1
|
Kawai S, Moriga K, Nirdnoy W, Hara R, Ogawa J, Katsuyama Y, Ohnishi Y. Identification of Two Distinct Stereoselective Lysine 5-Hydroxylases by Genome Mining Based on Alazopeptin Biosynthetic Enzymes. Chemistry 2025; 31:e202404790. [PMID: 39960436 PMCID: PMC11973848 DOI: 10.1002/chem.202404790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Enzymes that catalyze regioselective and stereoselective hydroxylation of amino acids are useful tools for the synthesis of pharmaceuticals. AzpK is an unprecedented lysine 5-hydroxylase that is involved in alazopeptin biosynthesis, although its enzymatic activity has not been confirmed in vitro. Here, we identified two α-ketoglutarate/Fe2+-dependent dioxygenases in Actinosynnema mirum and Pseudomonas psychrotolerans (Am_AzpK2 and Pp_AzpK2, respectively) as lysine 5-hydroxylases, using genome mining based on the alazopeptin biosynthetic gene cluster. Interestingly, Am_AzpK2 and Pp_AzpK2 synthesized different isomers, (2S,5S)- and (2S,5R)-5-hydroxylysine, respectively. We also identified two AzpJ homologs as the dehydrogenases that specifically recognize the hydroxy groups of (2S,5S)- and (2S,5R)-5-hydroxylysine to synthesize a keto group. These dehydrogenases were shown to be useful tools for characterizing the stereochemistry of 5-hydroxylysine and evaluating the activity of lysine 5-hydroxylases. Furthermore, we identified three lysine 5-hydroxylases that synthesize (2S,5S)-5-hydroxylysine and four lysine 5-hydroxylases that synthesize (2S,5R)-5-hydroxylysine from the genome database. Genome scanning based on lysine 5-hydroxylases indicated the presence of undiscovered natural products with 5-hydroxylysine moieties. In conclusion, this study provides a fundamental technology for the stereoselective production of 5-hydroxylysine. Further analysis of the stereoselective lysine 5-hydroxylases would reveal how nature establishes highly stereoselective hydroxylation.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of BiotechnologyGraduate School of Agricultural and Life Sciences, TheUniversity of Tokyo1-1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Kota Moriga
- Department of BiotechnologyGraduate School of Agricultural and Life Sciences, TheUniversity of Tokyo1-1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Warawadee Nirdnoy
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKitashirakawa-oiwakecho, Sakyo-kuKyoto606-8502Japan
| | - Ryotaro Hara
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKitashirakawa-oiwakecho, Sakyo-kuKyoto606-8502Japan
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKitashirakawa-oiwakecho, Sakyo-kuKyoto606-8502Japan
| | - Yohei Katsuyama
- Department of BiotechnologyGraduate School of Agricultural and Life Sciences, TheUniversity of Tokyo1-1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative Microbiology, TheUniversity of Tokyo, Bunkyo-kuTokyo113-8657Japan
| | - Yasuo Ohnishi
- Department of BiotechnologyGraduate School of Agricultural and Life Sciences, TheUniversity of Tokyo1-1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative Microbiology, TheUniversity of Tokyo, Bunkyo-kuTokyo113-8657Japan
| |
Collapse
|
2
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
3
|
M VNUM, Faidh MA, Chadha A. The ornithine cyclodeaminase/µ-crystallin superfamily of proteins: A novel family of oxidoreductases for the biocatalytic synthesis of chiral amines. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
4
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
5
|
Zhao J, Liu C, Guo X, Wang J, Liu H, Zheng P, Sun J, Ma Y. Efficient production of trans-3-hydroxyproline by a bacterial trans-3-proline hydroxylase and characterization of enzymatic properties. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Hara R, Nishikawa T, Okuhara T, Koketsu K, Kino K. Ectoine hydroxylase displays selective trans-3-hydroxylation activity towards L-proline. Appl Microbiol Biotechnol 2019; 103:5689-5698. [PMID: 31106391 DOI: 10.1007/s00253-019-09868-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/25/2022]
Abstract
L-Hydroxyproline (Hyp) is a valuable intermediate for the synthesis of pharmaceuticals; consequently, a practical process for its production has been in high demand. To date, industrial processes have been developed by using L-Pro hydroxylases. However, a process for the synthesis of trans-3-Hyp has not yet been established, because of the lack of highly selective enzymes that can convert L-Pro to trans-3-Hyp. The present study was designed to develop a biocatalytic trans-3-Hyp production process. We speculated that ectoine hydroxylase (EctD), which is involved in the hydroxylation of the known compatible solute ectoine, may possess the ability to hydroxylate L-Pro, since the structures of ectoine and 5-hydroxyectoine resemble those of L-Pro and trans-3-Hyp, respectively. Consequently, we discovered that ectoine hydroxylases from Halomonas elongata, as well as some actinobacteria, catalyzed L-Pro hydroxylation to form trans-3-Hyp. Of these, ectoine hydroxylase from Streptomyces cattleya also utilized 3,4-dehydro-L-Pro, 2-methyl-L-Pro, and L-pipecolic acid as substrates. In the whole-cell bioconversion of L-Pro into trans-3-Hyp using Escherichia coli expressing the ectD gene from S. cattleya, only 12.4 mM trans-3-Hyp was produced from 30 mM L-Pro, suggesting a rapid depletion of 2-oxoglutarate, an essential component of enzyme activity as a cosubstrate, in the host. Therefore, the endogenous 2-oxoglutarate dehydrogenase gene was deleted. Using this deletion mutant as the host, trans-3-Hyp production was enhanced up to 26.8 mM from 30 mM L-Pro, with minimal loss of 2-oxoglutarate. This finding is not only beneficial for trans-3-Hyp production, but also for other E. coli bioconversion processes involving 2-oxoglutarate-utilizing enzymes.
