaminated abandoned mine tailings, and 16S rRNA identification revealed that the strain belonged to the genus Sphingomonas. Results validated that the strain could utilise TBP as the sole carbon source, and vitamin was not the essential factor for its growth. Liquid chromatography time-of-flight mass spectrometry analysis identified di-n-butyl phosphate (DnBP) and mono-n-butyl phosphate (MnBP) as the intermediate metabolites for TBP biodegradation. No obvious change in carbon and hydrogen isotope composition was observed in biodegradation processes (cell suspension and crude extract degradation), which indicated that the first irreversible bond cleavage did not involve carbon or hydrogen. Hence, the TBP degradation scheme by Sphingomonas sp. proposed that the first irreversible step of TBP transferred to DnBP would lead to PO bond cleavage. This study combined the identification of products and isotope fractionation in substrates to investigate the transformation mechanism, thereby providing an eco-friendly and cost-effective way for the in situ bioremediation of TBP-contaminated sites by the isolated TBP degradation strain.
Collapse
Affiliation(s)
- Jia Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
5
|
Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1. Appl Microbiol Biotechnol 2016; 101:2153-2162. [DOI: 10.1007/s00253-016-7991-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/31/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
|