Collapse
Affiliation(s)
- Ryotaro Hara
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Takeyuki Nishikawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Takuya Okuhara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kento Koketsu
- Bioprocess Development Center, Kyowa Hakko Bio Co., Ltd., 2, Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
7
|
Abstract
C–H functionalization is a chemically challenging but highly desirable transformation. 2-oxoglutarate-dependent oxygenases (2OGXs) are remarkably versatile biocatalysts for the activation of C–H bonds. In nature, they have been shown to accept both small and large molecules carrying out a plethora of reactions, including hydroxylations, demethylations, ring formations, rearrangements, desaturations, and halogenations, making them promising candidates for industrial manufacture. In this review, we describe the current status of 2OGX use in biocatalytic applications concentrating on 2OGX-catalyzed oxyfunctionalization of amino acids and synthesis of antibiotics. Looking forward, continued bioinformatic sourcing will help identify additional, practical useful members of this intriguing enzyme family, while enzyme engineering will pave the way to enhance 2OGX reactivity for non-native substrates.
Collapse
|
8
|
Discovery of Lysine Hydroxylases in the Clavaminic Acid Synthase-Like Superfamily for Efficient Hydroxylysine Bioproduction. Appl Environ Microbiol 2017; 83:AEM.00693-17. [PMID: 28667106 DOI: 10.1128/aem.00693-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/22/2017] [Indexed: 01/19/2023] Open
Abstract
Hydroxylation via C-H bond activation in the absence of any harmful oxidizing reagents is technically difficult in modern chemistry. In this work, we attempted to generate pharmaceutically important hydroxylysine from readily available l-lysine with l-lysine hydroxylases from diverse microorganisms. Clavaminic acid synthase-like superfamily gene mining and phylogenetic analysis led to the discovery of six biocatalysts, namely two l-lysine 3S-hydroxylases and four l-lysine 4R-hydroxylases, the latter of which partially matched known hydroxylases. Subsequent characterization of these hydroxylases revealed their capacity for regio- and stereoselective hydroxylation into either C-3 or C-4 positions of l-lysine, yielding (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine, respectively. To determine if these factors had industrial application, we performed a preparative production of both hydroxylysines under optimized conditions. For this, recombinant l-lysine hydroxylase-expressing Escherichia coli cells were used as a biocatalyst for l-lysine bioconversion. In batch-scale reactions, 531 mM (86.1 g/liter) (2S,3S)-3-hydroxylysine was produced from 600 mM l-lysine with an 89% molar conversion after a 52-h reaction, and 265 mM (43.0 g/liter) (2S,4R)-4-hydroxylysine was produced from 300 mM l-lysine with a molar conversion of 88% after 24 h. This report demonstrates the highly efficient production of hydroxylysines using lysine hydroxylases, which may contribute to future industrial bioprocess technologies.IMPORTANCE The present study identified six l-lysine hydroxylases belonging to the 2-oxoglutarate-dependent dioxygenase superfamily, although some of them overlapped with known hydroxylases. While the substrate specificity of l-lysine hydroxylases was relatively narrow, we found that (2S,3S)-3-hydroxylysine was hydroxylated by 4R-hydroxylase and (2S,5R)-5-hydroxylysine was hydroxylated by both 3S- and 4R-hydroxylases. Moreover, the l-arginine hydroxylase VioC also hydroxylated l-lysine, albeit to a lesser extent. Further, we also demonstrated the bioconversion of l-lysine into (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine on a gram scale under optimized conditions. These findings provide new insights into biocatalytic l-lysine hydroxylation and thus have a great potential for use in manufacturing bioprocesses.
Collapse
|